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ABSTRACT 
A numerical computation of a very advanced experimental method to acquire shapes is introduced in this paper. 
The basic equations that relate the measurement of slopes to the basic geometric and optical parameters of the 
system are derived. The sensitivity and accuracy of the method are discussed. In order to validate the accuracy 
and the applicability of this method, the qualitative slope behavior of a loaded metallic layer is given. 
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I. INTRODUCTION 

The moiré reflection method [1] is an optical 
technique to obtain the slope of reflecting surfaces 
with very small curvatures. Since its introduction 
by Lichtenberg, a number of alternate optical 
arrangements have been proposed to observe the 
loci of constant projected curvature  [2], [3],[4],[5]. 

This paper presents a new version of reflection 
moiré. Previous versions have used incoherent 
illumination and coarse pitch gratings. 

 

II. OBSERVATION OF SLOPE FRINGES 
WITH COHERENT ILLUMINATION 

The observation of slope fringes requires the 
projection of a grating, called reference grating, 
into a control or master grating.  

The imaging is done by reflecting the reference 
grating on a mirror surface whose slope is to be 
measured.  

The moiré fringes produced by the two gratings are 
the loci of projected constant slope fringes. Since 
the curvature of a surface is a second order tensor, 
three components of the tensor must be measured.  

The alternative method proposed in this paper uses 
a well-known phenomenon analyzed in [6]. 

 

 

 

 

 

When a grating is illuminated with coherent 
collimated illumination, the grating is reproduced 
in the space at distances [6], 

                                  

                (1) 

where z is the coordinate perpendicular to the 
grating, p is the grating pitch, λ is the wave length 
of the illumination light and n is an integer 1,2,3.... 

Fig. 1 shows one set up that can be used to observe 
the fringes. The reference grating is projected on 
the mirror surface whose slope is to be measured 
by means of a semi-reflecting, semi-transparent 
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mirror. The moiré pattern is produced by observing 
the reference grating through the master grating. 

In the first method, a translucent screen is located 
behind the master grating. The observation plane 
can be changed by adding an optical system and 
projecting the pattern onto a screen. The sensitivity 
of the method shows to be dependent on the 
distance between the mirror surface and the master 
grating. The location of the master grating must 
conform with equation (1). In practice, the position 
of the reference grating is adjusted until maximum 
visibility fringes are obtained. Fig. 2 shows the 
optical equivalent of the observation setup.  

Two parallel gratings are observed with 
illumination perpendicular to the grating plane. The 
normal illumination produces symmetrical optical 
paths for all the orders that interfere.  

The observed fringes depend on the slope of the 
surface and not on the gap between the two 
gratings. If the observation is made in the zero 
order direction, the sequence of orders contributing 
to the fringes will be given by:   

 

Considering an order other than zero, the condition 
of minimum deviation [7] must be used to obtain 
symmetrical paths for all the orders so as to 
observe the patterns obtained. Since the resultant 
order contains many wave fronts, the resulting 
fringes are multiple beam interference fringes [7], 
[8]. As mentioned in [7], the slit and bar type of 
amplitude modulating gratings under the stated 
observation conditions will produce fringes that 
have the fundamental period.  

Of course, the presence of the harmonics changes 
the shape of the fringes. Since the different orders 
diverge in space, the distance between the two 
gratings is restricted to values that limit the amount 
of shearing of the different wave fronts to a 
reasonable amount.  

Essentially, the system is operating as a shear 
interferometer and the values of the obtained slopes 
correspond to points whose location is known 
within the amount of shearing.  

III. DERIVATION OF THE EQUATION OF 
THE LINES OF CONSTANT SLOPE 

This derivation applies to the optical setup shown 
in Fig. 1. The first grating  (Fig. 2) is situated at a 
distance d0 from the mirror surface; the second 
grating is situated at a distance d1.  

The sum of d o and d1 must satisfy the condition 
given by equation (1) otherwise they are arbitrary 
quantities.  The phases of wave fronts are referred 
to the origin of the coordinate system.  

The first grating is illuminated in the direction, 
which is perpendicular to its plane by a plane wave 
front of wavelength λ and amplitude E0.  

As this wave front passes through the first grating, 
it is multiplied by the transmission function of 
grating 1, thereby producing the different 
diffraction orders. The angles corresponding to the 
diffraction orders are given by, 

 

 The derivation presented in this paper follows the 
general lines of the derivation given in [9] for in-
plane displacements. In the present case, we are 
dealing with out-of-plane displacements.   

In [9] the combination of the different diffraction 
orders is discussed in detail and an abbreviated 
derivation will be given later in this paper.   

We will now concentrate on the nth order shown in 
Fig.2. 

The coordinates system is shown in the same 
figure.  

The origin is taken in the plane of the first grating, 
z, increasing as one moves towards the mirror 
under study. 

After the first grating, the wave front is given by: 
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where φn and kn are constants for the grating and 
order considered.  



B. Trentadue. Int. Journal of Engineering Research and Application                         www.ijera.com 
ISSN : 2248-9622, Vol. 7, Issue 4, ( Part -1) April 2017, pp.24-29 
 

	   www.ijera.com                                 DOI:  10.9790/9622-0704012429                         3 | P a g e  

	  

	  

For simplicity, we can consider them relative to the 
zero order (φ0=0 and k0=1).   

Reaching the surface, the wave front is: 
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Upon reflection on the surface of the object, 
the wave fronts are rotated by twice the local slope 
of the object. The reflected wave front is then given 
by:  
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The second grating is located in plane z=d0-d1 

therefore, the amplitude incident on the second 
grating is: 
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(7)  

In Fig. 1 a diaphragm is added that filters all the 
other orders, except the zero order. Therefore, the 
only wave fronts that contribute to the pattern have 
the final order 0. This means that incident order +n 
must be rotated back to order 0=+n-n. The final 
expression of the amplitude in the plane of the 
second grating for the nth wave front (+n,-n) is 
(kn=k-n and φn=φ-n ) for a symmetric grating with 

transfer function , 
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where:    

       (9)           
            

Therefore, the phase at point x in the plane of the 
second grating depends on the deflection and slope 
of the surface at a different point ( ). This point 
differs for each order since its position depends on 
n. This will be interpreted as shear interferometry. 

Angles   and   are supposed to be small, 

and  . Therefore, we can approximate the 
trigonometric functions: 

     (10)
    

This formula gives the wave front coming from the 
second grating whose order was +n after the first 
grating. It is valid for positive or negative values of 
n, and shows that the wave fronts are translated 
combinations of the slope and deflection of the 
mirror. The wave fronts are sheared.  

For the zero order term: 

      (11)
              

As previously explained, only the zero order light 
coming from the second grating is collected. This is 
done by introducing a lens system and filter in the 
focal plane of the first lens. Consequently, the light 
distribution observed is the result of interference 
between all wave fronts with order 0 after the two 
gratings: (+n,-n). 

 

Combining all contributions: 
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Where N is the highest diffraction order reaching 
the second grating. 

The intensity measured is: 
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Each term corresponds to shear interference of 
wave fronts whose phase is given by f(x). 

We use the first order approximation for f(x): 
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Each term is a complex number, but considering 
the ranges for n and m, each term has its conjugate 
and they recombine to give a real intensity: 
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Note: all terms where n=m are background 
intensity terms. 
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 Classically, the effect of curvature is neglected, 
and reflection Moiré patterns are analyzed 
considering the pattern as containing the slope 
only: 
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In order for this approximation to be reasonable, 
the curvature of the mirror must be very small, 
which makes the correction term  negligible. The 
exact condition is: 

   

    (18)
        

or, defining R(x) as the local radius of curvature of 
the mirror: 

       (19)
   

The resulting intensity   is the 
summation of a number of cosine fringe patterns 
encoded with the slope of the surface. Each term 
(n,m) gives a pattern with a different sensitivity. 

                       

                        (20)  

The fundamental harmonic is given by the lowest 
sensitivity, i.e. for . This corresponds to 
the interference between successive orders, for 
example (1,-1) (or (-1,1)) and (0,0):  

 

  (21)    
         

All other patterns are harmonics of this 
fundamental pattern. Furthermore, approximations 
of the derivative are varying in quality among these 
terms, since the greater the shear, the worse the 
approximation in (14). For this reason, the 
fundamental pattern is the most precise. Moreover, 
interference between shifted terms ((n, -n) and 
(n+1,-n-1), for example, where n is not small) 
produce a shifted slope, so that the resulting pattern 
is a composite of shifted patterns. 

However, the global pattern is of the form: 

 

  (22)
           

although the shape is not exactly sinusoidal due to 
the presence of harmonics [10]. The first step in 
analyzing the Moiré pattern must therefore be 
filtering, to ensure that the fringes are truly cosine 
fringes. 

 

IV. EXPERIMENTAL 

 The moiré reflection technique was applied to 
determine the curvatures of a real dental 
impression.  The collimation of the light was 
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adjusted using a λ/20 mirror. The position of the 
light source was adjusted so that no residual fringe 
can be observed in the field.  Fig. 3 shows the steps 
to obtain the final shape reconstruction. 

 

 

           

The analysis of the reflection moiré fringes is 
performed by computer fringe analysis. The 
HOLOSTRAIN system [11] analyzes the fringes as 
spatially frequency modulated signals and 
determines the modulating function, extends the 
signal beyond the boundaries of the specimen and 
computes its derivative. In the case of in-plane 
deformation the modulating function is the 
displacement function of the points of the surface. 
In the case of Reflection Moiré, the modulating 
function is the slope function of the surface. The 
derivative of the function is the curvature [12]. The 
derivatives can be computed with a very high 
accuracy. In the particular examples shown in this 
paper, a grating of pitch 0.254 mm was used and 
the distance d1 was 300 mm. This means that 
sensitivities of 1.2 x10-5 radians in the 
measurement of slopes can be achieved. 

 

V. CONCLUSION 

The equations developed in this paper allow us to 
define a more accurate method for surface slope 
measurement. Through a new powerful automatic 
image analysis system, the whole shape of any kind 
of irregular surface can be reconstructed with very 
high precision. 
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