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ABSTRACT 
This article developed a model of time series wave where during the formulation velocity equations as the result of 

Laplace theory was done. As the result of this method, the continuity equation was substituted to momentum 

equation, or in other words momentum equation produces a velocity controlled by continuity equation, since 

Laplace equation comes from continuity equation. Using this method, the concept of calculation velocity at the 

momentum equation was also developed where calculation velocity is equal to average velocity of the depth of the 

Airy long wave equation. 
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I. INTRODUCTION 
Velocity at a momentum equation is a 

velocity at any position on a   vertical axis. In a 

numerical calculation using discrete method, finite 

element and finite difference method, a calculation can 

be done for some velocities along the vertical axis. 

However, in very shallow water, it is easier to do the 

calculation using a representative velocity, or a 

calculation velocity, so that in a momentum equation, 

there is only velocity on one depth position. This 

calculation velocity is known as depth-averaged 

velocity on Airy long wave equation introduced by 

Fenton [1]. 

The velocity produced by momentum 

equation should meet continuity equation. Therefore, 

there should be the role of continuity equation at the 

momentum equation. In this research, the role of 

continuity equation is substituted to momentum 

equation through driving force by working on the 

vertical direction of velocity equation as a result of 

Laplace equation solution 

 

II. VELOCITY RELATION AS A RESULT 

OF LAPLACE EQUATION SOLUTION 
The velocity of particle the horizontal and 

vertical direction based on Hutahaean [2],[3],[4] is 

defined as, 

  tkx
x

h

h
kxkzGeu

kh
 sincos

2

1
sin 












   

                                                                        (2.1) 

The velocity of particle in vertical -direction  
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where  
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Another characteristic is   
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From equation (2.1) a relation can be made,  
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And also, 
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III. THE CONCEPT OF CALCULATION 

VELOCITY 
At the continuity equation and momentum 

equation, velocity is a function of z , where z  is the 

vertical axis as shown on Fig 3.1, so, in a water column 

from the bottom to the surface of the water, there will 

be plenty of velocity. Calculation will be much easier if 

it is done using a representative velocity on a water 

column. This velocity is called depth calculation 

velocity. It was developed for the first time during the 

formulation of Airy long wave equation developed by 

Dean [5], called depth-averaged velocity, i.e. 

. 
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                                                              (3.1)   

In the equation (3.1), the value of 

depth-averaged velocity is determined by the value of 

integration coefficient u. The bigger value of u, 

makes the smaller value of U, where this shows that a 

value of integration coefficient corresponds to a 

velocity at a depth of z. 

 
Figure 3.1. Depth-averaged Velocity and axis system 

 

Equation (3.1) can be written as equation for 

integration coefficient, u defined as 
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Using the form of velocity equation in the 

direction of horizontal x  as equation (2.1), then  
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Table 3.1 shows the result of 
u

   calculation for 

various wave periods, for hz 40.0
0

 .  The result of 

the calculation shows that at hz 40.0
0

 , the value 

of
u

  was obtained which is very close to 1. This 

shows that depth-averaged velocity is a velocity at a 

depth of 
0

zz  . 

Table 3.1. The value of
u

 , at  hz 40.0
0

 ,  

60.0A  m, 00.0
dx

dh
 

H 

(m) 
T = 6 

(sec) 

T =8 

(sec) 

T = 10 

(sec) 

T =12 

(sec) 

T =14 

(sec) 

T =16 

(sec) 

15 1.021 0.999 0.997 0.998 0.998 0.999 

14 1.017 0.999 0.998 0.998 0.998 0.999 

13 1.014 0.999 0.998 0.998 0.999 0.999 

12 1.011 0.999 0.999 0.999 0.999 0.999 

11 1.009 1 0.999 0.999 0.999 0.999 

10 1.008 1 0.999 0.999 1 1 

9 1.007 1.001 1 1 1 1 

8 1.007 1.001 1 1 1 1 

7 1.007 1.002 1.001 1 1 1 

6 1.007 1.003 1.001 1.001 1.001 1 

5 1.008 1.003 1.002 1.001 1.001 1.001 

4 1.009 1.004 1.003 1.002 1.001 1.001 

3 1.011 1.005 1.003 1.002 1.002 1.001 

2 1.013 1.007 1.004 1.003 1.002 1.002 

1 1.017 1.009 1.006 1.004 1.003 1.002 

 

In this paper, the concept of   depth-averaged 

velocity is used with reversed procedure, i.e. the 

position of
0

z is set, and then integration coefficient is 

calculated using equation (3.2). The use of 

hz 40.0
0

  will give 
u

  integration coefficient, 

very close to 1.  

With the inversion of the procedure, the 

velocity integration is defined as UHudz
u

h








 

where
0

z
uU  . Integration coefficient

u
 , is 

calculated by using equation (3.2) and a new 

integration coefficient is defined as, 
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With equation (3.4), the integration of continuity 

equation to vertical axis can be done easily. 
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IV. THE FORMULATION OF MOMENTUM 

EQUATION 
As the basic momentum equation, Euler 

momentum equation developed by Dean [5] is used. 

The momentum equation is for the flow at  zx ,  

plane where x  axis is horizontal axis and z  axis is 

vertical axis, consisting of two equations, i.e. 

momentum equation in horizontal x  direction and 

momentum equation in vertical z direction, 

respectively 
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Where  tzxuu ,,  is the velocity in 

horizontal- x direction,  tzxww ,,  velocity in 

vertical- z direction, p  is pressure on water particle, 

g  is gravitational velocity,   is water density and t  

is time. 

At the convective equation, the characteristic 

of irrotational flow is done where 
z

u

x

w
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
. Hence 

based Hutahean [6], momentum x  dan z  equations 

become  
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4.1 The Formulation of Driving Force  

Equation (4.4) is written as driving force 

equation in vertical z  
z
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1
direction, i.e.   
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Then, it is multiplied by dz  and integrated 

into vertical z axis, 
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where  tx ,   is water surface elevation.  

Integration is completed and dynamic surface 

boundary condition, 0


p , is done  
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Equation (4.5) is pressure equation 

experienced by water particle. The driving force is 

pressure difference, so to obtain driving force at 

horizontal- x direction; equation (4.5) is differentiated 

in x  direction. 
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Substitute equation (4.6) to horizontal- x  momentum 

equation, equation (4.3), 
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The second term on the left-hand side and the 

third term on the right hand side are eliminated each 

other 
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In equation (4.7), there is still an integral that 

should be completed, i.e. integral in the first term of 

the right hand side. Equation 

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x
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by integrating continuity equation that will be done in 

the next section.  
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Huatahean [7] completed the integration of 
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 by integrating continuity equation. In 

this paper, the integration is completed using velocity 

equation from the solution of Laplace equation. From 

the velocity equation, the equation (2.2), become 
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Equation (2.4) was done at z , 
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Equation (4.8) is substituted to equation 

(4.7).  
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The first term on the right hand side is moved 

to the left, where as the third term on the right hand 

side is eliminating each other with the first term on the 

left hand side.  
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Considering that 
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 is formulated 

using the result of Laplace solution equation coming 

from the continuity equation, it can be said that there is 

a role of continuity equation on driving force in 

equation (4.9) or in other words the momentum 

equation is controlled by continuity equation.  

The momentum equation in equation (4.9) is 

in the form of surface momentum equation that 

produces surface velocity of


u based on Beji et.al [8].  

The equation can be changed to momentum equation 

for velocity other than surface velocity. In this paper, 

the equation is changed into equation with calculation 
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The equation is divided with
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This momentum equation will produce 

horizontal velocity u , in a position
0

zz  , i.e. U . 

 

V. THE FORMULATION OF WATER SURFACE 

EQUATION 

Equation for water surface
t


 is formulated 

by integrating continuity and energy conservation 

equation based on Mei [9], where the result of the 

integration of each equation will produce
t


. Then, 

the last equation is the superposition of both 
t


 

equations. 
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5.1 Equation  
t


 of continuity equation integration 

This equation is formulated from continuity 

equation, i.e. continuity equation integrated to vertical 

axis z , from the bottom of the water hz   to the 

surface z . 
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The kinematic water surface boundary and 

kinematic water base boundary are applied, 

where
x

u
t

w
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, and 

similar terms are added and the result is, 
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From equation (2.3), 
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where
   
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5.2 Equation  
t


 of the integration of energy 

conservation equation 

 

Energy conservation equation of Hutahean 

[2] is, 
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where
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wwuu
E
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
 . The product of integration of 

this equation is, 
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Where,  dimension
Ek

  and the right side of the 

equation are eliminating each other so that 
Ek

  is 

non-dimensional number. 
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Where U and W  are calculation velocity. Equation 

(5.4) is super imposed with equation (5.2), and is 

written as equation for
t


, 
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Equations for integration on the right hand 

side of the equation (5.6) can be seen in Appendix.  

 

VI. THE RESULT OF THE MODEL 
Momentum and water surface equations are 

done numerically where spatial differential is done 

with finite difference method, whereas time 

differential is done using predictor-corrector method 

based on numeric integration from Newton-Cote 

developed by Hutahaean [2]. Then, the numeric model 

was applied in various cases 

6.1  As Water Surface Equation, just Continuity 

Equation   

The model is done using sinusoidal wave with 

a wave period of 8 seconds and amplitude of 0.80 m, at 

a constant depth of 10m and 5 m. At a constant depth 

of 10 m, the result of the model is presented in Fig. 6.1, 

where the wave profile is seen deforming toward 

Cnoidal wave. Part of the wave valley decreases by 

0.20 m, where the lowest valley elevation becomes 

-0.60m and the top of the wave is a little over 0.80m, 



Syawaluddin Hutahaean. Int. Journal of Engineering Research and Application                www.ijera.com 

ISSN : 2248-9622, Vol. 7, Issue 6, (Part -3) June 2017, pp.37-45 

 

 
www.ijera.com                                        DOI: 10.9790/9622-0706033745                                42 | P a g e  
 

 

 

 

 

i.e. 0.86 m. So at this depth of 10 m, there are some 

wave setups. At a depth of 5m, the valley elevation is 

-0.40 m, whereas the top elevation is 0.94 m. The wave 

setup that is occurring gets bigger and the Cnoidal 

profile gets clearer,  

 

 
Figure 6.1. The result of the model for a wave with 

period of 8 seconds, amplitude 0.80 m, constant depth 

of 10 m.  

 

 
Figure 6.2. The Result of model for a wave with a 

period of 8 seconds, amplitude 0.80 m, and constant 

depth of 5 m.  

 

 
Figure 6.3. The result of model for a wave with a 

period of 8 seconds, amplitude 0.80 m, changing depth  

Then the model was done in the water with 

not constant depth. Initially, the depth of the water was 

constant at 10 m, at a distance span of 100 m. Then, the 

depth changed continuously until a depth of 0.0 m with 

a distance span of 800 m. The wave input used is 

sinusoidal with a period of 8 seconds, amplitude 0.80 

m. The results of the model are presented on Fig. 6.2 

and Fig. 6.3 which shows the increase of water surface 

elevation as a result of wave setup, and increase in 

wave amplitude (shoaling) as a result of the shoaling of 

the water. Then at the peak elevation of 1.18 m, at a 

depth of 1.77 m, the water surface elevation declines 

continuously or breaking taking place. Another 

phenomenon that can be seen in the very shallow water 

is that the wave profile becomes fully Cnoidal.  

From the work of the model, on constant as well as 

changing depth, a conclusion can be made that the 

model contains the phenomena of wave setup, shoaling 

and breaking, and produces Cnoidal wave profile.   

 

A. As Water Surface Equation, Superimpose 

Continuity Equation with Energy Conservation 

Equation  

With similar wave input and bottom of water, 

as in the previous section, the result of the model is 

shown on Fig. 6.4 below.  The figure shows that there 

are shoaling and breaking. The breaking started to 

occur at a depth of 2.68 m, at the peak of elevation or 

amplitude of 1.07 m, where initially the breaking 

occurred continuously and then discontinuously. 

 

 

 
Figure 6.4. The result of the model for a wave with a 

period of 8 seconds, amplitude of 0.80 m, changing 

depth, superimpose with Momentum Eq.  
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Compare with the previous result, the 

application of the energy conservation equation on the 

water surface equation produces model with faster 

breaking where in the previous result, the breaking 

started at a depth of 1.77 m, amplitude 1.18 m.  

Fig. 6.5 shows the result of the model at a 

constant depth of 2.70 m, with sinusoidal wave input 

similar to model at changing depth. The elevation of 

the top of the wave is 0.96 m with Cnoidal wave 

profile. At that depth, at changing depth, the elevation 

of the top is 1.07 m. So, the component of the increase 

of wave amplitude as a result of shoaling is more or 

less 0,11m. This clarifies that the elevation of top of 

the wave or the height of wave at shallow water is a 

result of wave setup and shoaling, with wave setup 

component that is not small compared with shoaling 

component.  

 

 
Figure 6.5. The result of the model for a wave with a 

period of 8 seconds, amplitude of 0.80 m, constant 

depth of 2.70 m  

 

In addition, the work of energy conservation 

equation in the water surface equation can model wave 

unstableness at the shallow water after breaking.   

 

VII. CONCLUSION 
The first conclusion is that the formulation of 

time series water wave equation using velocity 

equation as the result of Laplace equation solution 

simplifies the process of integration of basic equation 

toward a depth, where equation with calculation 

velocity variable is produced. The use of calculation 

velocity concept at time series model caused the model 

to be done very easily at very shallow water.   

The model developed in this paper can 

stimulate wave setup, shoaling and breaking well and 

produce Cnoidal wave profile. In other words, the 

model can stimulate various natural phenomena 

occurring in a wave on its journey to shallow water. 

By working on the velocity equation as the 

result of Laplace equation solution at the formulation 

of momentum equation and water surface equation, 

there is wave number k  at the momentum equation 

and water surface equation. In order for the number to 

correspond with the equation that is used, it is better to 

use wave number that is calculated from the equation 

of kinematic water surface boundary and complete 

momentum equation, with methods developed by 

Hutahaean [3], and [4] and Lin et.al. [10]. 

By using velocity equation as the result of 

Laplace equation solution at the formulation of 

governing equation, the velocity produced by 

momentum equation will be more controlled by 

continuity equation, considering Laplace equation 

originated from continuity equation.  

The work on energy conservation equation on 

water surface equation causes the wave to be faster in 

breaking than without energy conservation equation. 

In addition, wave instability after breaking is also 

visible on the water surface equation which is a 

superposition between continuity equation and energy 

conservation equation.  

APPENDIX: INTEGRATION OF ENERGY 

CONSERVATION EQUATION 

Energy conservation equation, i.e. equation 

(5.3), is multiplied with dz  and integrated with depth,  

0














h

k

h

k

h

k
wEdz

x

uE
dz

t

E
 

On the integration of this energy conservation 

equation, the concept of calculation velocity U  and 

W is done, where  tzxuU ,,
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  and 
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  where the relation of this velocity 
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The work on Leibniz integration 
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In general, the integration of energy 

conservation equation can be written as, 
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In this case, 
Ek

   looks as if it had meter dimension, 

but the dimension is eliminating each other with the 

right side of the equation. 
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