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ABSTRACT 
Singular Spectrum Analysis (SSA) is a relatively new and powerful nonparametric tool for analyzing and 

forecasting economic data. SSA is capable of decomposing the main time series into independent components 

like trends, oscillatory manner and noise. This paper focuses on employing the performance of SSA approach to 

the monthly electricity consumption of the Middle Province in Gaza Strip\Palestine. The forecasting results are 

compared with the results of exponential smoothing state space (ETS) and ARIMA models. The three techniques 

do similarly well in forecasting process. However, SSA outperforms the ETS and ARIMA techniques according 

to forecasting error accuracy measures. 
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I. INTRODUCTION 
Nowadays, life is impossible without 

electricity. Electricity provides homes and public 

places with lights and heat. Without it, health, 

education, finance, technology and other critical 

services collapse. Therefore, electricity consumption 

is without a doubt an important issue that has been 

of interest over the past few years. 

It is always more challenging to examine 

densely populated places. For instance, Gaza Strip is 

a very small Palestinian territory that is home to a 

population of more than 2 million people. As a 

result, it suffers from a chronic crisis in the 

electricity supply for many years mainly because of 

the Israeli siege. This paper focuses on the Middle 

Province of Gaza Strip or known as Central Gaza 

Strip which consists of the refugee camps of Bureij, 

al-Maghazi, and al-Nussairat, and the city of Deir al-

Balah. It attempts to provide a coherent electricity 

consumption forecasting for the Middle Province of 

Gaza Strip using Singular Spectrum Analysis SSA. 

Although it is considered as a new 

nonparametric tool, there exists an extensive 

literature on Singular Spectrum Analysis (SSA). To 

begin with, [1] assert that the role of Singular 

Spectrum Analysis (SSA) is to provide estimates of 

the statistical dimension. SSA also aims to describe 

the main physical phenomena reflected by the data. 

It gives adaptive spectral filters connected with the 

dominant oscillations of the system, and clarifies the 

data’s noise characteristics. Moreover, [2] add that 

SSA is both a linear analysis and prediction method. 

It is superior to the other classical spectral methods 

because of the data-adaptive character of the 

eigenelements it is based on. It can also use concepts 

from nonlinear dynamics. Adding to that, [3] asserts 

that SSA is a powerful tool used in time series  

 

analysis. It gives a much more accurate forecast 

results than other methods when applied to many 

practical problems. Its aim is to decompose original 

series into small number of independent and 

interpretable components like oscillatory 

components, a structureless noise, and a slowly 

varying trend. Moreover, [4] also illustrate that SSA 

technique performs four steps. First,  computing the 

trajectory matrix. Second, constructing a matrix for 

applying SVD. Third, grouping and corresponding to 

splitting the matrices that were computed at the SVD 

step. Finally, reconstructing the one-dimensional 

series. In addition, [5] add that SSA has attained 

successful application in different branches such as 

meteorological, biomechanical, hydrological, 

physical sciences, economics and others. The aim of 

SSA is to look for nonlinear, non–stationary, and 

intermittent or transient behavior in an observed 

time series. Furthermore, [6] employ SSA to 

decompose the original electricity price series into 

trend, periodic and noisy components. This approach 

is evaluated by analysing and forecasting the day 

ahead electricity prices in the Australian and Spanish 

electricity markets. The forecasting results assert the 

dominance of the SSA approach compared with the 

other forecasting techniques. In addition, [7] assert 

that SSA is a powerful and well-developed tool of 

time series analysis and forecasting. SSA can be 

applied to a wide number of time series analysis 

problems like exploratory analysis for data-mining 

and parameter estimation in signal processing. 

Adding to that [8] also assumes that SSA is a model-

free tool that can be applied to all types of series. It 

comprises time series analysis tools, multivariate 

statistics tools, dynamical systems and signal 

processing tools. Finally, [9] investigate the use of 

SSA in mid-term forecasting of the monthly 
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electricity consumption for the residential class in 

Brazil. The results show that the SSA method with 

graphical analysis of singular vectors presented the 

more accurate forecasts. 

The section above contains a summary of 

electricity consumption with an application on the 

Middle Province of Gaza Strip. Moreover, an 

overview of previous literature is also added. The 

remainder of the paper is organized as follows. 

Section 2 discusses the methodology. Section 3 

contains the application to real data. Section 4 

consists of comparison between SSA approach and 

other well-known models. Section 5 presents the 

conclusion of this paper. 

 

II. METHODOLOGY 
Consider a real-valued nonzero time series 

 1 2
 , , ,

N N
Y y y y   of length N . The main 

point of SSA is to make a decomposition of the 

original time series into the sum of independent 

fundamental component parts such as slowly varying 

trend, oscillatory component and noise.  

The SSA technique consists of two stages: 

decomposition and reconstruction and both of which 

contain two distinct steps. A brief description of 

each stage and a discussion on the methodology of 

the SAA technique will be presented in the 

following sections following [10] and [11]. 

 

2.1 Decomposition 

This stage includes two steps: embedding 

and Singular Value Decomposition. 

2.1.1. Step 1: Embedding:  

Embedding can be considered as a 

procedure that takes a univariate time series 

 1 2
 , , ,

N N
Y y y y   and makes it a 

multivariate set of observations 
1 2
, , ,

K
X X X   

where the lagged vector , 1, 2 , ,
i

X i K  is 

defined as 
1 1

( , , , )
T L

i i i i L
X y y y R

  
  . 

Let (1 )L L N   be some integer called window 

length (the single parameter of the embedding step) 

and 1K N L   . As a result, the trajectory 

matrix can be constructed as shown below in 

equation (1):  

1 2

2 3 1

1 2

1

K

K

K

L L N

y y y

y y y
X X X X

y y y





 

 

   
   

 

 






   



    (1) 

The trajectory matrix X  is a Hankel 

matrix that means all the elements on the off 

diagonals (  co n s tan t )i j   are equals [3]. For 

example, consider the observations 

(1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 6 0 ),Y   6N  . Choose 

window length 4L   then 6 4 1 3K     , 

and the trajectory matrix is: 

                  

1 0 2 0 3 0

2 0 3 0 4 0

3 0 4 0 5 0

4 0 5 0 6 0

X

 

 

 
 

 
 

                       (2) 

 

2.1.2. Step 2: Singular Value Decomposition (SVD): 

From the trajectory matrix X , define the covariance 

Matrix 
T

X X . Let 
1 2 L

      denote the 

eigenvalues of 
T

X X and the corresponding 

eigenvectors 
1 2
, , ,

L
U U U  in SSA literature are 

donated by (the empirical orthogonal functions). Let 

d be the number of nonzero eigenvalues (that is the 

rank of 
T

X X ) and set the principal components 
T

i i i
V X U  , then the SVD of the trajectory 

matrix X can be expressed as a sum of matrices: 

         
1 2 d

X E E E                              (3)  

where , 1, 2 , ,
T

i i i i
E U V i d   . The 

gathering  , ,
i i i

U V  is referred to the 
th

i  

eigentriple (square root of eigenvalue, eigenvector, 

factor vector) of the matrix X . The ratio 

1

d

i i

i

 



 is the share of the trajectory matrix X  

explained by the sum in (1). For more details see 

[12]. 

 

2.2 Reconstruction 
This stage includes two steps: grouping and 

averaging. 

2.2.1. Grouping:  

The grouping procedure divides the set of 

elementary matrices indices  1, , d  

into m  disjoint subsets 1
, ,

m
I I . Let 

 ,1 ,
, ,

k
k k p

I i i  be a group of indices 

,1 ,
, , , 1, ,

k k p
i i k m  . Then the matrix 

k
I

X  corresponding to the group 
k

I  is defined as 

,1 ,2 ,k k k k p
I i i i

X E E E    . Then the 

corresponding decomposition is written as: 

           
1 m

I I
X X X                                 (4)  
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For a given group , 1, ,
k

I k m  the 

share of the component 
k

I
X  into the equation (3) is 

measured by the contribution of the corresponding 

eigenvalues: 

1
k

d

i i

i I i

 

 

  . For more details see 

[13]. Note that in the previous numeric example, 

there are only two nonzero components and at most 

two groups that can be defined as 

   1 2
1 , 2I I  . 

 

2.2.2. Step 4: Diagonal averaging:  

The group of m components chosen in the 

above step is used to rebuild the deterministic 

components of the original time series 
N

Y . The aim 

of diagonal averaging is to transform all matrix 

components 
1

, ,
m

I I
X X in equation (4) above to 

Hankel matrices 
1

, ,
m

I I
X X  where 

j
I

X is the 

Hankelization of 
j

I
X for 1, ,j m  . The 

expression (4) is transformed to the Hankelized 

form: 

        
1 m

I I
X X X                                    (5) 

If 
i j

w stands for an element of a matrix W , then 

the 
th

k  element of the produced time series is 

obtained by averaging 
i j

w over all ,i j such that 

1i j k   . (For example, the 3
rd

 element is 

obtained by 
1 ,3 2 , 2 3 ,1

( ) 3w w w   and so on). 

Let  1 2
, , ,

j j jN
y y y    denote the 

reconstructed components of the original time series 

corresponding to the Hankel matrix 
j

I
X  for 

1, ,j m  . Therefore, the original time series 

will be decomposed into the sum of m series such 

that: 

      
1

, 1, 2 , ,

m

k jk

j

y y k N



                     (6) 

Forming diagonal averaging on the 

components of the previous example, the Hankelized 

expansion becomes: 

1 2

1 0 2 0 3 0

2 0 3 0 4 0

3 0 4 0 5 0

4 0 5 0 6 0

1 5 .3 8 2 1 .6 3 2 8 .7 0 5 .3 8 1 .6 3 1 .3 0

2 1 .6 3 2 8 .7 0 3 8 .2 7 1 .6 3 1 .3 0 1 .7 3

2 8 .7 0 3 8 .2 7 4 9 .9 1 1 .3 0 1 .7 3 0 .0 8

3 8 .2 7 4 9 .9 1 6 2 .3 9 1 .7 3 0 .0 8 2 .3 9

X X X

 

 

   
 

 
 

    

   


    
   

   
   

 

  (7)     

 

 

Consequently, the reconstructed time series 

components are:  

      

1 0 1 5 .3 8 5 .3 8

2 0 2 1 .6 3 1 .6 3

3 0 2 8 .7 0 1 .3 0

4 0 3 8 .2 7 1 .7 3

5 0 4 9 .9 1 0 .0 8

6 0 6 2 .3 9 2 .3 9

Y

     

     


     

     
       

     

     

     
     

              (8) 

 

2.3 Forecasting 
The basic SSA forecasting method is 

known as the recurrent method (R-forecasting). It 

uses the concept of Linear Recurrent Formula 

(LRF). A time series  1
 , ,

N N
Y y y  satisfies 

the LRF and can be successfully forecasted via the 

SSA. 
N

Y  recognizes the LRF of order d if: 

1 1
, 1, ,

t t d t d
y y y t d N 

 
           (9)                     

where 
1 2
, , ,

d
   are the coefficients of the 

LRF of order d . Wide class of time series is ruled 

by LRF such as harmonic, polynomial and 

exponential series.  Subsequently, there is a 

summarized description of the so called SSA 

recurrent forecasting algorithm (for more details see 

[10]). 

The LRF coefficients 
1 2
, , ,

d
   in the 

linear combination (9) can be obtained by using the 

eigenvectors acquired in the SVD step of the SSA 

algorithm. Let 
j

U


denote the vector of the 1st 

1L   components of the eigenvector 
j

U and 
j

 is 

the last component of ( fo r 1, , , )
j

U j r r L  . 

The LRF coefficients can be calculated as follows: 

  
1 2 1 2

1

1
( , , , )

1

r

T

L j j

j

U   








  


      (10) 

    where 
2 2

1

r

j

j

 



  . 
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Considering these notations, the time series 

1

ˆ ˆ ˆ( , , )
N h N h

Y y y
 

   can be defined by the 

following formula: 

1

1

fo r 1, ,

ˆ
fo r 1, ,

i

L

i

j i j

j

y i N

y
y i N N h










 
  





 


       (11)  

    where ˆ ( 1, , )
i

y i N  are the reconstructed 

time series. Then 
1

ˆ ˆ, ,
N N h

y y
 

 are the h -step-

ahead recurrent forecast. Regarding the previous 

numerical example, let 3r L  . Then the LRF 

coefficients can be calculated and have the values: 

1 2 3
( , , ) ( 1 .5 0 , 2 .0 0 , 0 .5 0 )

T T
       (12) 

    and the 1st-step-ahead forecast is then: 

 

    
7

ˆ 0 .5 0 * 6 2 .3 9 2 .0 0 * 4 9 .9 1

( 1 .5 0 ) * 3 8 .2 7 7 3 .6 1 .

y  

  
           (13) 

 

2.4 Parameters Selection 

As explained in the previous sections, SSA 

approach requires two important parameters: the 

window length L (in the embedding step) and the 

grouping effect parameter r (in the reconstruction 

stage). Certainly, there are great efforts and 

suggestions of various methods of selecting the 

suitable value of L and r (see [10], [14], [15] and 

[16]). Taking into account theoretical results for 

structure of the trajectory matrix and seprabelity, it 

seems better to select window length less than 

2N or 3N  as other recommended values (see 

[17]). Moreover, values for L and r be selected 

depend on both information provided by time series 

under study and analysis that need to be performed. 

In this paper, SSA is used as a technique of 

forecasting. Therefore, the implemented criteria are 

based on the forecasting errors. However, different 

error measures are used to find the error forecast. 

These include Mean absolute error (MAE), Mean 

square error (MSE), Root mean square error  

(RMSE) and Mean absolute percentage error 

(MAPE). These accuracy measures are defined in 

Table 1 below. 

 

Table 1 Accuracy Measures 
Acronyms Definition Formula 

MAE Mean absolute 

error 
1
| |

n

ti
e n


 

MSE Mean square error 
2

1

n

ii
e n


 

RMSE Root mean square 

error M S E
 

MAPE Mean absolute 

percentage error 
1

| |
1 0 0

n
i i

i

e y

n


 

where n  is the number of observations in the 

sample. Note that the selection of L and r  is 

obtained by minimizing the forecasting error using 

these accuracy measures (see [16] and [18]). 

 

 
Figure 1. Monthly electricity consumption in the 

middle area of Gaza Strip (2005:11-2016:12) 

 

III. APPLICATION TO REAL DATA 
SSA approach is used to decompose and 

forecast the monthly electricity consumption series 

(in GWh) in the Middle Province of Gaza Strip. The 

time series contains 134 observations from 

November 2005 to December 2016. We have 

transformed the data by dividing it by 1000000. 

Table 2 shows some descriptive statistics for this 

data set. On the other hand, Fig. 1 displays the 

electricity consumption over the period (2005:11 - 

2016:12).  

 

Table 2. Descriptive Statistics for Monthly 

Electricity Consumption (in GWh) for the Middle 

Area of Gaza 2005:11-2016:12 

n  Min. 1st 

Qu 

Median Mean 3rd 

Qu 

Max. 

134 5.26 10.22 13.45 12.81 15.56 20.02 

 

Visual analysis of the drawn time series in 

Fig. 1 specifies that it has a trend and this trend can 

be resembled either by exponentially increasing 

function or linear function. Moreover, it seems that 

the seasonal component has a complicated and 

changeable attitude. Fig. 2 displays the periodogram 

of electricity consumption series which emphasizes 

this assumption. The periodogram is established for 

purifying and revising the representation of the time 

series. 
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Figure 2. Periodogram of series electricity 

consumption (the first 70 points) 

 

Moreover, the first 122 observations from 

November 2005 to December 2015 are used as a 

training sample for model prediction and the 

remaining 12 observations from January 2016 to 

December 2016 are used as a testing data set to 

assess the electricity consumption forecasts. Results 

from SSA technique are compared with other 

models’ results, like Box-Jenkins (ARIMA) model 

and Exponential Smoothing (ETS) model. SSA 

computations are implemented by using the RSSA 

package in R (see [19]), while the other two models 

performed using the forecast package [20]. For each 

approach, the following performance indexes related 

to the forecasting errors are offered: MAE, MSE, 

RMSE and MAPE, and residuals test statistics. 

 

3.1. Electricity consumption by SSA 

As explained in the previous section, it is 

required as a first step to select the proper 

parameters, i.e., the window length L and the group 

indices r . As mentioned before, the suitable values 

of L and r are that allowing the minimal values of 

the accuracy measures of Table 1.   

The process of selection L and r carried 

out through two steps. The first step is fixing 

, 2 2L L N   and changing the value of 

, 1 1r r L   until reaching the choice of the 

pair ( , )L r  which minimizes the accuracy 

measures. Repeat this step many times with different 

choices of L . The second step is choosing the 

optimal pair ( , )L r , throughout all pairs of the first 

step, which provide minimum accuracy measures. 

Table 3 shows different choices of ( , )L r and the 

corresponding values of the accuracy measures (all 

values are rounded).  

 

 

 

 

Table 3 Different selections of ( , )L r with 

corresponding values of accuracy measures 

( , )L r
 

MAE MSE RMSE MAPE 

(37,3) 1.568 3.952 1.988 0.102 

(38,9) 1.516 3.914 1.978 0.101 

(39,7) 1.501 3.622 1.903 0.097 

(40,7) 1.416 3.560 1.887 0.094 

(41,7) 1.454 4.014 2.004 0.097 

(42,12) 1.445 3.417 1.848 0.095 

(55,4) 1.528 4.134 2.033 0.102 

(56,4) 1.488 3.886 1.971 0.099 

 

Note that many other selections and their 

corresponding values of accuracy measures are also 

computed but they are improper so ignored and not 

reported. Comparing the values in Table 3 concludes 

that the best selection of SSA parameters of 

electricity consumption time series is that 40L   

and 7r  . Fig. 3 illustrates eigenvectors from the 

first 12 eigentriples. It shows the participation of 

each eigenvalue after the SVD stage using 40L   

as window length required for the embedding step.   

 

 
Figure 3. The first 12 principal components plotted 

as time series. 

 

Fig. 4 displays the plot of the reconstructed 

components. It describes the 12 most significant 

initial reconstructed components of the original 

electricity consumption time series. After taking a 

quick look, the first two reconstructed components 

are related to slow motion components (i.e., the 

trend behavior), while the remainder of the 

reconstructed components are connected to 

fluctuating components.  
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Figure 4. Reconstructed components related to the 

first 12 eigentriples 

 

Furthermore, for the sake of evaluating the 

separability of the various eigentriples, Fig. 5 displays 

a graphical representation of the w-correlation matrix. 

The correlation between components m and n can be 

represented as a cell ( , )
m n

F F . It has a color scale 

from black to white equivalent to 1 to 0, respectively. 

Notice that cell
1 2

( , )F F is white (w-correlation=0), so 

components 1 and 2 are clearly separable whereas 

cell
3 4

( , )F F are grey color (w-correlation=0.25), so 

components 3 and 4 are almost separable. Components 

5-6 and 7-8 have high w-correlations so they could be 

grouped. Also, the first two eigentriples in Fig. 5 

correspond to the trend components while the next 

eigentriples produce harmonic (oscillatory) 

components. The large shining cells on the top-right 

shows noise components. Therefore, the first 7 

eigentriples will be used in the reconstruction of the 

electricity consumption series. 

 

IV. COMPARISON 
In this section, the SSA approach is 

compared with several well-known models, the Box-

Jenkins model namely, Autoregressive Integrated 

Moving Average (ARIMA) models and the 

Exponential Smoothing (ETS) models. 
 

 
Figure 5. A graphical representation of the w-

correlation matrix. 

 

4.1. ARIMA Model 

A non-stationary time series  t
X is said 

to follow a non-stationary autoregressive integrated 

moving average (ARIMA) denoted by 

A R IM A ( , , )p d q  if it is expressed as:  

      ( ) ( )
d

p t q t
Y      B B                     (14)  

where 
t

  are identically and independently 

distributed as  
2

0 , ,  1, 2 , ,N t N    and 

N is the number of observations, d is the order of 

non-seasonal differences and  is the non-seasonal 

differencing operator, 1   B . µ  is the mean of 

a series assuming that after differencing it is 

stationary. 

As mentioned above, B is the backshift 

operator, used to simplify the representation of lag 

values, by 
1t t

X X


B . Also, ( )
p

 B  and 

( )
q

 B  are the autoregressive polynomial of B  for 

order p and the moving average polynomial of B  

for order q  respectively where: 

     
2

1 2
 ) 1(  

p

p p
       BB B B     (15) 

and   

      
2

1 2
1( )

q

q q
       B B B B       (16) 

More details can be found in ([21], [22], [23], [24], 

and [25]). 

 

4.1.1. Parameters Estimation 

The estimation of parameters for ARIMA 

model is a nonlinear problem that requires 

some special processes such as the maximum 

likelihood method or nonlinear least-squares 

estimation. At this stage of model building, the 

estimated parameter values should minimize 

the sum of squared residuals. For this purpose, many 

software packages are applicable for 

fitting ARIMA models. In this current study, the 

forecast package in R software will be used. 

To choose the best ARIMA model based on 

observation data, we use the corrected 

Akaike Information Criterion (AICc). For more 

details see [21]. 

Based on the methodology summarized 

above, to calculate the point forecasts for electricity 

consumption in the Middle Province of Gaza Strip 

for the 12 months from January 2016 to December 

2016, the results showed that the best ARIMA 

model was A R IM A (1 ,1 ,4 ) : 

4

2
(1 1 .2 0 1 0 .2 0 1 ) 0 .0 2 8 ( )

t t
Y     B B B       (17) 

where 
 2

4

3 4
( ) (1 0 .2 0 2 0 .1 0 2 0 .1 1 6 0 .1 0 0 )    B B B B B   (18) 
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4.2. Exponential Smoothing State Space Model 

Another popular type of forecasting models 

are exponential smoothing techniques. It’s simple 

but very helpful of adjusting time series forecasting. 

[26], [27], and [28] have initially introduced these 

methods in their early works. The idea behind 

forecasting using exponential smoothing is to assign 

exponentially declining weights to observations as 

they go back in age, i.e., recent observations have a 

larger weight than the old ones. 

Pegels [29] was the first to classify 

exponential smoothing techniques and propose a 

taxonomy of the trend component and seasonal 

component. Pegels’ taxonomy was later extended by 

[30], who added damped trend to the classification. 

This extension is then modified by [31], before the 

final extension is proposed by [32] who extended the 

classification to include damped multiplicative 

trends. For more details, see [33]. 

When fitting an exponential smoothing 

model with a state space approach, the ets() function 

in forecast package [20] and [34] was used. It is 

utilized to choose the suitable model automatically 

on the basis of maximum likelihood method (MLE) 

and then to calculate the point forecasts for 

electricity consumption in the Middle Area of Gaza 

Strip for the 12 months from January 2016 to 

December 2016. When applying the function, the 

results showed that the best performing model 

was E T S( M , A , N ) , that is a model with 

multiplicative error, additive trend and no 

seasonality. The exponential smoothing state space 

E T S( M , A , N )  model is:  

 

 

 

4 .6 89
1 1 (1 ),

0 .1 1 8

1 1 4 .6 89 4 .6 89 0 .9 0 8
1 1

0 1 0 .1 18 0 .1 18 0 .0 0 0 1

t t

t t

y

x





 
  

 

       
        

       

 (19) 

 

where the state vector ( , )
T

t t t
x b  , includes the 

level and growth components respectively. For more 

details about the structures and notations of 

exponential smoothing state space models, see [33]. 

 

4.3. Forecasting Results 

Table 4 presents the results for several 

techniques for the forecasting of the 12-step-ahead 

data points for electricity consumption in the Middle 

Area of Gaza Strip. The scores show that the SSA 

forecasts are comparable with the forecasts acquired 

from the Box-Jenkins A R IM A (1 ,1 ,4 )  and the 

exponential smoothing state space E T S( M , A , N )  

models. Moreover, the SSA forecasts outperform the 

forecasts produced by the ARIMA and exponential 

smoothing models and consequently the forecasted 

values for electricity consumption of the Middle 

Province in Gaza Strip are very close to the original 

data for the SSA technique. Adding to that, SSA is 

able to provide further details about the 

decomposition of the time series.  

Comparing the results of the measures of 

forecast accuracy in Table 5, the SSA technique still 

performs best based on all the measures values. The 

predicted values using SSA are highly accurate as 

MSE=3.5604 is approximately 3 times less than the 

other models. RMSE = 1.8869 is 1.5 times less than 

the other models and MAPE = 0.0938 is 

approximately 2 times less than the other models. 

 

Table 4. Actual and Prediction for Electricity 

Consumption (in GWh) for the Middle Province of 

Gaza Strip in 2.16:1-2016:12 

  Prediction 

Month Actual 

Data 

SSA ARIMA

(1,1,4) 

ETS(M,

A,N) 

01/2016 14.1886 17.2325 18.4250 18.4873 

02/2016 12.5564 16.9441 19.1469 18.6053 

03/2016 16.4811 16.8670 18.1730   18.7232 

04/2016 15.1924 16.9982 18.7956 18.8412 

05/2016 16.0113 17.2629 18.5982 18.9592 

06/2016 17.4678 17.5599 18.8822 19.0771 

07/2016 19.0960 17.8049 18.8836 19.1951 

08/2016 18.1212 17.9669 19.0509 19.3131 

09/2016 17.6333 18.0759 19.1208 19.4310 

10/2016 16.0417 18.2045 19.2478 19.5490 

11/2016 20.0189 18.4360 19.3413 19.6670 

12/2016 19.2120 18.8230 19.4545 19.7849 

 

By all the odds, the SSA technique has the lowest 

forecasting accuracy measures. 

 

Table 5 Forecast Accuracy for the SSA, ARIMA 

and Exponential Smoothing Techniques 

 MAE MSE RMSE MAPE 
SSA 1.4158 3.5604 1.8869 0.0938 

ARIMA(1,1,4) 2.2399 8.3199  2.8844 0.1499 

ETS(M,A,N) 2.3597 8.5087 2.9170 0.1563 

 

Fig. 5 exhibits the actual and forecasted 

electricity consumption in the Middle Province of 

Gaza Strip, as well as 80% and 95% prediction 

intervals. Therefore, a more detailed picture of the 

SSA technique can be drawn by diving into the 

numbers of the previous tables. 
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Figure 5. Actual and forecasted (red line) electricity 

consumption in the Middle Province of Gaza Strip, 

80% and 95% (blue) prediction intervals. 

 

However, to make prediction intervals 

using exponential smoothing techniques, the 

prediction intervals require that the forecast errors 

should be uncorrelated and normally distributed with 

mean zero and constant variance. 

The sample correlation in Fig. 6 displays 

that most of sample autocorrelation coefficients of 

the residuals are within the confidence limits, 

consequently the residuals are white noise reflecting 

that SSA technique is adequate.  

 

 
Figure 6. Residual diagnostics for SSA technique. 

 

To confirm the evidence of autocorrelations, 

the Box-Ljung test p-value result in Table 6 displays 

that there is an evidence of no autocorrelations in the 

forecasts errors. Furthermore, the Jarque Bera test p-

value shows that there is a strong evidence for 

normality of forecasts errors. Moreover, the test of 

homoscedasticity p-value proves the evidence that the 

variance is constant.  

 

Table 6. Residual Diagnostics Tests 

Residual Test p-values 

Residual Autocorrelation test 

Box-Ljung test 

0 8
8 .2 4 3 * 1 0



  

Residual  Normality test 

Jarque Bera Test 

0.01426 

Homoscedasticity test 

Box-Ljung test  (Squared 

Residuals) 

0.04635 

V. CONCLUSION 
The main objective of this research is to 

clarify the methodology of Singular Spectrum 

Analysis and explain that SSA can be successfully 

utilized to analyze and predict the monthly 

electricity consumption in the Middle Province of 

Gaza Strip\Palestine. This paper has explained that 

the SSA technique is a very powerful appliance for 

decomposing and forecasting a non- linear and/or a 

non-stationary time series into a collection of 

independent components. In the given example, 

regarding the monthly electricity consumption, the 

performance of SSA is the leading, compared with 

other well-known forecasting models, namely Box-

Jenkins ARIMA model and Exponential Smoothing 

State Space ETS model. The numerical results 

obtained using R packages declared that the error 

came by the SSA technique were smaller than those 

obtained by the ARIMA and ETS state space models 

according to mean absolute error (MAE), mean 

square error (MSE), root mean square error (RMSE) 

and mean absolute percentage error (MAPE). 

However, the SSA outperforms the ARIMA and 

ETS state space models. Adding to that, the obtained 

numerical results assert the potentiality of the SSA 

technique for electricity consumption predicting 

implementations. 
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