
Ifeyinwa Obiora-Dimson.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -2) April 2017, pp.53-61

www.ijera.com DOI: 10.9790/9622-0704025361 53 | P a g e

Re-Engineering Complex Process Control Systems Using Sub-

Process Agents.

Ifeyinwa Obiora-Dimson,
*

Hyacinth C. Inyiama,

*

Omijeh Bourdillon Omijeh

**

*
Department of Electronic and Computer Engineering. Nnamdi Azikiwe University, Awka, Nigeria

**
Department of Electronic and Computer Engineering University of Portharcourt, Portharcourt Nigeria

ABSTRACT

A process control systems design method whose architecture incorporates the use of agents, process agents and

subprocess agents to further reduce the complexity of the system was developed. This is an improvement on an

earlier architecture which employed only agents and process agents in its processing. An Algorithmic State

Machine (ASM) chart of a complex system with or without a natural divide can be segmented into sub-units and

a sub-process agent assigned to each sub-unit. Each of these sub-process agents ensures that systems

performance information of each sub-unit is obtained and stored. These information would be used when

evaluating system performance or for error tracking. The information also serves for process optimization and

maintenance. This improved architecture is therefore one that employes state agents to execute the activities of

each of the states in an ASM chart, sub-process agents to take charge of the state agents in one sub-unit and a

process agent to co-ordinate the activities of the sub-process agents. The upper tank control system of a

beverage blending machine was developed using this improved architecture.

Keywords: Agents, Complex systems, Performance, Process agents, Sub-process agents,

I. INTRODUCTION
Okafo and Inyiama [1] proposed a flexible

automation scheme for the beverage blending

industry as captured in fig1. This is comprised of

three main segments namely:

a. The upper tank control segment comprised of

four upper tanks each meant to contain just one

type out of four different types of pure fruit juices

to be blended together in some ratio to form a

beverage drink.

b. The lower tank control segment which is

comprised of four lower tanks each of which takes

a known quantity of fruit juice from the upper tank

just above it from which the ratio of juice for each

blending process is dispensed to the mixer below it

through a connecting pipe.

c. The mixer control segment which receives a

predetermined proportion of juice from each lower

tank and blends them together into a beverage. The

blending ratio for the fruit juices can be changed as

desired. Each of these three control segments calls

for a separate state machine, thus forming a multi-

processor system which co-operatively achieves a

complex blending operation.

For the purpose of illustrating how a sub-process

agent might be used to realize each state machine,

it is sufficient to focus on just the upper tank

control system. Fig. 2 shows the upper tank control

segment alone. Processed pure juice of a particular

type (say orange juice, or apple juice or grape fruit

juice or water melon) is poured into the lower cup

attached to each upper tank (fig2). That causes the

spring loaded piston below the Cup to block the

light path of an opto-coupler arrangement and thus

automatically triggers the pumping of the fruit juice

from the Cup to the corresponding upper tank. The

process happens simultaneously in all the four

upper tank positions. The number of upper

tank/lower cup pairs corresponds to the number of

fruit juices used in the blending process. If only

three fruit juices are being blended in a given ratio,

the number of upper tank/lower cup pairs would be

three instead of four. If five fruit juices are being

blended, the number of upper tank/lower cup pairs

would be five and so on.

RESEARCH ARTICLE OPEN ACCESS

Ifeyinwa Obiora-Dimson.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -2) April 2017, pp.53-61

www.ijera.com DOI: 10.9790/9622-0704025361 54 | P a g e

Fig 1: Beverage blending machine [1]

Fig 2: the upper tank control system

The ASM chart of fig 3 shows what

happens at each of the upper tank/lower cup

positions as operational hands process and pour

into the lower cup each of the pure fruit juices

needed for beverage blending. Referring to fig 3,

(the ASM chart for the upper tank control system)

the state name of each state in the ASM chart is

written at the bottom left hand corner of the state

box and every rectangular box in the ASM chart is

a state box. The boxes with rounded ends are not

state boxes but rather conditional output boxes

showing an output that would occur only when the

control system follows the link path (i.e. the path

from one state to another) in which there is that

rounded ends box. The state machine produces the

output labeled in the box with rounded ends and

continues to the state immediately after it. Name(s)

inserted into a rectangular box are called state

outputs and occur whenever the state machine is in

the state with the name(s). In the ASM chart (fig 3)

a diamond box is a decision box containing the

name of the qualifier or variable on which decision

depends. A decision box has one entry path and

two exit paths [3]. If the qualifier is at logic 1, the

state machine follows one exit path and if it is logic

0 the state machine follows the other exit path. The

logic state of the qualifiers in the decision boxes

defines when a particular link path is to be

followed as the state machine transits from one

state to the other.

Ifeyinwa Obiora-Dimson.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -2) April 2017, pp.53-61

www.ijera.com DOI: 10.9790/9622-0704025361 55 | P a g e

Fig 3: ASM chart of the upper tank control

The ASM chart of fig 3 has four identical sub-units, each for the processing of pure beverage from a

lower

cup to the corresponding upper tank. Each

upper tank has two sensors one to sense when the

tank is low on stock (i.e. UBVT1L, UBVT2L,

UBVT3L and UBVT4L) and the other to sense

when the tank is full (i.e. UBVT1F, UBVT2F,

UBVT3F and UBVT4F). UBVT1L means upper

beverage tank 1 low and UBVT1F means upper

beverage tank 1 full and so on for the other tanks in

the arrangement. Sub-unit 1 is comprised of states

ST0, ST1, ST2 and ST3. Sub-unit 2 is comprised of

state ST4, ST5, ST6, and ST7. Sub-unit 3 is

comprised of states ST8, ST9, ST10 and ST11

while the fourth sub-unit is comprised of states

ST12, ST13, ST14 and ST15.

The sub-units and their constituents are as

summarized in table I. Because the sub-units are

identical, one per upper tank position it suffices to

explain in detail what happens in one of the four

upper tank positions, namely upper tank 1

comprised of states ST0, ST1, ST2 and ST3. The

sub-unit starts from state ST0. The state machine

checks if the upper beverage tank is full of

processed beverage. (i.e. if UBVT1F=1). If not, it

checks if new fruit juice has been poured into the

lower cup attached to tank 1 (i.e. if NBV1=1). If

so, it turns ON the beverage pump 1 (i.e.

BVPMP1) to pump fruit juice from the lower cup

to upper beverage tank 1. The pumping of fresh

juice into upper tank 1 continues until either upper

tank 1 is full or until there is no fresh fruit juice in

the lower cup attached to upper tank 1.

If upper tank 1 becomes full (i.e. UBVT1F =1) the

state machine goes to state 2 and at the next clock

pulse it continues to state ST3. If however upper

tank 1 is not full (i.e. UBVT1F=0) but there is no

fresh juice to pump into the upper tank (i.e.

NBV1=0), the state machine goes straight to state

ST3.

At state ST3, the state machine checks if upper

tank 1 is low on stock. If it is not low, (i.e. if

Ifeyinwa Obiora-Dimson.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -2) April 2017, pp.53-61

www.ijera.com DOI: 10.9790/9622-0704025361 56 | P a g e

UBVT1L=0), the state machine goes to state ST4

to commence processing for upper tank 2. If upper

tank 1 is low on stock (i.e. if UBVT1L=1) and

fresh fruit juice has now been poured in the lower

cup attached to upper tank 1 (i.e. NBV1=1) the

state machine goes back to state ST1 to pump it

into the upper tank 1. If however, upper tank 1 is

low on stock (i.e. if UBVT1L=1) but there is no

fresh fruit juice processed into the lower cup

position attached to upper tank 1 (i.e. NBV1=0),

the conditional output meant to serve as beverage

alarm to the processing hands (i.e. NBV1AL) is

output and the state machine immediately goes to

state ST4 to commence processing for upper

tank 2.

Table I: Variable parameters of the sub-units for the pseudo code

SUB-UNITS States Qualifiers Outputs Conditional

outputs

Tank ID

SUB UNIT 1 STO

ST1

ST2

ST3

UBVT1F

UBVT1L

NBV1

BVPMP1 NBV1AL UPPER

BEVERAGE

TANK 1

SUB UNIT 2 ST4

ST5

ST6

ST7

UBVT2F

UBVT2L

NBV2

BVPMP2 NBV2AL UPPER

BEVERAGE

TANK 2

SUB UNIT 3 ST8

ST9

ST10

ST11

UBVT3F

UBVT3L

NBV3

BVPMP3 NBV3AL UPPER

BEVERAGE

TANK 3

SUB UNIT 4 ST12

ST13

ST14

ST15

UBVT4F

UBVT4L

NBV4

BVPMP4 NBV4AL UPPER

BEVERAGE

TANK 4

II. STATE AGENT BASED CONTROL

SYSTEMS
If a control system to control the four sub-

units that handle the tracking of fresh fruit juices

into upper tank 1 through 4 were to be

implemented using only state agents and a

coordinating process agent, the control system will

have the architecture shown in fig 4. Since each

state is typically handled by one state agent, 16

state agents activated one after the other by the

process control agent would have to be deployed in

such a control system. [4]

This arrangement has one major

drawback. The notion of sub-units comprising the

control system is lost during the control process.

System performance information that needed to be

stored after each sub-process is not obtained. The

state agents simply work in an order determined by

the qualifiers as processing progresses from upper

tank 1 to upper tank 4.

Fig 4: Process-agent and agent relationship [4, 8]

Ifeyinwa Obiora-Dimson.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -2) April 2017, pp.53-61

www.ijera.com DOI: 10.9790/9622-0704025361 57 | P a g e

III. SUB-PROCESS AGENTS IN

NATURALLY SEGMENTED

CONTROL SYSTEMS
The upper tank control is concerned with a

number of identical sub-units, in this case, four

sub-units. It would be nice if management and/or

maintenance information is obtained and kept after

each subunit (upper tank 1 say) is processed before

proceeding to other sub-units one after the other

(i.e. sub-units 2, 3 and 4). Such information

obtained after processing each sub-unit would be

very helpful when checking system performance,

tracking errors, and also in process optimization. A

new control architecture (fig 5) is therefore

proposed to facilitate this approach.

In fig 5, a sub-process agent is defined to

handle each sub-unit. Sub-process agent 1 handles

upper tank 1 processing, sub-process agent 2

handles upper tank 2 processing, sub-process agent

3 handles upper tank 3 processing while sub-

process agent 4 handles upper tank 4 processing. If

there were more or less upper tanks in the control

scheme used, there would be one sub-process agent

per upper tank. Also, because this control process

is naturally segmented into identical sub-units one

segment per upper tank, it is possible to have just

one sub-process agent for all the upper tanks and

merely change the actual parameters as one moves

from one upper tank processing to the next.

The operation of the architecture of fig 5

is as follows. The process control agent initiates the

control process by calling the sub-process agent

once per upper tank but supplying the formal

parameters when invoked at the beginning of each

upper tank processing. In pseudo code one can

depict it as follows:

ProcessAgent void()

Do

 Call SubProcessAgent (ST0, ST4)

 Obtain and store needed information for upper

tank 1

 Call SubProcessAgent (ST4, ST7)

 Obtain and Store Needed Information for Upper

Tank 2

 Call SubProcessAgent (ST7, ST12)

 Obtain and Store Needed Information for Upper

Tank 3

 Call SubProcessAgent (ST12, ST15)

 Obtain and Store Needed Information for upper

tank 4

Forever.

Fig 5: Block diagram of the sub-process agent based control system

A sub-process begins processing from the

first state in the actual parameters and stops when it

encounters the first state of the next upper tank.

Both the process agent and the sub-process agent

have access to the input/output ports. Once a sub-

process agent is called, it continues invoking all the

State Agents under it until the particular upper tank

is fully processed. It then returns control to the

Process Agent which then obtains feedback and

other necessary housekeeping information needed

at that stage before invoking the Sub Process Agent

with new formal parameters for the processing of

the next upper tank in sequence.

Ifeyinwa Obiora-Dimson.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -2) April 2017, pp.53-61

www.ijera.com DOI: 10.9790/9622-0704025361 58 | P a g e

IV. SUB-PROCESS AGENTS FOR SUB-

DIVIDED COMPLEX CONTROL

SYSTEM
The control systems using sub-process

agents would work equally well for complex

control systems that are not naturally segmented

into subunits. A sub-process agent as defined here

begins processing from the first state mentioned in

the formal parameter list until it encounters the last

state mentioned in the formal parameters list but

merely treats it as an indication that it has

completed its current control tasks. Therefore, any

complex control system can be subdivided into

sub-units with equal or unequal number of states

per subunit and a sub-process agent can be used to

process each subunit beginning from the first state

mentioned in its parameter list and returning

control to the process agent when it encounters the

last state name in its parameter list. This becomes a

convenient means of dividing any complex control

system into subunits for easy processing using sub

process agents, with provision for feedback and

pertinent management/maintenance information

procurement in between sub-units.

V. CONTROL SYSTEM DESIGN USING

SUB-PROCESS AGENTS
When designing digital control systems

represented by an ASM chart, the first step is to

transform the ASM chart into a state transition

table (STT) which contains the same information as

the corresponding ASM chart but is in a form more

amenable for use to conclude the remaining design

stages. [5] The STT is a must whether one is using

state agents only or state agents controlled via a

sub-process agent or doing a conventional logic

design not based on agents. Table II shows the

State Transition Table (STT) corresponding to the

ASM chart of fig 3. It is important to bear in mind

the capacity of the microcontroller in terms of

input/output ports needed for the control process.

Typically for an 8051 microcontroller, there are a

total of 4 I/O ports but because of the control of

keypad and Liquid Crystal Display (LCD) etc

which take up some of the I/O ports, it is safer to

assume that the control system under design has

available to it just one 8-bit port for input and one

8-bit port for output.

Table: II State transition table corresponding to fig 3 ASM chart.

Link

path

Present state

code

Qualifiers Next state

code

State

outputs

Conditional output

 D C B A

U
B

T
1

F

U
B

T
1

L

 N
B

V
1

U
B

T
2

F

 U
B

T
2

L

N
B

V
2

U
B

T
3

F

 U
B

T
3

L

N
B

V
3

U
B

T
4

F

 U
B

T
4

L

 N
B

V
4

D′C′B′A′

B
V

P
M

P

1

B
V

P
M

P

2

B
V

P
M

P

3

B
V

P
M

P

4

N
B

V
1

A

L

N
B

V
2

A

L

N
B

V
3

A

L

N
B

V
4

A

L

L1 0 0 0 0 1 - - - - - - - - - - - 0 0 1 0 0 0 0 0 0 0 0 0

L2 0 0 0 0 0 – 0 - - - - - - - - - 0 0 1 1 0 0 0 0 0 0 0 0

L3 0 0 0 0 0 – 1 - - - - - - - - - 0 0 0 1 0 0 0 0 0 0 0 0

L4 0 0 1 0 - - - - - - - - - - - - 0 0 1 1 0 0 0 0 0 0 0 0

L5 0 0 1 1 - 1 - - - - - - - - - - 0 1 0 0 0 0 0 0 0 0 0 0

L6 0 0 1 1 - 1 0 - - - - - - - - - 0 1 0 0 0 0 0 0 1 0 0 0

L7 0 0 1 1 - 1 1 - - - - - - - - - 0 0 0 1 0 0 0 0 0 0 0 0

L8 0 0 0 1 1 - - - - - - - - - - - 0 0 1 0 1 0 0 0 0 0 0 0

L9 0 0 0 1 0 – 0 - - - - - - - - - 0 0 1 1 1 0 0 0 0 0 0 0

L10 0 0 0 1 0 – 1 - - - - - - - - - 0 0 0 1 1 0 0 0 0 0 0 0

L11 0 1 0 0 - - - 1 0 - - - - - - - 0 1 1 0 0 0 0 0 0 0 0 0

L12 0 1 0 0 - - - 0 – 0 - - - - - - 0 1 1 1 0 0 0 0 0 0 0 0

L13 0 1 0 0 - - - 0 – 1 - - - - - - 0 1 0 1 0 0 0 0 0 0 0 0

L14 0 1 1 0 - - - - - - - - - - - - 0 1 1 1 0 0 0 0 0 0 0 0

L15 0 1 1 1 - - - - 1 - - - - - - - 1 0 0 0 0 0 0 0 0 0 0 0

L16 0 1 1 1 - - - - 1 0 - - - - - - 1 0 0 0 0 0 0 0 0 1 0 0

L17 0 1 1 1 - - - - 1 1 - - - - - - 0 1 0 1 0 0 0 0 0 0 0 0

L18 0 1 0 1 - - - 1 - - - - - - - - 0 1 1 0 0 1 0 0 0 0 0 0

L19 0 1 0 1 - - - 0 – 0 - - - - - - 0 1 1 1 0 1 0 0 0 0 0 0

L20 0 1 0 1 - - - 0 – 1 - - - - - - 0 1 0 1 0 1 0 0 0 0 0 0

L21 1 0 0 0 - - - - - -1 - - - - - 1 0 1 0 0 0 0 0 0 0 0 0

L22 1 0 0 0 - - - - - - 0 – 0 - - - 1 0 1 1 0 0 0 0 0 0 0 0

L23 1 0 0 0 - - - - - -0 – 1 - - - 1 0 1 1 0 0 0 0 0 0 0 0

L24 1 0 1 0 - - - - - - - - - - - - 1 0 1 1 0 0 0 0 0 0 0 0

L25 1 0 1 1 - - - - - - - 1 - - - - 1 1 0 0 0 0 0 0 0 0 0 0

L26 1 0 1 1 - - - - - - - 1 0 - - - 1 1 0 0 0 0 0 0 0 0 1 0

L27 1 0 1 1 - - - - - - - 1 1 - - - 1 0 0 1 0 0 0 0 0 0 0 0

Ifeyinwa Obiora-Dimson.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -2) April 2017, pp.53-61

www.ijera.com DOI: 10.9790/9622-0704025361 59 | P a g e

In the ASM chart for upper tank control system, we have the following inputs: 4 decision boxes each

containing an input variable (called qualifier) per sub-unit. For the four subunits shown, a total of 12 input lines

are needed just for the qualifiers alone. Also the state code of 4-bits must appear at the input to facilitate the

control process.

Therefore a minimum of 16 lines are needed as against 8-lines available in an input port. On the output

side there are 1 output and 1 conditional output lines per subunit, giving a total of 8 output lines. Furthermore, 4

secondary outputs called next state codes are required for the control process, again giving a total of 12 lines for

output in this control process. Since the 8051 microcontroller equipped with only four 8-bit I/O ports [6, 7]

obviously cannot cope with the number of lines required, a technique [2] must be found that could implement

the system without needing so many I/O lines. Furthermore, each dash in the state transition table (table II) must

be expanded into 0’s and 1’s as dashes cannot be stored in ROM. All possible combinations of the dashes are

needed for ROM based design leading to what is known as combinatorial explosion. If this method were taken

we would need a ROM size of 2
16

 address locations and much design effort to implement this control system.

An alternative approach is to introduce input multiplexing and output decoding [2] in order to fit the

control system’s I/O lines into the processor (8051) in use. The architecture for this later design approach is

shown in fig 6. Table III is therefore the modified Fully Expanded State Transition Table (FESTT) using

input/output multiplexing/decoding respectively. Note that only one 8-bit port is needed for input and only one

8-bit port for output in this later design.

 This uses fewer I/O and fewer rows than if the former un-multiplexed and un-decoded I/O lines (of

table II) were to be fully expanded. That one has 16 columns, its full expansion gives rise to 2
16

 rows = 64k

rows while table 3 has 6 address columns which give rise to 2
6
 = 64 rows. That implies a much reduced control

system design effort for this microcontroller based control system.

L28 1 0 0 1 - - - - - - 1 - - - - - 1 0 1 0 0 0 1 0 0 0 0 0

L29 1 0 0 1 - - - - - - 0 – 0 - - - 1 0 1 1 0 0 1 0 0 0 0 0

L30 1 0 0 1 - - - - - - 0 – 1 - - - 1 0 0 1 0 0 1 0 0 0 0 0

L31 1 1 0 0 - - - - - - - - - 1 - - 1 0 1 1 0 0 0 0 0 0 0 0

L32 1 1 0 0 - - - - - - - - - 0 – 0 1 1 1 1 0 0 0 0 0 0 0 0

L33 1 1 0 0 - - - - - - - - - 0 – 1 1 1 0 1 0 0 0 0 0 0 0 0

L34 1 0 1 1 - - - - - - - - - - - - 1 1 1 1 0 0 0 0 0 0 0 0

L35 1 1 1 1 - - - - - - - - - - 1 - 0 0 0 0 0 0 0 0 0 0 0 0

L36 1 1 1 1 - - - - - - - - - - 1 0 0 0 0 0 0 0 0 0 0 0 0 1

L37 1 1 1 1 - - - - - - - - - - 1 1 1 1 0 1 0 0 0 0 0 0 0 0

L38 1 1 0 1 - - - - - - - - - 1 - - 1 0 1 1 0 0 0 1 0 0 0 0

L39 1 1 0 1 - - - - - - - - - 0 – 0 1 1 1 1 0 0 0 1 0 0 0 0

L40 1 1 0 1 - - - - - - - - - 0 – 1 1 1 0 1 0 0 0 1 0 0 0 0

Ifeyinwa Obiora-Dimson.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -2) April 2017, pp.53-61

www.ijera.com DOI: 10.9790/9622-0704025361 60 | P a g e

Table III: Modified Fully Expanded State Transition Table

Link

path

Present state

code

Qualifiers ROM

address

Next state

code

Conditional

output

Memory

content

 D C B A

Q
1

Q
2

 D′C′B′A′

N
B

V
1

A
L

N
B

V
2

A
L

N
B

V
3

A
L

N
B

V
4

A
L

L1 0 0 0 0 1 0 02 0 0 1 0 0 0 0 0 20

L1 0 0 0 0 1 1 03 0 0 1 0 0 0 0 0 20

L2 0 0 0 0 0 0 00 0 0 1 1 0 0 0 0 30

L3 0 0 0 0 0 1 01 0 0 0 1 0 0 0 0 10

L4 0 0 1 0 0 0 08 0 0 1 1 0 0 0 0 30

L4 0 0 1 0 0 1 09 0 0 1 1 0 0 0 0 30

L4 0 0 1 0 1 0 0A 0 0 1 1 0 0 0 0 30

L4 0 0 1 0 1 1 0B 0 0 1 1 0 0 0 0 30

L5 0 0 1 1 1 0 0E 0 1 0 0 0 0 0 0 40

L5 0 0 1 1 1 1 0F 0 1 0 0 0 0 0 0 40

L6 0 0 1 1 1 0 0E 0 1 0 0 1 0 0 0 48

L7 0 0 1 1 1 1 0F 0 0 0 1 0 0 0 0 10

L8 0 0 0 1 1 0 06 0 0 1 0 0 0 0 0 20

L8 0 0 0 1 1 1 07 0 0 1 0 0 0 0 0 20

…… …… …… ……

…… …… …… …… ……

L26 1 0 1 1 1 0 2E 1 1 0 0 0 0 1 0 C2

L27 1 0 1 1 1 1 2F 1 0 0 1 0 0 0 0 90

L28 1 0 0 1 1 0 26 1 0 1 0 0 0 0 0 A0

L28 1 0 0 1 1 1 27 1 0 1 0 0 0 0 0 A0

L29 1 0 0 1 0 0 24 1 0 1 1 0 0 0 0 B0

L30 1 0 0 1 0 1 25 1 0 0 1 0 0 0 0 90

L31 1 1 0 0 1 0 32 1 0 1 1 0 0 0 0 B0

L31 1 1 0 0 1 1 33 1 0 1 1 0 0 0 0 B0

L32 1 1 0 0 0 0 30 1 1 1 1 0 0 0 0 F0

L33 1 1 0 0 0 1 31 1 1 0 1 0 0 0 0 D0

L34 1 0 1 1 0 0 2C 1 1 1 1 0 0 0 0 F0

L34 1 0 1 1 0 1 2D 1 1 1 1 0 0 0 0 F0

L34 1 0 1 1 1 0 2E 1 1 1 1 0 0 0 0 F0

L34 1 0 1 1 1 1 2F 1 1 1 1 0 0 0 0 F0

L35 1 1 1 1 1 0 3E 0 0 0 0 0 0 0 0 00

L35 1 1 1 1 1 1 3F 0 0 0 0 0 0 0 0 00

L36 1 1 1 1 1 0 3E 0 0 0 0 0 0 0 1 01

L37 1 1 1 1 1 1 3F 1 1 0 1 0 0 0 0 D0

L38 1 1 0 1 1 0 36 1 0 1 1 0 0 0 0 D0

L38 1 1 0 1 1 1 37 1 0 1 1 0 0 0 0 D0

L39 1 1 0 1 0 0 34 1 1 1 1 0 0 0 0 F0

L40 1 1 0 1 0 1 35 1 1 0 1 0 0 0 0 D0

Ifeyinwa Obiora-Dimson.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 4, (Part -2) April 2017, pp.53-61

www.ijera.com DOI: 10.9790/9622-0704025361 61 | P a g e

Having realised an acceptable Fully

Expanded State Transition Table (FESTT), the next

step is to form the ROM addresses and their

contents as demanded by this application. In every

row of the FESTT, the present state code and the

qualifiers constitute an address and the Next State

Code, and conditional outputs along the same row

constitute the content of that address in ROM (table

III). Once the ROM address thus formed, are

populated with their corresponding contents, the

FESTT is subdivided into states according to the

present state code. Since the state code is 4-bits

long and there are 16 states in all, these 16 states

are therefore allocated to 16 state agents, namely

state agent 0 through state agent 15 (table IV). The

work of each state agent is to supply the output

byte whenever it is invoked by the sub-process

agent. Provided the state agents are invoked in the

sequence suggested by the ASM chart of fig 3 and

the logic levels of its qualifiers and the output

allocated to each state is produced as and when due

the control system represented by the ASM chart of

fig 3 works as desired.

Table IV: Allocation of state agents and sub-process agents

s/n State code Agent Sub process

1 0000 Agent 0 Subprocess 1

2 0001 Agent 1

3 0010 Agent 2

4 0011 Agent 3

5 0100 Agent 4 Subprocess 2

6 0101 Agent 5

7 0110 Agent 6

8 0111 Agent 7

9 1000 Agent 8 Subprocess 3

10 1001 Agent 9

11 1010 Agent 10

12 1011 Agent 11

13 1100 Agent 12 Subprocess 4

14 1101 Agent 13

15 1110 Agent 14

16 1111 Agent 15

VI. CONCLUSION
A sub process agent assisted control logic

design scheme has been proposed and exemplified

by using this approach to design a control system

for upper tank control in beverage blending

process. Techniques for reducing drastically the

design effort needed to realise complex control

systems have also been shown using input

multiplexing and output decoding.

REFERENCES
[1]. Obiora-Dimson, I. C., Inyiama, H. C.,

Udeani, H. U., 2015. A Flexible Automation

Scheme for The Beverage Blending

Industry. International Journal of Research

in Advanced Engineering and Technology.

Volume 1; Issue 3;

[2]. H.C., Inyiama, C.C., Okezie, I.C., Okafo,

2013. Complexity Reduction in ROM-Based
Process Control Systems via Input
Multiplexing and Output Decoding.
International Journal of Research and
Advancement in Engineering Science, Vol 3
No 1.

[3]. H.C., Inyiama, C.C., Okezie, I.C., Okafo,

2015.Digital Control of Palm Fruit

Processing Using ROM Based Linked State

Machines. European Journal of Scientific

Research;9/13/2011, Vol. 59 Issue 4, p597+

[4]. H.C., Inyiama, I.C., Obiora-Dimson, and

C.C. Okezie, 2013. Designing Agent Based

Linked State Machine. International journal

of research in engineering and technology

(IJRET). Vol 2 issue 7.

[5]. C. R.,Clare 1973. Designing Logic Systems

using State Machine. Uk: McgrawHill, pp 1-

108

[6]. B.P Singh and Renu, Singh 2010. Advanced

microprocessors and microcontrollers. New

age international publishers. 3
rd

 edition. page

395

[7]. R.S.,Kaler 2012. A text book of

microprocessors and microcontrollers. New

Delhi, pg 506-507.

[8]. H.C., Inyiama, I.C.,Obiora-Dimson, and C.

C. Okezie, 2015.Designing an Automated

Code Generator for Multi-Agent Based

Process Control and

Monitoring. International Journal of

Advanced Multidisciplinary Research

Reports Vol. 1 No. 1

