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ABSTRACT 
The highly complex biological nanocomputers in living cells involve integration of multiple inputs, performing 

computations on these signals, storing the information in memory and responding to the environment. 

Computational tools and techniques have been developed for modification and designing of the DNA, RNA and 

proteins. Diverse paradigms have emerged for designing, modeling, constructing and characterizing of artificial 

genetic systems. By utilization of biological databases and computational tools, synthetic biologists have 

constructed novel genetic circuits through rational design and forward engineering that enable living systems to 

sense their dynamic environments, perform computation on the inputs and formulate appropriate outputs. 

Synthetic feedback loops or embedded biosensors can also be used as built-in control mechanisms for 

monitoring or triggering the cellular processes. Engineered living cells have the potential to perform a wide 

range of desirable tasks for biological applications in biotechnology, biomedical engineering and basic biology 

studies. Ultimately, the use of different computational tools and optimal integration of digital logic, analog 

computation as well as memory circuits will enable powerful next generation genetic circuits to drive innovation 

in the field of genome designing, cellular functions and synthetic biology. This paper focuses on computational 

tools and softwares used in metabolic engineering and synthetic biology for designing of genomes, microbial 

strains and cellular functions. 

Keywords: Computation tools, Gene circuits, Biological databases, Softwares, Genome designing, Synthetic 
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I. INTRODUCTION 
Synthetic biology involves the construction 

of biological systems from the minute functional unit 

to the functional cellular level through engineering 

and manipulating of biomolecular systems. The 

fabrication of biobricks, synthetic cells, genetic 

circuits and nonlinear cell dynamics, along with 

engineering of metabolic pathways, has occupied 

researchers in the field of synthetic biology. Thus, the 

main focus of synthetic biology is fundamental 

biological research facilitated by the use of synthetic 

DNA and genetic circuits [1] [2]. Computer-aided 

designs and concepts for standardization and 

hierarchies of parts, devices and systems provide a 

basis for efficient engineering in biology. Recently 

developed computational tools, for instance, enable 

rational and graphical composition of genetic circuits 

from standard parts and subsequent simulation for 

testing the predicted functions in silico. The 

computational design of DNA and proteins with 

predetermined quantitative functions has made 

similar advances [3].  

 

The sequencing of whole genome and 

genomics technologies are also used to develop 

methods for utilizing genomic information to 

understand and predict phenotypic function. The 

rapid improvements in DNA synthesis and enhanced 

assembly techniques enabled the construction of 

entire genomes. Synthetic biology possesses the 

capabilities to design and redesign biological 

components and systems that will address global food 

and energy challenges, propel industrial 

transformations, improve the sustainable bio-

engineered processes and offer new gene-based 

methods to target human medical conditions and 

insect-borne diseases (Fig. 1) [4] [5]. These include 

improvements in DNA synthesis (longer fragments 

and higher accuracy), reduced DNA synthesis and 

sequencing, new capabilities to read, edit and rewrite 

the genes and cells of organisms, advances in bio-

engineering design and modeling techniques, 

enhanced tools for biological assembly and 

engineering, the development of standardized 

biological parts and the use of automated and data-
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intensive methods to speed up discovery and testing [6] [7] [8] [9]. 

 
Fig. 1. Steps involved in designing synthetic engineered product 

 

II. APPLICATIONS OF 

COMPUTATIONAL TOOLS AND 

TECHNIQUES 
Synthetic genomics is useful for the 

synthesis of DNA. It gives the methods which 

involves the combination of chemical and 

computational techniques. It is possible to design and 

assemble the whole genome by using 

synthetic genomics. These methods allow scientists 

to construct genetic material that would be 

impossible or impractical to produce using more 

conventional biotechnological approaches.  

Functional genomics uses genomic data to study 

about gene and protein expression and its function on 

a global scale (genome-wide or system-wide). It 

focuses on gene transcription, translation and protein-

protein interactions, and often involves high-

throughput method, including the identity of genes 

and the factors that control differential expression. 

Potential possible applications of 

synthetic genomics are biological production of fuels 

and vaccines generation against emerging microbial 

disease. 

Bioinformatics is the field that develops the 

methods and software tools for understanding 

biological data. Research in bioinformatics includes 

method development for storage, retrieval and 

analysis of the data. Bioinformatics obtains the 

knowledge from computer analysis of biological data. 

It consists of the information stored in the genetic 

code, but also experimental results from various 

sources, patient statistics and scientific literature. The 

techniques like image and signal processing allow 

extraction of results from large amount of raw data. 

Bioinformatics tools help to compare genetic and 

genomic data. It also plays a role in the analysis of 

gene regulation and protein expression.  

The initial genome-scale models were 

constructed based upon genomic data (DNA 

sequence) information and biochemical data (reaction 

stoichiometry) in conjunction with linear 
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programming to apply mass balancing principles to a 

whole-cell system. These models range from 

understanding the underlying structure of networks 

by using model-building approaches [10] and 

progressively more cellular details including 

transcriptional regulation [11] and signaling 

pathways [12]. All of these models have contributed 

to improve the predictive capability and accuracy of 

genome-scale metabolic models and can be used to 

study a variety of aspects of cellular systems.  

A broader challenge in synthetic biology is 

to engineer existing genomes for bio-manufacturing 

or to decipher the principles that govern the operation 

of biological systems [13] [14]. Recently, synthesis 

capabilities have progressed from a Mycoplasma 

genome of 582,970 base pairs to a 1.08-mega-base-

pair Mycoplasma genome transplanted into a 

recipient cell lacking a genome [15] [16] [17]. 

Dymond et al. [18] reported the remarkable synthesis 

of the right arm of chromosome IX in yeast and a 

portion of chromosome VI. These genomes were 

integrated into yeast cells with minimal phenotypic 

variation in growth and gene expression. This work 

provided a valuable method of studying the yeast 

genome and adapting yeast to specific applications 

such as biosynthesis.  

Next-generation sequencing (NGS) has 

revolutionized the field of biology over the last 

decade. The Genomes OnLine Database (GOLD) that 

monitors sequencing projects worldwide has grown 

from just 1575 sequencing projects in 2005 to over 

70,000 in 2015 [19]. This is partly caused by a rapid 

drop in the price of high-throughput sequencing [20], 

but also an increase of free user-friendly 

bioinformatical tools such as MG-RAST [21], 

MEGAN [22] and user fora such as seqanswers.com, 

biostars.org etc. In recent publications up to 100 

Gbases have been sequenced [23], which allowed 

even a partly reconstruction of genomes of single 

microbes from the obtained reads [24]. Vestergaard 

et al. [25] discussed some basic guidelines for the 

experimental design of metagenomic surveys to 

characterize community composition and function of 

soil microbiomes, without losing the environmental 

context. 

 

III. CONTROL OF GENE EXPRESSION 

AND GENETIC ENGINEERING 
Genes are a stretch of nucleotides which 

code for different polypeptide sequences. Genes are 

isolated and amplified artificially by polymerase 

chain reaction (PCR) with gene specific primers if 

the DNA sequence of the gene is known. The desired 

sequence may also be synthesized artificially by solid 

phase DNA synthesis. Artificial gene synthesis in 

synthetic biology is used to create artificial genes in 

the laboratory. It differs from molecular cloning and 

PCR in that the user does not have to begin with 

preexisting DNA sequences. It is possible to make 

synthetic double stranded DNA molecule with no 

size limits. Oligonucleotides are synthesized by 

phosphoramidite nucleosides artificially and used 

nucleosides can be natural or artificial. The 

technological advances in DNA synthesis and high-

fidelity assembly of DNA fragments led to the 

developments and improvements of molecular 

biology and genetic engineering tools [26] [27]. 

Designed expression control for individual genes 

typically occurs either at the transcription or 

translation levels.  

 The first level of functional control for 

specific genes occurs during transcription (Fig. 2). 

The transcriptional process involves binding of RNA 

polymerase on a DNA sequence (promoter) to initiate 

biosynthesis of mRNA. The analysis of naturally 

occurring promoter sequences showed the occurrence 

of conserved sequence motifs that physically bind to 

the sigma subunit of the RNA polymerase. Sequence 

variation in the promoter was found to affect 

transcriptional strength [28]. Base-by-base changes in 

the promoter or transcriptional modulating sequences 

called UP elements [29] could be accurately 

synthesized and tested in synthetic DNA constructs.  

 
 

Fig. 2. Promoter sequences on the DNA are 

recognized by the RNA polymerase and sense strand 

of double stranded DNA acts as template strand for 

synthesis of mRNA (transcription). The message in 

mRNA is translated in synthesis of different 

aminoacids by the ribosomes in conjuction with 

tRNA. Aminoacids get polymerized to make different 

proteins in living cells.  

During translation, mRNA is translated into 

proteins. Translation initiates when a ribosome 

interacts with a ribosome binding site (RBS) and 

facilitates the subsequent tRNA binding to mRNA 

codons to produce polypeptides by the addition of 

amino acids. Translation involves three steps: 
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initiation, elongation and termination. Due to 

variation in the DNA sequence of the RBS within 

each cell, different rates of translation initiation are 

found. Recently, a computational approach has been 

developed to predict translation initiation rates for all 

start codons in a given DNA sequence based upon a 

thermodynamic calculation of Gibbs free energy [30]. 

This calculation specifically considers the interaction 

of the 30S ribosomal subunit with a specific mRNA 

sequence.  

 

IV. COMPUTATIONAL TOOLS AND 

SOFTWARES USED IN SYNTHETIC 

BIOLOGY  
Historically, natural products have been the 

major source of lead compounds for antimicrobial 

drugs, but also are used in other application fields, 

such as anti-cancer drugs, insecticides, anthelmintics, 

pain killers, flavors, cosmeceuticals and crop 

protection. With the broad availability of ‗omics 

technologies‘, we currently experience a paradigm 

shift in natural product research [31]. For decades, 

the only way to get access to new compounds was to 

cultivate antibiotics-producing microorganisms, 

mainly fungi and bacteria, under different growth 

conditions, and then isolate and characterize the 

compounds with sophisticated analytical chemistry. 

Nowadays, ‗omics approaches offer complementary 

access to natural products; by identifying natural 

product/secondary metabolite biosynthetic gene 

clusters (BGCs). It is now possible to assess the 

genetic potential of producer strains and to more 

effectively identify previously unknown metabolites 

using the available databases (Table 1). This 

information will also be the basis to rationally 

engineer molecules or develop ―designer molecules‖ 

using synthetic biology approaches in the future [32]. 

Public access databases such as KEGG [33], 

MetaCyc [34] and RHEA [35] were found useful for 

the designing of metabolic pathways. A database 

containing molecular and biochemical data of 

enzymes, BRENDA can be useful to select the core 

pathway capable to produce the metabolite of interest 

[36]. Web servers, such as From-Metabolite-To-

Metabolite (FMM) [37] and Metabolic Route Search 

and Design (MRSD) [38] can also be used for 

designing synthetic and unique metabolic pathways 

in cell-free systems.  

Using the natural ability of genome-scale 

metabolic models to simulate the behaviour of 

cellular metabolism, cellular designs for maximizing 

chemical production can be predicted. A genome-

scale model of Escherichia coli was demonstrated to 

predict strain designs for the over-production of lactic 

acid [39], which set the stage for genome-scale 

models as powerful computational tools for strain 

design. Controlled sequence-to-function relationships 

could then be extrapolated using mathematical 

correlation methods such as a position weight matrix 

(PWM) (Table 2). Recently, PWMs have been used 

to quantitatively describe the sequence-to-function 

relationship for promoters in E. coli [28]. Recently, 

synthetic promoters have been designed to produce a 

desired level of transcriptional strength with the 

recent modeling developments. To calculate the 

relative contribution of each enzymatic step in the 

pathway when optimization of particular objective 

function is required, Flux Balance Analysis (FBA) is 

commonly used [40]. The ―Ribosome Binding Site 

Calculator‖ can be used not only to predict 

translation initiation rates for existing sequences, but 

also to design de novo RBS sequences for 

synthetically controlling translated protein levels. 

Synthetic biology has now developed a complement 

of experimental and computational tools to design 

and control individual gene expression levels at both 

the transcriptional and translational levels [41]. These 

tools enable a finer level of design control for 

biological systems and can be implemented for 

metabolic engineering applications.  

 

Table 1. Computational Databases used for Designing of Metabolites in Synthetic Biology 

Databases Description Databases Description 

BLASTN Used to perform fast similarity 

searches among DNA nucleotides 

MetaCyc Contains information about 

metabolic pathway of model 

organism 

FASTA Uses ‗hashing‘ strategy to find 
database similarity 

BioModels Contains published quantitative 
models 

KEGG Contains information about gene 

function 

GLIMMER Used for finding genes in microbial 

DNA 

ClusterMine360  Web accessible database of BGCs StreptomeDB  
 

Web accessible database on 
compounds produced by 

streptomycetes 

ClustScan 

Database  

Web accessible database of 

PKS/NRPS BGCs 

ChemSpider  Web accessible database on 

structures and properties of over 35 
million structures 

Recombinant 

ClustScan 
Database  

Database of in silico recombined 

BGCs 

PubChem  Web accessible database on 

compounds and bioactivities 

BRENDA Contains information about 

properties and function of enzymes 

RHEA Comprehensive resource of expert-

curated biochemical reactions 
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Alliance for 

cellular signaling 

(AfCS) 

Contains information for studying 

signal process 

Pathway tools For creating model organism 

databases 

GENSCAN Identifies complete gene structures 
in genomic DNA 

ERGO (WIT) Contains information for 
comparative analysis 

 

By utilizing transcriptomic data of the 

experimental strain, algorithmic analysis predicted 

specific genes to be targeted for synthetic regulation 

with increased or decreased expression [42]. In this 

approach, the experimental data was translated to a 

binary present/absent scoring for each individual 

transcript/protein. The scored experimental data was 

then algorithmically integrated with the metabolic 

model framework using mixed integer linear 

programming (MILP) to calculate a flux state that is 

in concurrence with the experimental data (Table 2). 

The formulation of the Expression matrix or E matrix 

was major conceptual advances in the constraint-

based modeling methodology in E. coli [43]. The 

stoichiometric matrix provided the basis for all 

simulations utilizing flux balance analysis (FBA). 

The E matrix represents a major advancement in 

prediction as it explicitly accounts for all mechanisms 

required for transcription, translation and 

modification of each gene product. Based upon the 

stoichiometric matrix, dynamic flux balance analysis 

(DFBA) was initially developed [44].  

A multi-level optimization computational 

framework known as OptCom was developed for 

studying microbial communities and the interactions 

within those communities [45]. To facilitate the 

design process, a growing number of algorithms have 

been developed that expand the predictive 

capabilities of genome-scale models to simulate 

different strain design parameters. OptKnock was one 

of the first strain design algorithms developed for use 

with genome-scale metabolic models [46] that 

formulated a bi-level optimization, where gene 

deletions were found to increase the production of a 

desired chemical while maintaining cellular growth.  

 

Table 2. Computational Tools used In Product (Metabolite) Designing in Synthetic Biology 

Tools Description Tools Description 

PWM Prediction of DNA sequence variation on 

promoter strength 

RBS calculator Prediction of protein translation 

initiation rates 

E matrix Prediction of gene and protein expression 

levels 

Virtual Cell For modeling and testing 

biological networks 

OptCom Multi-level optimization for modeling 

microbial consortia 

BioJake Visualization tools for 

manipulating metabolic pathways 

OptKnock Bi-level optimization for strain design 
using gene deletions 

STOCKS & Stoch-
Sim 

Stochastic kinetic simulation tool 
used for biochemical process and 

chemical reaction 

FBA Flux balance analysis CellWare For deterministic and stochastic 

cellular events 

DFBA Dynamic flux balance analysis COPASI For simulation of biochemical 

events 

MILP Refined flux state predictions based upon 

high-throughput experimental data 

Dynetica To study kinetic model of 

dynamic network 

PRODORIC  a database and tool platform for the 

analysis of gene regulation in 

prokaryotes 

GeneDesign a web-based suite of 

tools/modules aiming to aid both 

the analysis and design of 
synthetic genes. 

 

The software bridges the gap between the 

kinds of instructions biological designers would like 

to use for designing a synthetically biological 

compound (Table 3). Java Codon Adaptation Tool 

(Jcat) is a web-based application featuring codon 

usage optimization based on CAI score, restriction 

enzyme binding site elimination, rho-independent 

transcription terminator elimination, and prokaryotic 

ribosome binding site elimination [47]. Eugene is a 

stand-alone tool developed for multi-objective gene 

optimization [48]. The program uses an intuitive user 

interface that is straightforward and easy to use. 

Eugene also automatically loads relevant database 

data (KEGG, NCBI databases) upon loading a gene 

to the workspace using identifier information 

provided in the gene‘s FASTA/GenBank file. D-

Tailor is another stand-alone tool (written in Python) 

that employs multi-objective optimization and 

modularity in creation of synthetic genes [49]. Codon 

Optimization OnLine is another web-based utility 

that can optimize for multiple objectives [50]. 

Optimization functions that the program can perform 

include codon usage optimization based on CAI and 

Individual Codon Usage (ICU), codon context bias 

optimization, hidden stop codon optimization, G/C 

content adjustment, and restriction site and other 

pattern elimination. 
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Table 3. Softwares used for Designing Synthetic Biological Compound 

Softwares Description Softwares Description 

Java Codon 

Adaptation Tool 

(Jcat) 

Web-based application 

featuring codon usage 

optimization 

Codon Optimization 

OnLine  

Used in codon 

optimization 

ORBIT, 

PRODART 

For biomolecular 

designing 

Geneetdes, 

RoVerGeNe 

For automated circuit 

design 

Gepasi For modeling chemical 

and biochemical reaction 

networks 

BioSilico Integrated web-based 

system for studying 

metabolic process and 

pathways 

BioSPICE To access computational 

tools 

Cell Designer For diagrammatic editing 

of biological networks 

Gene Designer Facilitates the 

construction of novel 

genetic material; to add 

and remove genetic 

elements. 

Visual Gene 

Developer 

Utilizes modular 

optimization components, 

enabling user-accessible 

programing and addition 

of new functionality. 

D-Tailor Used in creation of 

synthetic genes 

Eugene  Tool developed for multi-

objective gene 

optimization 

 

  

Engineered strains have been constructed for usage as 

sensors to detect small molecule environmental 

stimuli in the mammalian gut [51]. Tools are being 

developed for engineering species of gut bacteria 

already well suited for colonizing the gut; these 

include members of the well-represented 

Bacteroidetes and Firmicutes [52]. Synthetic 

biologists have developed a toolkit amenable for 

engineering of the commensal Bacteroides 

thetaiotamicron comprising characterized promoters, 

RBS, inducible systems and the CRISPRi platform 

[53]. Saeidi et al. [54] engineered E. coli to sense 

Pseudomonas aeruginosa, a bacterium causing 

infections in the lung, urinary tract, gastrointestinal 

tract and skin. Quorum sensing was linked to 

expression of genes for pyocin (a bacteriocin) and a 

lysis protein E7. When grown in the presence of P. 

aeruginosa, the engineered E. coli accumulated 

intracellular pyocin and E7. The sufficient levels of 

E7 protein lysed the cell and the release of pyocin 

killed the pathogen, and also inhibited formation of 

biofilm.  

 

V. CONCLUSIONS 
 Using recent biological databases, genome-

scale models, optimization of algorithms and 

metabolic network analysis, engineered 

molecules/metabolites can be produced within cells 

of diverse bacteria [55]. Designed tools coupled with 

rapid DNA synthesis and assembly technologies have 

accelerated the prototyping, tuning and deployment 

of synthetic biological systems for various 

applications. Moreover, synthetic DNA construct 

could be transferred in a microbial strain/living cell 

and these designed DNA sequences could provide 

desired levels of transcription and translation to 

achieve enhanced protein production [56]. Novel 

genetic circuits with useful applications have been 

constructed through rational design and forward 

engineering by the synthetic biologists. Efficient 

strategies have been described for rapidly identifying 

and correcting causes of failure and fine-tuning of 

genetic circuit characteristics [57, 58].  
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