

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 26 | P a g e

A Close-Up View About Spark in Big Data Jurisdiction
1
FirojParwej

*
,
2
NikhatAkhtar

**
,
3
Dr. Yusuf Perwej

1*
(Research Scholar-Ph.D. (Computer Science & Engineering),Department of Computer Science & Engineering

Singhania University, Pacheri Bari, Jhunjhunu, Rajasthan, India
2**

(Research Scholar-Ph.D (Computer Science & Engineering), Department of Computer Science &

Engineering,

BabuBanarasi Das University, Lucknow, India
***3

(Ph.D (Computer Science & Engineering), M.Tech , Assistant Professor, Department of Information

Technology,

Al Baha University, Al Baha, Kingdom of Saudi Arabia(KSA),

Corresponding Author:FirojParwej

ABSTRACT
The Big data is the name used ubiquitously now a day in distributed paradigm on the web. As the name point out

it is the collection of sets of very large amounts of data in pet bytes, Exabyte etc. related systems as well as the

algorithms used to analyze this enormous data. Hadoop technology as a big data processing technology has

proven to be the go to solution for processing enormous data sets. MapReduce is a conspicuous solution for

computations, which requirement one-pass to complete, but not exact efficient for use cases that need multi-pass

for computations and algorithms. The Job output data between every stage has to be stored in the file system

before the next stage can begin. Consequently, this method is slow, disk Input/output operations and due to

replication. Additionally, Hadoop ecosystem doesn’t have every component to ending a big data use case.

Suppose we want to do an iterative job, you would have to stitch together a sequence of MapReduce jobs and

execute them in sequence. Every this job has high-latency, and each depends upon the completion of the

previous stage. Apache Spark is one of the most widely used open source processing engines for big data, with

wealthy language-integrated APIs and an extensive range of libraries. Apache Spark is a usual framework for

distributed computing that offers high performance for both batch and interactive processing. In this paper, we

aimed to demonstrate a close-up view about Apache Spark and its features and working with Spark using

Hadoop. We are in a nutshell discussing about the Resilient Distributed Datasets (RDD), RDD operations,

features, and limitation. Spark can be used along with MapReduce in the same Hadoop cluster or can be used

lonely as a processing framework. In the last comparative analysis between Spark and Hadoop and MapReduce

in this paper.

Keywords: Big Data, Spark, Resilient Distributed Datasets (RDD), MapReduce, Hadoop, Spark Ecosystem.

I. INTRODUCTION
We are live in the information era, where

almost everything is data. Day-to-day the big world

of internet is creating 2.6 quintillion bytes of data on

a regular basis according to the statistics the

percentage of data that has been generated from last

two years is 90%. This data comes from many

industries like climate information [1] collects by the

sensor, Internet of Things (IoT) applications, and

various stuff from digital images, social media sites,

and videos, various records of the buying transaction.

This data is called big data. Big data gets generated in

multi-terabyte quantities [2]. It transformation fast

and comes in multiformityof forms that are arduous

to manage and process using RDBMS or other

traditional technologies. Today scenario, 85% of the

data getting generated is unstructured and cannot be

maintainedby our traditional technologies. Before an

amount of data generated was not that

frenetic.Presently data generation is in petabytes that

it is not possible to archive the data again and again

and retrieve it again when demand as data,

scientistsrequirement to play with data now and then

for predictive analysis distinct historical as used to be

done with traditional. In this scenario big data

solutions provide the tools, methodologies, and

technologies that are used to capture, processing,

store, search, and analyze the data in seconds to

explore relationships and insights for innovation and

competitive benefit that were already unavailable.

Analogous technologies are Apache Hadoop, Apache

Spark, Apache Flink, etc. Apache Spark is asubstitute

to Hadoop MapReduce rather than a substitution of

Hadoop. Apache Spark is considered as next

generation big data tool, It is lightning rapid cluster

computing engine which is 100 times faster than

Hadoop-MapReduce [3]. The Apache Spark is an

open-source cluster computing framework for real-

time processing. It is of the most prosperous projects

in the Apache software foundation. Spark distinctly

RESEARCH ARTICLE OPEN ACCESS

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 27 | P a g e

developed as the market leader for big data

processing [4]. At present, Spark is being adopted by

major players such as Amazon, eBay, Yahoo and

many organizations run Spark on clusters with

thousands of nodes. Apache Spark is endow high-

level API in Java, Python, R and Scala [5][6]. It can

access data from HDFS, HBase, Hive, Cassandra,

Tachyon, and any Hadoop data source.

II. INSUFFICIENCY WITH HADOOP

AND MAPREDUCE

Hadoop as a big data processing technology

has proven to be the go to solution for processing

huge data sets. MapReduce is a magnificent solution

for computations, which exigency one-pass to

complete, but not very [2] efficient for use cases that

need multi-pass for computations and algorithms.

Everylevel in the data processing workflow has one

Map and one Reduce phase. To leverage MapReduce

solution ourrequirement to alter our use case into

MapReduce pattern [3]. The Job output data between

every step has to be stored in the file system before

the next level can begin. Consequently, this

procedure is sluggish, due to replication & disk

Input/output operations. Additionally, Hadoop

ecosystem doesn’t have every component to

finisheda big data use case. The MapReduce job is

submitted for running in Hadoop and once the job is

finished, the output can be taken from the output

location stipulated.Another issue comes when there

are multiple MapReduce jobs to be completed in a

chained fashion. In other words, if a big data

processing work is to be accomplished by two

MapReduce jobs in such a way that the output of the

first MapReduce [7] job is the input of the second

MapReduce job. In this circumstance, whatsoever

may be the size ofthe output of the first MapReduce

job, it has to be written to the disk before the second

MapReduce could utilizeit as its input. In this

situation, there is a definite and unnecessary write

operation. In many of the batch data processing use

cases, these I/O operations are not a big problem. If

the outcomeis highly reliable, for many batch data

processing use cases, the latency is tolerated. The

mainissue comes when doing real-time data

processing. The large amount of I/O operations

involved in MapReduce jobs makes it improper for

real-time data processing with the less possible

reaction time.The Iterative and Interactive

applications in need of quicker data sharing across

parallel jobs. The data sharing is low in MapReduce

due to serialization, replication [2], and disk IO. In

the matter of storage system, most of the Hadoop

applications, they spend more than 90% of the time

doing HDFS read-write operations.

III. NECESSITY FOR APACHE SPARK

Prior to briefly discuss first question arsie

our mind why Spark when we have Hadoop is

previously there?.To answer thisquestion,we have to

look at the scheme of batch and real-time processing.

The Hadoop is based on batch processing of big data.

This means that the data is stored over a period of

time and is then processed using Hadoop shown in

figure1. But in Spark, processing can take place in

real-time shown in figure2.

Figure 1. The Data Processing in MapReduce

This real-time processing power with Spark

assistance us to solve the use cases of real time

analytics. Spark is also capable of doing batch

processing 100 times faster than that of [7] Hadoop

MapReduce in large data sets.

Figure 2. The Data Processing in Spark

Apache Spark is fasted extensive purpose

big data analytics engine and it is very appropriate for

any kind of big data analysis.Spark makes use of

RDD [8] which allows us to store data in memory

and persevere it as per the requirements. This permit

a massive increase in batch processing job

performance.Spark also permits us to cache the data

in memory, which is profitable in case of iterative

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 28 | P a g e

algorithms like as those used in machine

learning.Spark utilization state-of-the-art Directed

Acyclic Graph (DAG) data processing engine. What

it means is that for each Spark job, a DAG of tasks is

created to be executed by the engine. The DAG in

mathematical [9] parlance consists of a set of vertices

and directed edges concatenate them. The tasks are

executed as per the DAG layout.The in-memory data

processing mingled with its DAG-based data

processing engine makes Spark more proficient.

Spark permit us to perform stream processing with

huge input data and deal with only a chunk of data on

the fly. This can also be used for online machine

learning, and is highly convenient for use cases with

a requirement for real time analysis, which happens

to be practically ubiquitous requirement in the

industry. There are many reasons to choose Spark we

are discussing below section.

3.1 Ingenuity
Spark’s ability is accessible via a set of rich APIs, all

designed especially for interacting swiftly and easily

with data at scale. These APIs are well documented,

and structured in a way that makes it ingenious for

data scientists and application developers to swiftly

put Spark to work.

3.2. Deficiency of MemoryResources

The Spark is fasted common purpose engine

due to the fact that it retainall its current operations

inside memory. Consequently requires an access

amount of memory, so in this case, when available

memory is very limited, Apache Hadoop Map

Reduce may assistance preferable, considering the

large performance gap.

3.3. Swiftness

The Spark is designed for swiftness,

operating both in memory and ondisk. Since 2014,

Spark was used to conquer the Daytona Gray Sort

benchmarking challenge, processing 100 terabytes of

data stored on solid-state drives in only 23 minutes.

The former winner used Hadoop and a different

cluster configuration, but it took 72 minutes. This

conquer was the outcome of processing a static data

set. The Spark performance can [10] be even greater

when helpful interactive queries of data stored in

memory, withclaims that Spark can be 100 times

faster than Hadoop MapReduce in these

circumstances.

3.4. Compatibility

Spark supports a many type of programming

languages, including Java, Python, R, and Scala. In

spite of the fact that mostclosely associated with the

Hadoop underlying storage system, HDFS, Spark

includes connatural support for tight integration with

a number of leading storage solutions in the Hadoop

ecosystem. Besides, the Apache Spark community is

huge, active, and international. The increasingly set

of commercial providers, including Databricks, IBM,

and all of the main Hadoop vendors deliver ambient

support for Spark-based solutions.

IV. ABOUT APACHE SPARK
Spark is a general-purpose data processing

engine, suitable for use in a wide range of

circumstances and it is intense compared to many

other data processing structures. The Spark was

emergingat the University of California, Berkeley

and later became one of the top projects in Apache

and version 1.0 of Apache Spark was released in May

2014. Spark version 2.0 was released in July

2016.From the commencement, Spark was optimized

to execute in memory, helping process [6] data far

more quickly than substitute approaches such as

Hadoop MapReduce, which tends to write data to and

from computer hard drives between every stage of

processing. Spark is a general-purpose data

processing engine, appropriate for use in a wide

range of circumstances [11]. Theprocessing of

streaming data from sensors or financial systems,

interactive queries across huge data sets, and

machine learning tasks tend to be most frequently

related to Spark. The Spark programming paradigm

is very strong and exposes a uniform programming

model supporting the application development in

multiple programming languages and its extensive

support for languages such as Java, Python, R and

Scala and also Spark can be deployed on a variety of

platforms. Spark runs on the various types,operating

systems such as Windows and UNIX Linux and Mac

. Spark can be deployed in a standalone mode on a

single node having a supported operating system.

Spark can also be deployed in cluster node on

Hadoop YARN as well as Apache Mesos. The Spark

mostly makes use of side by side Hadoop data

storage module, HDFS, but can also integrate equally

well with other famous data storage subsystems such

as Cassandra, MapR-DB, HBase, MongoDB and

Amazon’s S3. Therewith the core data processing

engine, Spark comes with a strong stack of domain

conspicuous libraries that use the core Spark libraries

and providedifferent functionalities useful for

different big data processing requirements.

V. WHAT IS APACHE SPARK USED

FOR?
The Spark is a data processing engine, an

APIcapability which application programmer

incorporates into their applications to expeditiously

query, analyze and alteration data at scale. Spark

pliability makes it favorable to tackling a range of use

cases, and it is competent of handling several

petabytes [5] of data at a time, distributed across a

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 29 | P a g e

cluster of thousands of cooperating physical or virtual

servers.

5.1 Stream Processing

The log files to sensor data, application

developers progressively have to cope with streams

of data. This data arrives in a regular stream,

frequently from multiple sources

simultaneously. Until it is certainly feasible to permit

these data streams to be stored on disk and analyzed

retrospectively, it can infrequently be sensible or

important to process and act upon the data as it

arrives. Streams of vital data respectively,for

financial transactions.

5.2. Machine Learning

As data volumes increase, machine learning

approaches become more practicable and

increasingly accurate. Spark [12]capability to store

data in memory and expeditiously run repeated

queries makes it wellsuitedto training machine

learning algorithms. Executing broadly same queries

again and again, significantly detract the time

required to [13] iterate through a set of possible

solutions in order to discover the most efficient

algorithms.

5.3. Interactive Analytics

Ifexecuting pre-defined queries to create

static dashboards of sales or production line

productivity or stock prices, business analysts and

data scientists increasingly want to find out their data

by asking a question, viewing the outcome, and either

make changes to the initial question slightly or

drilling deeper into outcome. This interactive query

process needs systems like as Spark that are able to

respond and adapt fast.

5.4. Data Integration

If data produced by dissimilar systems

across a business are rarely neat or consistent enough

to simply and effortlessly be combined for reporting

or analysis. The extract, transform, and load

processes are time and again used to pull data from

dissimilar systems, neat and standardize it, and then

load it into a distinct system for analysis. The Spark

is increasingly being used to detract the cost and time

expected for this process.

VI. APACHE SPARK APPLICATION

ARCHITECTURE
The Spark is being an open source

distributed data processing engine for clusters, which

endow a unified programming model engine across

various types data processing workloads and [4]

platforms.Apache Spark application architecture

consists of the following key software components

and it is necessary to understand every one of them to

get to grips with the complexities of the framework

shown in figure3.

6.1. Apache Spark Driver

The Spark driver program is the

distinguishing program of your Spark application.

The driver is the process that executes the user code

thatcreates RDDs, and execution transformation and

action, and also creates Spark Context. The Spark

application process is executed is called the driver

node, and the process is called the driver process.

When the Spark Shell is launched, this notifies that

we have created a driver program. If termination of

the driver, the application is ended. The driver

program partitioned the Spark application into the

task and schedules them to execute on the executor.

The task scheduler lives in the driver and distributes

task among workers.

Figure 3. Apache Spark Application Architecture

6.2.Apache Spark Tasks

The Sparktask is a unit of work that will be

dispatchedto one executor. Aecheloned is a logical

chunk of data distributed across a Spark cluster. This

command sent from the driver program to an

executor by serializing your function object. The

executor de-serializes the command (this is part of

your JAR that has previously been loaded) and

executes it on a split [14]. In the manysituationsSpark

would be reading data out of a distributed storage,

and would echeloned the data in order to parallelize

the processing across the cluster. For example, if you

are reading data from HDFS, aecheloned would be

created for every HDFS split. The split isnecessary

because Spark will execute one task for each split.

This here upon implies that the number of split

isnecessary.

6.3. Apache Spark Cluster Manager

 A cluster manager as the name

disclose the manages a cluster. Spark depend on the

cluster manager to launch executors and in some

http://data-flair.training/blogs/how-to-create-rdds-in-apache-spark/

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 30 | P a g e

situation, even the drivers are launched through it.

This is a pluggable component in Spark. Thecluster

manager, jobs and action within, a spark application

is scheduled by a Spark scheduler in a FIFO fashion.

On the contrary, the scheduling can also be done in

Round Robin fashion. The resources used by a Spark

application can be dynamically adjusted based on the

workload. Accordingly, the application can free

unutilized resources and request them again when

there is a [15] demand. The Spark has the capability

to work with a multitude of cluster managers,

including YARN, Mesosand a cluster manager. A

cluster manager consists of two long execution

daemons, firstly on the master node, and secondly on

each of the worker nodes.

6.4. Apache Spark Worker

Supposing you are familiar with Hadoop, a

worker node is something same as to a slave node.

The worker machines are the machines where the real

work is happening in terms of execution within Spark

executors. This process is reported the obtainable

resources on the node to the master node. Normally

every node in a Spark cluster except the master

execute a worker process. Ourselves commonly start

one spark worker daemon per worker node, which

then starts and watch executors for the applications.

6.5. Apache Spark Session

Normally, a session is an interaction

between two or more entities.The Apache Spark

session is the entry point of programming with Spark

with the dataset and DataFrame API.

6.6. Apache Spark Executors

In the master allocates the resources and

uses the workerexecution across the cluster to

makeexecutors for the driver. The driver can then use

these executors to run its tasks. The personal task in

the given Spark job executesin the Spark

executors.Again, the executors are only launched

when a job execution starts on a worker node in other

words executors are launched once in the

commencement of Spark application and then they

execute for the whole lifetime of [4] an application.

Further,if the Spark executor lapse, the Spark

application can continue tocomfort. This also leads to

the fallout of application isolation and non-sharing of

data between multiple applications. Executors are

accountable for execution tasks and hold the data in

memory or disk storage across them.

6.7. Apache SparkContext

The Spark Context is the penetration point

of the Spark session. It is your connection to the

Spark cluster and can be used to create RDDs,

circulation variables on that cluster, and

accumulators. It is superior to have one Spark

Context active per JVM, and consequently you

should call stop () on the active Spark Context before

you make a new one. You might have perceive

already that in the local mode, whenever we start a

Python or Scala shell we have a Spark Context object

created automatically and the variable screference to

the SparkContext object. We didn’trequirement to

make the Spark Context, but as an alternative started

using it to create RDDs from text files.

VI. APACHE SPARK ECOSYSTEM
The Spark puts the assurance for faster data

processing and convenient development. Apache

Spark is considered as the normal purpose system in

the big data world. Apache Spark is common purpose

cluster computing system.It be made up of a lot of

libraries that help to perform different analytics on

your data. It endowshigh-level API in

Java,Python,Scala, andR. Spark also endowsan

optimized engine that supports common execution

graph. Apache Spark permit[5] for entirely new use

cases to increase the value of big data.It also has

copious high-level tools for structured data

processing, streaming, machine learning, graph

processing. The Spark can either execute alone or on

aalive cluster manager. Primarily, Spark Ecosystem

comprises the following componentsshown in figure

4.

Figure 4.The Apache Spark Ecosystem

7.1. ApacheSpark Core Component

As its name says, the Spark core library

made up of all the core modules of Spark. This is the

heart of Spark, and is accountable for

managementfunctions like as task scheduling. The

Spark center component is the foundation for parallel

and distributed processing of huge datasets. Spark

center component is responsible for all the basic I/O

functionalities, networking with various storage

systems, fault recovery, scheduling, monitoring the

jobs on spark clusters, task dispatching, and skillful

memory management.Whole functionalities being

provided by Spark are built on the top of Spark core.

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 31 | P a g e

Spark core makes use of a special data structure

known [16] as RDD (Resilient Distributed Datasets).

Data sharing or reuse in distributed computing

systems like Hadoop MapReduce is in need of the

data to be stored in intermediate stores like Amazon

S3 or HDFS. The Apache Spark ecosystem is built on

top of the core execution engine that has extensible

[17] API’s in various languages. It endowsin-emory

computing ability to deliver speed, a generalized

execution model to support a wide diversifictionof

applications, and Scala, Java, R Language, SQL and

Python APIs for the convenience of development.

7.1.1. Scala

The Spark structure is built in Scala, so

programming in Scala for Spark can provide access

to some of the latest and greatest features that might

not be available in other supported programming

spark languages.

7.1.2. Python

The Python is a programming language

widely used by data analysts and data scientists these

days. There are many scientific and statistical data

processing libraries available, as well as plotting

libraries and charting, that can be used in Python

programs.Python language has wonderful libraries

for data analysis like Pandas and Sci-Kit learn, but is

comparatively sluggish than Scala. Python is also

widely used as a programming language to develop

data processing applications in Spark.

7.1.3. R Language

The R programming language has a wealthy

environment for machine learning and statistical

analysis which assistance to risedeveloper

productivity. R was developed by Ross Ihaka and

Robert Gentleman. Nowadays, data scientists can

now use R language along with Spark through

SparkR for processing data that cannot be handled by

a single machine.The R is highly extensible and for

that, external packages can be created. As soon as an

external package is created, it has to be installed and

loaded for any program to use it. A collection of like

packages under a directory forms an R library. R is

also a few built-in data types to hold numerical

values, character values, and boolean values. There

are composite data structures in existence and the

most important ones are, namely, vectors, lists,

matrices, and data frames. R has inherent support for

many statistical functions and many scalar data types.

7.1.4.SparkSQL
L is a library built on top of Spark. It shows

up SQL interface and DataFrame API. If the structure

of the data is known in advance, if the data fits into

the model of rows and

columns, it doesn't matter from where the data is

coming and Spark SQL can use all of it jointly and

process it as if all the data is coming from a single

source [14].The most essential aspect to highlight

here is the ability of Spark SQL to deal with data

from a very wide variety of data sources. If it is

available as aDataFrame in Spark, Spark SQL can

process data in a completely distributed way,

combining the DataFrames coming from different

data sources to process and query as if theentire

dataset were coming from a single source.

7.1.5. Java

Java is a general-purpose computer

programming language, class based, multithreaded,

dynamic, distributed, object oriented, platform

independent, portable, architecturally neutral,

portable and robust interpreted. Java capabilities are

not limited to any specific application domain rather

it can be used in various application domains and

hence it is called general-purposeprogramming

language.The Java have a unique feature application

programmer write once, run anywhere,meaning that

compiled Java code can execute on all platforms that

support Java without the requirement for

recompilation. Java is a widely used programming

language expressly designed for use in

the distributed environment of the internet.

7.2. Apache Spark SQL Component

The Spark SQL component is a distributed

framework for structured data processing. Spark gets

more information about the structure of data and the

computation. The Spark SQL library helps to analyze

structured data using the very famous SQL queries.

Spark SQL components act as a library on top of

Apache Spark that has been built based on Shark.

Again Spark developers can leverage the power of

declarative queries and optimized storage by

executing SQL like queries on Spark data, that is

extant in RDDs and other outer sources. The

consumer can perform, extract, transform and load

functions on the data coming from different formats

such as JSON or Parquet or Hive and then run ad-hoc

queries using Spark SQL. Spark SQL simple the

process of extracting and merging different datasets

so that the datasets are ready to use for machine

learning.Spark SQL works to access structured and

semi-structured information [14]. It also enables

powerful, interactive, analytical application across

both streaming and archival data. Spark SQL is a

Spark module for structured data processing.

Therefore, it acts as a distributed SQL query engine.

7.3. Apache Spark Streaming

The Spark Streaming mainly enables you to

create analytical and interactive applications for

existingstreaming data. The Spark Streaming library

consists of modules that help users to execute real-

time streaming processing on the arriving data. It

helps to maintain the velocity part of the big data

domain. Spark Streaming is a lightweight API that

permit developers to perform batch processing and

https://www.dezyre.com/data-science-in-python-online-training/36

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 32 | P a g e

streaming of data with convenience, in the same

application. It makes use of a continuous stream of

input data to process data [18] in real-time. The

Spark streaming leverages the fast scheduling

capacity of Apache Spark core to perform streaming

analytics by swallowingdata in mini-batches as well

as alteration are applied on those mini batches of

data. Micro-batching is a technique that permitsa

process or task to treat a stream as a sequence of

small batches of data. With the result that Spark

streaming, groups the live data into small batches. It

then delivers it to the batch system for processing. It

also endowsfault tolerance characteristics. The data

in Spark streaming is swallowedfrom [19] different

data sources and exist streams like IoT Sensors,

Amazon Kinesis,Twitter, Apache Kafka, Akka

Actors, Apache Flume, etc. On event drive, fault-

tolerant and type-secure applications.Spark streaming

is most advantageous for online advertisements and

finance, supply chain management, etc.

7.4. Apache Spark MLlib (Machine Learning

Library)

The Spark MLlib helps to apply different

machine learning techniques on your data, leveraging

the distributed and scalable ability of Spark.MLlib is

a low-level machine learning library that can be

called fromPython, Scala and Java programming

languages. MLlib is easy to use, scalable, compatible

with different programming languages and can be

comfortably integrated with other tools. MLlibsimple

the deployment and development of scalable machine

learning pipelines.MLlib has aeasy application

programming interface for data, scientists who are

already familiar with data science programming tools

such asPython and R. The data, scientists can build

Machine learning models as a multi-step journey

from data ingestion through train [20] and error to

production.It contains machine learning libraries that

have an implementation of various machine learning

algorithms. For example, clustering, different

regression, classification and collaborative filtering.

7.5. Apache Spark GraphX

For graphs and graphical computations,

Spark has its personal Graph computation engine,

called GraphX. The Spark GraphX library provides

APIs for graph-based computations. In this library,

the user can perform parallel computations on graph-

based data.It is a network graph analytics engine and

a data store.Spark GraphXinitiateResilient

Distributed Graph (RDG). The RDG associate

records with the vertices and edges in a graph and

also help data, scientists perform various graph

operations through [21] various expressive

computational primitives. These primeval help

developers implement pregel and pagerank

abstraction in approximately 25 lines of code or even

less than that.The GraphX also optimize the way in

which we can represent vertex and edges when they

are primeval data types and it supports fundamental

operators likesubgraph, join Vertices, and aggregate

Messages as well as an optimized variant of the

Pregel API.GraphX component of Spark

endorsement multiple use cases like social network

analysis, fraud detection,and recommendation.

7.6. Apache SparkR

There are several people from data science

track, who must be conscious that for statistical

analysis, R is among the best. The Spark R library is

used to execute R scripts or commands on Spark

cluster. This helps to endow distributed environment

for R scripts to run. R also endowsoftware provision

for data manipulation, graphical display and

calculation. For this reason, the main opinion behind

SparkR was to discovervarious techniques to

integrate the usability of R with the scalability of

Spark. This R package that gives the light-weight

front-end to use Apache Spark from R [22].Spark R

dataFrames also inherit all the optimizations made to

the computation engine in terms of code generation,

memory management.The R dataFrames can execute

on terabytes of data and clusters [23] with thousands

of nodes. The RStudio or Rshell and can run R scripts

which will execute on the Spark cluster.

VII. SPARK APPLICATION RUNS ON A

HADOOP CLUSTER
In this section we are discussingthe how a

Spark application run shown in figure 5. A Spark

application runs as independent processes,

coordinated by the SparkContext object in the driver

program.The task scheduler launches tasks via the

cluster manager. The cluster manager appointstasks

to workers, one task per segmentation [23]. A task

enforcesits unit of work to the elements in its

segmentation, and outputs a new segmentation.The

segmentation can be read from an HDFS block,

HBase or other source and cached on a worker

node.The outcomeis sent back to the driver

application.

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 33 | P a g e

Figure 5.Spark Application Run

VIII. THE RESILIENT DISTRIBUTED

DATASET IN SPARK
The Resilient Distributed Datasets (RDD)

are a basic data structure of Spark. It is an

unswerving distributed collection of objects. Every

dataset in RDD is split into logical segmentation,

which may be computed on various nodes of the

cluster.For what reason requirement RDD in view of

the fact that MapReduce is widely adopted for

processing and generating enormous data sets with a

parallel, distributed algorithm on a cluster. It permits

users to write parallel computations, using a set of

high-level operators, without having to anxiety about

work distribution and fault tolerance. This is slow

due to replication, serialization, and disk I/O. For that

reason there was a necessity [24] for substitute

programming model called RDD.There are three

ways to create RDDs in Spark like as firstly data in

static storage, second RDDs, and third parallelizing

previously existing collection in the driver

program.Spark RDD can also be cached and

manually segmentation and caching is advantageous

when we use RDD many times. If

manualsegmentation is essential to correctly balance

segmentation. Normally, miniature segmentation

permitshave been distributing [25] RDD data more

equally, among more executors.TheSpark keeps

tenacious RDDs in memory by default, but it can

spill them to disk if there is not sufficient RAM.

Users can also request other tenacious strategies, like

as storing the RDD only on disk or facsimile it across

machines, via the flags to persevere.

8.1. Why do we need RDD in Spark

The Apache Spark lets you deport your

input files approximately such as any other variable,

which you cannot do in Hadoop MapReduce. RDD

are automatically distributed across the network by

means of segmentation. When it comes to iterative

distributed computing, i.e. Processing data over

several jobs in computations like as Page rank

algorithms, Logistic Regression, K-means

clustering.This isimpartially common to reuse or

share the data among several jobs or it may involve

multiple ad-hoc queries over a shared data set.This

makes it very significant to have a very good data

sharing architecture so that we can perform rapid

computations. There is abasic issue with data reuse or

data sharing in current distributed computing systems

(like as MapReduce) and that is yourequirement to

[24] store data in some intermediate stable distributed

store like as HDFS or Amazon S3. This makes the

overall computations of jobs loweventual it involves

several I/O operations, replications and serializations

in the process. The RDD effort to solve thisissue by

enabling fault tolerant distributed In-memory

computations. The most important challenge in

designing RDD is defining a program interface that

provides fault tolerance proficiently [25]. The Spark

shows up RDD through language integrated API. In

integrated APIevery data set to appear in an object

and transformation is involved using the method of

these objects. Apache Spark evaluates RDDs idly. It

is called when demand, which saves lots of time and

improves competence. The first time they are used in

an action so that it can pipeline the alteration.

8.2. Spark RDD Operations

There are two categoriesof operations that you can

perform on an RDD ,first Transformations and

second Actions.

8.2.1. Transformations

The Spark RDD Transformations

are functions that take an RDD as the input and

produce one or many RDDs as the outputshown in

figure 6. They do not transformthe input

RDD,however, eternally produce one or more new

RDDs by applying the computations they represent

e.g. reduceByKey(), Map(), filter() etc.The

transformations are sluggish operations on an RDD in

Spark and it also creates one or many new RDDs,

which run when anAction occurs [24]. Accordingly,

transformation makes a new dataset from an existing

one.Few transformations can be pipelined, which is

an optimization method, that Spark uses to retouch

the performance of computations.

8.2.2. Actions

When an Action in Spark returns the

eventual outcome of RDD computations.The

execution using a lineage graph to load the data into

original RDD, carry out all intermediate

transformations and return the eventual outcome to

driver program or write it out to file system. Actions

are RDD operations that produce non-RDD values.

They materialize a value in a Spark program. An

Action is one of the ways to send outcome from

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 34 | P a g e

executors to the driver. The first(), take(), reduce(),

collect(), the count() is some of the Actions in spark.

Figure 6. Resilient Distributed

DatasetsTransformations

8.3. Features of RDD in Spark

There are manycharacteristic of Apache Spark

Resilient Distributed Datasets (RDD).

8.3.1. In-memory Computation
The Spark RDDs have a provision of in-memory

computation. It stores intermediate outcome in

distributed memory(RAM) as an alternative of stable

storage(such as a disk).

9.3.2. Sluggish Evaluations
All transformations in Apache Spark are sluggish, in

that they do not compute their outcome right away.

Alternatively, they just remember the transformations

applied to some base data set.Spark computes

transformations when an action need anoutcome for

the driver program.

9.3.3. Fault Tolerance
Spark RDDs are fault tolerant as they track data

lineage information to rebuild the missing data

automatically on lack of success. They rebuild the

missing data on nihility [24] using lineage, each RDD

recall how it was created from other datasets to

recreate itself.

9.3.4. Fixity
The data is secure to share across processes. It can

also be created or retrieved anytime which makes

caching, sharing & replication convenient.

Consequently, it is a way to reach consistency in

computations.

9.3.5. Segmentation

The segmentation is the fundamental unit of

parallelism in Spark RDD. Each segmentationis one

logical division of data which is changeable. One can

create a segmentationthrough some transformations

on a alive segmentation.

9.3.6. Stubbornness
The subscriber can state which RDDs they will reuse

and choose a storage strategy for them like as in-

memory storage or on Disk.

9.3.7. Voluminous Grained Operations

It enforcesto all elements in datasets through maps or

a filter or group by operation.

9.3.8. LocationAdhesiveness
RDDs are able to defining placement

preference to compute segmentation. The placement

preference refers to information about the location of

RDD. The DAG scheduler places the segmentation in

like a way that the task is close to the data as much as

possible. Consequently, speed up computation.

9.4. Obstaclesof Spark RDD

There are manyobstaclesof Spark Resilient

Distributed Datasets (RDD) talk about below

segment.

9.4.1. No Built-in Optimization Engine

Whenever working with structured data, RDDs

cannot take the benefit of Spark’s advanced

optimizers including catalyst optimizer and Tungsten

execution engine. The computer programmer

necessity to optimize each RDD based on its

attributes.

9.4.2. Care of Structured Data

RDDdoes not endow schema view of data. It has no

provision for the care of structured data.Dataset and

DataFrameendow the schema view of data. It is a

distributed accumulation of data organized into

named columns.

9.4.3. Performance Interrupt

The existence in-memory JVM objects, RDDs

involve the overhead of sweepings accumulation and

Java serialization which are expensive when data

increase in size.

9.4.4. Storage Boundary

The RDDs demean when there is not sufficient

memory to store them. If you can also store that

segmentation of RDD on disk which does not fit in

RAM. As anoutcome, it will endow identical

performance to present data-parallel systems.

9.4.5. Runtime Type Protection

There is no stable typing and run-time type

protection in RDD. It does not permit us to scrutiny

error at the runtime.The dataset endow compile-time

type protection to build complex data workflows.

Compile-time type protection means if you try to

concatenate any other type of element to this list, it

will give you compile time mistake. It helps detect

mistakesat compile time and makes your code secure.

X. CLUSTER MANAGEMENT IN

APACHE SPARK

The Spark is an engine for Big Data

processing and Spark is executing on distributed

mode on the cluster. In the cluster, there is a master

and n number of workers. It schedules and split

resource in the host machine which forms the cluster.

The main work of the cluster manager is to split

resources across applications [26]. It works as an

outer service for obtainingresources on the cluster.

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 35 | P a g e

Moreover, the cluster manager sending work for the

cluster. Spark supports pluggable cluster

management. The cluster manager in Spark handles

starting executor processes [27].Apache Spark

applications can execute in three different cluster

managers.

10.1. Apache Spark Standalone Cluster Manager

The standalone mode is aneasy cluster

manager incorporated with Spark. It makes it simple

to setup a cluster that Spark itmanages, and can

execute on Windows, Linux, or Mac OSX.In

standalone mode, every application executesan

executor on every node within the cluster.It has

mastered and number of workers with configured

amount of memory and CPU cores. In Spark

standalone cluster mode [26], Spark allotresources

based on the core.Handling the file system, we can

attain the manual recovery of the master. The Spark

endorsement authentication with the help of shared

confidential with overall cluster manager. The user

configures every node with a shared confidential. For

communication protocols, Data encrypts praxis SSL.

But for block transfer, it makes praxis of data SASL

encryption.

10.2. Apache Mesos

Apache Mesos is a committed cluster and

resource manager that endow wealthy resource

scheduling ability. Mesossupport the workload in

distributed environments by dynamic resource

sharing and segregation. It is beneficial for

deployment and management of applications in large-

scale cluster territory. Apache Mesos clubs together

the alive resource of the machines nodes in a cluster.

The Mesos has a fine grained sharing option so Spark

shell scales down its CPU allocation during the

execution of [28]many commands specifically when

mausenyrs are executing interactive shells.It is a

resource management platform for Hadoop and Big

Data cluster.TheMesos Framework permits

applications to entreaty the resources from the

cluster.

10.3. Hadoop YARN

YARN comes with most of the Hadoop

distributions and is the only cluster manager in Spark

that supports security. YARN became the sub-project

of Hadoop in the year 2012. YARN cluster manager

permit[29] dynamic sharing and central configuration

of the same pool of cluster resources between

different frameworks that execute on YARN. The

number of executors to use can be chosenby the user,

unlikethe Standalone mode. YARN is a superior

choice when big Hadoop cluster is previously in use

in production. The YARN data computation

framework is anamalgamation of the

ResourceManager, the NodeManager. It can execute

onWindows and Linux.The Yarn Resource Manager

manages resources among all the applications in the

system.

XI. CHARACTERISTICS OFAPACHE

SPARK

The Apache Spark is lightning rapid, in-memory data

processing engine. The Spark is principally designed

for data science and the abstractions of Spark make it

simple [30].Now we will discuss the[31] various

characteristics of Spark are.

11.1. Rapid Processing

Using Apache Spark, we instate a high data

processing speed of about 100x faster in memory and

10x faster on the disk. This is made feasible by

deficiency the number of read-write to disk.

11.2. Dynamic in Nature

We can comfortably develop a parallel application, as

Spark endow80 high-level operators.

11.3. High-Level Analytics

The best and masterly characteristics of Apache

Spark is its changeability. It endorsement Machine

learning (ML), Graph algorithms, SQL queries and

Streaming data along with MapReduce.

11.4. In-Memory Computation in Spark

In-memory processing, we can rise the processing

speed. Therein the data is being cached, so we

necessity doesn't bring in data from the disk every

time thus the time is saved. The Spark hasDAG

execution engine [31] which facilitates in-memory

computation and acyclic data flow outcome in

improved speed.

11.5. Reusability

The Spark code can be reused for batch-processing,

join the streamopposed to historical data or execute

ad-hoc queries on stream state.

11.6. Fault Tolerance in Spark

The Apace Spark endowsfault tolerance through

Spark abstraction RDD. Spark RDDs are designed to

handle the lack of success of any worker node in the

cluster. Consequently, it makes surethat the loss of

data is diminished to zero. Cognize various ways to

create RDD in Apache Spark.

11.7. Real-Time Stream Processing

The Spark has a facilityfor real-time stream

processing. Prior to the difficulty with Hadoop

MapReduce was that it can handle and process data

which is previously present, but not the real-time

data. However,Spark streaming we can solve this

difficulty.

11.8. Sluggish Evaluation in Apache Spark

Entire transformations we make in Spark

RDD are sluggish in nature, that is, it does not give

the outcome right away rather a new RDD is formed

from the current one. Consequently, this increases the

dexterity [30] of the system.

http://data-flair.training/blogs/apache-spark-in-memory-computing/

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 36 | P a g e

11.9. Support Various Languages

In Spark, there is support for various languages like

Java, R, Scala, Python. Consequently, it

endowsdynamicity and overcomes the issue of

Hadoop that it can build applications only in Java.

11.10. Active, Progressive and Expanding Spark

Community

The programmer from over 50 companies

wereassociated with making of Apache Spark. This

project was initiated in the since 2009 and is still

expanding and now there are about 250 developers

who contributed to its expansion. It is the most vital

project for Apache community.

11.11. Support for Intricate Analysis

 The Spark comes with faithful tools for

streaming data, interactive as well as declarative

queries, machine learning which add-on to map and

reduce.

11.12. Integrated with Hadoop

Spark can execute autonomously and also on Hadoop

YARN cluster Manager and thus it can read a alive

Hadoop data and Spark is resilient.

11.13. Spark GraphX

The Spark has GraphX, which is a

component for graph and graph-parallel computation.

This is over-simplifythe graph analytics tasks by the

collection of graph algorithm and builders.

11.14. Economical

The Spark is an economical solution for Big data

issue as in the Hadoop huge amount of storage and

the huge data center is needed during replication.

11.15. Strong

The Spark provides apliability to implement both

stream processing and batch of data at the same

moment, which permits organizations to over-

simplify deployment, application

developmentandmaintenance.

XII. DRAWBACK OF APACHE SPARK

As we knowApache Sparkis the next

generation Big data tool that is being extended[32]

used by industries, but there are a few drawbacksof

Apache Spark.

12.1. No Support for Real-time Processing

On Spark streaming, the reach live stream of

data is split into batches of the pre-defined interval,

and every batch of data behaveslike Spark Resilient

Distributed Database (RDDs). Then these RDDs are

processed using the operations like a map, reduce,

join etc. The outcome of these operations is coming

back in batches. Therefore, it is not real time

processing, but Spark is near real-time processing of

data exists.

12.2. Trouble with Small File

Whenever use Spark with Hadoop, we come

across anissue of a small file. HDFS endow a limited

number of huge files rather than a huge number of

small files. Another place where Spark legs at the

back of we store the data gzipped in S3. This pattern

is very pleasant [32] except when there are lots of

small gzipped files. Presently the work of the Spark

is to keep those files on network and uncompress

them. Besides the gzipped files can be uncompressed

only if the whole file is on one basic. Therefore a

large span of time will be spent on burning their core

unzipping files in sequence.In the outcome RDD,

every file will become aecheloned,for this reason

there will be a huge amount of tiny echeloned within

an RDD. At the moment, if we want dexterity in our

processing, the RDDs should be re-echeloned into

some manageable format. This needscomprehensive

shuffling over the network.

12.3. No Support for File Management System

The Apache Spark does not have its personal file

management system, in consequence, it depends on

some another platform like Hadoop as well as

another cloud-based platform which is one of the

Spark known matter.

12.4. High-Priced

In memory capacity can become a

bottleneck when we want cost-efficient processing of

big data as keeping data in memory is completely

high-priced, the memory utilization is very high, and

it is not handled in a user-friendly fashion. The

Apache Spark needs lots of RAM to run in-

memory,in consequence the cost of Spark is

completely high-priced.

12.5. Very Fewer number of Algorithms

The Spark MLlib lags behind in terms of a number of

accessible algorithms like Tanimoto distance.

12.6. Manual Ameliorate

The Spark job needs to be manually ameliorateand is

sufficient to specific datasets. If we want to

segmentation and cache in Spark to be right, it should

be controlled manually.

12.7. Repeatedly Processing

In Spark, the data repeatedly in batches and

everyrepeatedly is scheduled and executed on one

side.

12.8. Latency

The Apache Spark has excessive reaction time as

compared to Apache Flink.

12.9. Window Standard

The Spark does not endorsement record based

window standard. It only has time-based window

standard.

12.10. Consumes More Memory

http://data-flair.training/blogs/apache-spark-rdd-persistence-caching/
http://data-flair.training/blogs/apache-flink-big-data-unified-platform/

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 37 | P a g e

It makes use of a lot of memory,and problem around

memory consumption are not handled in a user

friendly manner.

12.11. Back Stress Handling

In Spark the back stress is built up of data at an I/O

when the buffer is full and not able to receive the

extra incoming data. The no data is transferred,so

long as the buffer is blank. Apache Spark is not

competent of handling stress implicitly by choice,it is

done manually.

XIII. COMPARATIVEANALYSIS

BETWEEN SPARK VS HADOOP VS

MAPREDUCE

In this section, we are comparativeanalysis between

Spark and Hadoop and MapReduce has shown in

below table 1 and 2 [33][34][35][36].

Table 1. The Comparative Analysis Between Spark and MapReduce

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 38 | P a g e

Table 2. The Comparative Analysis Between Spark and Hadoop

XI. CONCLUSION The majority data analysts would otherwise

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 39 | P a g e

have to resort to using agglomeration of other

unrelated packages to get their work complete, which

makes things intricate. In this context, Spark libraries

are designed to all work jointly, on the same piece of

data, which is more integrated and convenient to use.

The Apache Spark is an open-source, distributed

processing system normally used for big data

workloads. Spark can run in a standalone cluster

mode that simply need the Apache Spark framework

and a JVM on every machine in your cluster. Apache

Spark improves execution for rapid performance and

make use of in-memory caching, and itsendorsement

common batch processing, graph databases, ad hoc

queries, machine learning, and streaming analytics. In

this paper, we are presentingSpark concepts,

necessity for Apache Spark, Spark Ecosystem and its

components, we also highlight the Sparkapplication

architecture.Afterwards, we are alsoinvestigating the

Resilient Distributed Datasets in Spark.Thispaper

aims to provide a briefoverview of this exciting

area.Finally, the Spark will enable developers to do

real-time analysis of everything from trading data to

web clicks, in aconvenient to develop an

environment, which remarkable speed.

REFERENCES
[1]. SamanSarraf, Mehdi Ostadhashem, “Big data

application in functional magnetic resonance

imaging using apache spark”, 2016 Future

Technologies Conference (FTC), San

Francisco, CA, USA, Pages: 281 – 284, Year:

2016, DOI: 10.1109/FTC.2016.7821623

[2]. Dr. Yusuf Perwej, “An Experiential Study of

the Big Data,” for published in the

International Transaction of Electrical and

Computer Engineers System (ITECES), USA,

ISSN (Print): 2373-1273 ISSN (Online): 2373-

1281, Vol. 4, No. 1, page 14-25, March 2017,

DOI:10.12691/iteces-4-1-3.

[3]. J. Dean and S. Ghemawat, “MapReduce:

Simplified Data Processing on Large

Clusters,” in Proceedings of the 6th

Conference on Symposium on Opearting

Systems Design & Implementation - Volume

6, 2004, p. 10.

[4]. Apache Spark, “Apache Spark–lightning-fast

cluster computing,” 2016, accessed 19-

February-2016. [Online]. Available:

http://spark.apache.org

[5]. M. Zaharia, M. Chowdhury, M. J. Franklin, S.

Shenker, and I. Stoica, “Spark: cluster

computing with working sets,” in Proceedings

of the 2nd USENIX Conference on Hot Topics

in Cloud Computing (HotCloud'10), USENIX

Association, Berkeley, CA, 2010, p. 10-10.

[6]. H. Karau, A. Konwinski, P. Wendell, and M.

Zaharia, Learning Spark. Sebastopol, CA:

O'Reilly Media, 2015.

[7]. NikhatAkhtar, FirojParwej, Dr. Yusuf Perwej,

“A Perusal Of Big Data Classification And

Hadoop Technology,” for published in the

International Transaction of Electrical and

Computer Engineers System (ITECES), USA,

ISSN (Print): 2373-1273 ISSN (Online): 2373-

1281, Vol. 4, No. 1, page 26-38, May 2017,

DOI: 10.12691/iteces-4-1-4.

[8]. N. Islam, S. Sharmin, M. Wasi-ur-Rahman, X.

Lu, D. Shankar, D. K. Panda, “Performance

characterization and acceleration of in-

memory file systems for Hadoop and Spark

applications on HPC clusters,” in 2015 IEEE

International Conference on Big Data (Big

Data), October 29, 2015-November 1, 2015,

pp. 243-252.

[9]. X. Lin, P. Wang, and B. Wu, “Log analysis in

cloud computing environment with Hadoop

and Spark,” in 2013 5th IEEE International

Conference on Broadband Network &

Multimedia Technology (IC-BNMT),

November 1

[10]. [L. Gu and H. Li, “Memory or time:

performance evaluation for iterative operation

on Hadoop and Spark,” in 2013 IEEE 10th

International Conference on High Performance

Comput. and Comm.& 2013 IEEE

International Conference on Embedded and

Ubiquitous Computing (HPCC_EUC),

November 13-15, 2013, pp. 721-727.

[11]. K. Wang and M. M. H. Khan, “Performance

prediction for Apache Spark platform,” in

2015 IEEE 12th International Conference on

Embedded Software and Systems (ICESS),

2015 IEEE 17th International Conference on

High Performance Computing and

Communications (HPCC), 2015 IEEE 7th

International Symposium on Cyberspace

Safety and Security (CSS), August 24-26,

2015, pp. 166-173.

[12]. Tim Kraska, AmeetTalwalkar, John Duchi,

ReanGri_th, Michael Franklin, and Michael

Jordan.MLbase: A Distributed Machine-

learning System. In Conference on Innovative

Data Systems Research, 2013.

[13]. [XiangruiMeng, Joseph Bradley, Evan Sparks,

and ShivaramVenkataraman. Ml pipelines: A

new high-level api for MLlib.

https://databricks.com/?p=2473, 2015.

[14]. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,

J. K. Bradley, X. Meng, T. Kaftan, M. J.

Franklin, A. Ghodsi et al., "Spark sql:

Relational data processing in spark",

Proceedings of the 2015 ACM SIGMOD

International Conference on Management of

Data., ACM, pp. 1383-1394, 2015.

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 40 | P a g e

[15]. N. Chaimov, A. Malony, S. Canon, C. Iancu,

K. Z. Ibrahim, J. Srinivasan, "Scaling Spark on

HPC Systems", Proceedings of the 25th ACM

International Symposium on High-

Performance Parallel and Distributed

Computing, 2016.

[16]. New directions for Apache Spark in 2015,”

http://www.slideshare.net/databricks/new-

directions-for-apache-spark-in-2015.

[17]. "Apache Spark-Lightning-Fast Cluster

Computing", 2016, [online] Available:

http://spark.apache.org.

[18]. J. Liu, Y. Liang, C. Fang, and N. Ansari,

“Spark-based Large-scale Matrix Inversion for

Big Data Processing,” IEEE INFOCOM

Workshop of Big Data Sciences,

Technologies, and Applications (BDSTA)

,accepted, 2016.

[19]. Omar Backhoff, EiriniNtoutsi,”Scalable

Online-Offline Stream Clustering in Apache

Spark”, Data Mining Workshops (ICDMW),

2016 IEEE 16th International Conference on,

Barcelona, Spain ,12-15 Dec. 2016.

[20]. DOI: 10.1109/ICDMW.2016.0014

[21]. David Siegal ,JiaGuo ,G. Agrawal,” Smart-

MLlib: A High-Performance Machine-

Learning Library”,Cluster Computing

(CLUSTER), 2016 IEEE International

Conference on, Taipei, Taiwan ,12-16 Sept.

2016DOI: 10.1109/CLUSTER.2016.49

[22]. [J. E. Gonzalez, R. S. Xin, A. Dave, D.

Crankshaw, M. J. Franklin, I. Stoica, "Graphx:

Graph processing in a distributed dataflow

framework", Proceedings of the 11th USENIX

Conference on Operating Systems Design and

Implementation ser. OSDI'14, pp. 599-613,

2014.

[23]. S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla,

P. J. Haas, and J. McPherson. Ricardo:

integrating R and Hadoop. In

[24]. SIGMOD 2010 , pages 987–998. ACM, 2010.

[25]. L. Yejas, D. Oscar, W. Zhuang, and A. Pannu.

Big R:Large-Scale Analytics on Hadoop Using

R. InIEEE BigData 2014, pages 570–577.

[26]. M. Zaharia, M. Chowdhury, T. Das, A. Dave,

J. Ma, M. McCauley, M. J. Franklin, S.

Shenker, I. Stoica, "Resilient Distributed

Datasets: A Fault-Tolerant Abstraction for In-

Memory Cluster Computing", Proceedings of

the USENIX Conference on Networked

Systems Design and Implementation ’12), pp.

15-28, Apr. 2012.

[27]. , Teng-Sheng Moh,”DBSCAN on Resilient

Distributed Datasets”, High Performance

Computing & Simulation (HPCS), 2015

International Conference on, Amsterdam,

Netherlands, 20-24 July 2015.

[28]. Zixia Liu ,Hong Zhang, Liqiang Wang,”

Hierarchical Spark: A Multi-Cluster Big Data

Computing Framework”,Cloud Computing

(CLOUD), 2017 IEEE 10th International

Conference on, Honolulu, CA, USA,

Electronic ISBN: 978-1-5386-1993-3 , 25-30

June 2017.

[29]. Hamid Mushtaq, Zaid Al-Ars,”Cluster-based

Apache Spark implementation of the GATK

DNA analysis pipeline”,Bioinformatics and

Biomedicine (BIBM), 2015 IEEE International

Conference on, Washington, DC, USA, 9-12

Nov. 2015.,

DOI:10.1109/BIBM.2015.7359893

[30]. Benjamin Hindman, Andy Konwinski,

MateiZaharia, Ali Ghodsi, Anthony D. Joseph,

Randy Katz, Scott Shenker, Ion Stoica,

"Mesos: A Platform for Fine-Grained

Resource Sharing in the Data Center",

University of California, Berkley, September

2010.

[31]. Yusuf Perwej, BedineKerim,

MohmedSirelkhtemAdrees, Osama E. Sheta, “

An Empirical Exploration of the Yarn in Big

Data” for published in the International

Journal of Applied Information Systems

(IJAIS), ISSN : 2249-0868 , Foundation of

Computer Science FCS, New York, USA

Volume 12 , No.9, page 19-29 , December

2017 DOI : 10.5120/ijais2017451730

[32]. Nhan Nguyen, Mohammad MaifiHasan Khan,

Yusuf Albayram, Kewen Wang,

"Understanding the Influence of Configuration

Settings: An Execution Model-Driven

Framework for Apache Spark Platform",

Cloud Computing (CLOUD) 2017 IEEE 10th

International Conference on, pp. 802-807,

2017, ISSN 2159-6190.

[33]. Kewen Wang, M.

M.HasanKhan,”Performance Prediction for

Apache Spark Platform”,2015 IEEE 12th

International Conferen on Embedded Software

and Systems (ICESS), 2015 IEEE 17th

International Conference on, New York, NY,

USA, 24-26 Aug. 2015.

 DOI: 10.1109/HPCC-CSS-ICESS.2015.246

[34]. Kai Hildebrandt, Fabian Panse,

NiklasWilcke,”Large-Scale Data Pollution

with Apache Spark”,IEEE Transactions on Big

Data, PP 1 - 1, Issue: 99,Electronic ISSN:

2332-7790 , 09 January 2017DOI:

10.1109/TBDATA.2016.2637378

http://www.slideshare.net/
http://spark.apache.org/
https://doi.org/10.1109/ICDMW.2016.0014
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.David%20Siegal.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jia%20Guo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Gagan%20Agrawal.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7774973
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7774973
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7774973
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7774973
https://doi.org/10.1109/CLUSTER.2016.49
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Teng-Sheng%20Moh.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7214433
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7214433
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7214433
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7214433
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zixia%20Liu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hong%20Zhang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Liqiang%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8029867
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8029867
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8029867
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8029867
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hamid%20Mushtaq.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zaid%20Al-Ars.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7350074
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7350074
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7350074
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7350074
https://doi.org/10.1109/BIBM.2015.7359893
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kewen%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mohammad%20Maifi%20Hasan%20Khan.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mohammad%20Maifi%20Hasan%20Khan.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mohammad%20Maifi%20Hasan%20Khan.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7335977
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7335977
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7335977
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7335977
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7335977
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.246
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kai%20Hildebrandt.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Fabian%20Panse.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Niklas%20Wilcke.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6687317
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6687317
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6687317
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7153538
https://doi.org/10.1109/TBDATA.2016.2637378

V. Surekha. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 1, (Part -I1) January 2018, pp.26-41

www.ijera.com DOI: 10.9790/9622-0801022641 41 | P a g e

[35]. YassirSamadi ,MostaphaZbakh ,Claude

Tadonki ,”Comparative study between Hadoop

and Spark based on Hibench

benchmarks”,Cloud Computing Technologies

and Applications (CloudTech), 2016 2nd

International Conference on, Marrakech,

Morocco, 24-26 May 2016.DOI:

10.1109/CloudTech.2016.7847709

[36]. IstvanSzegedi, "Apache Spark: a fast big data

analytics engine", [online] Available:

https://dzone.com/articles/apache-spark-fast-

big-data.

[37]. Juwei Shi , YunjieQiu, Umar FarooqMinhas ,

Limei Jiao , Chen Wang , Berthold Reinwald ,

and Fatma O ̈ zcan , “Clash of the Titans:

MapReduce vs. Spark for Large Scale Data

Analytics”, Proceedings of the VLDB

Endowment, Vol. 8, No. 13 Copyright 2015

VLDB Endowment 2150 8097/15/09

[38]. PolatoIvanilton, R é Reginaldo, Goldman

Alfredo, Kon Fabio, "A comprehensive view

of Hadoop research-A systematic literature

review", Journal of Network and Computer

Applications, vol. 46, pp. 1-25, November

2014.

1FirojParwej*. “A Close-Up View About Spark in Big Data Jurisdiction.” International Journal

of Engineering Research and Applications (IJERA), vol. 08, no. 01, 2018, pp. 26–41.

International Journal of Engineering Research and Applications (IJERA) is UGC approved

Journal with Sl. No. 4525, Journal no. 47088. Indexed in Cross Ref, Index Copernicus (ICV

80.82), NASA, Ads, Researcher Id Thomson Reuters, DOAJ.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yassir%20Samadi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mostapha%20Zbakh.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Claude%20Tadonki.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Claude%20Tadonki.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Claude%20Tadonki.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7838007
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7838007
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7838007
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7838007
https://doi.org/10.1109/CloudTech.2016.7847709
https://dzone.com/articles/apache-spark-fast-big-data
https://dzone.com/articles/apache-spark-fast-big-data

