Integral Points on The Hyperbola $3 x^{2}-4 y^{2}=3$

R.Anbuselvi*, D.Nithya**
*(Associate professor Department of Mathematics, A.D.M college for women, Nagappattinam,Bharathidasan University Thiruchirapalli, Tamil Nadu.)
**(Assistant professor of Mathematics, N.S.C.B college for women, Thiruvarur,Bharathidasan University Thiruchirapalli, Tamil Nadu.)

Abstract

This paper concerns with the problem of obtaining non-zero distinct integral points on the hyperbola.Two different sets of solutions satisfying the hyperbola under consideration are presented. Knowing a solution, a general formula for generating a sequence of solutions is presented.

Keyword: Binary quadratic equations, integral points on the hyperbola

I. INTRODUCTION

It is well known that binary quadratic Diophantine equation both homogeneous and non homogeneous are rich in variety [1-4]. Particularly in [5-14], the binary quadratic non-homogeneous equations representing hyperbolas respectively are studied for their non-zero integral solutions. However, in [15] it is shown that the hyperbola represented by $3 x^{2}+x y=14$ has only finite number of integral points. These results motivated us to search for other choices of hyperbolas having infinitely many non-zero integral solutions. It is towards this end, in this communication, we study the hyperbola given by $3 x^{2}-4 y^{2}=3$ for its nontrivial integral solutions. The recurrence relations satisfied by the solutions x and y are given. Also a few interesting properties among the solutions are exhibited.

I.Notations

$t_{m, n}=$ Polygonal number of rank n
with sides $m=n\left[1+\frac{(n-1)(m-2)}{2}\right]$.
$p_{n}^{m}=$ Pyramidal number of rank n with sides $m=\frac{1}{6} n(n+1)[(m-2) n+(5-m)]$.
Obl $l_{n}=$ Oblong number of rank $n=n(n+1)$.
$P P_{n}=$ Pentagonal pyramidal number of rank $n=\frac{n^{2}(n+1)}{2}$.

II. METHOD OF ANALYSIS

To start with, the binary quadratic equation given by

$$
\begin{equation*}
3 x^{2}-4 y^{2}=3 \tag{1}
\end{equation*}
$$

represents a hyperbola.
Setting, $x=X+4 T, y=X+3 T$
in (1), it simplifies to the equation
$X^{2}=12 T^{2}-3$
The smallest positive integer solution of $\left(T_{0}, X_{0}\right)$ of (3) is

$$
T_{0}=1, X_{0}=-3
$$

To obtain, the other solutions of (3), consider the Pellian equation

$$
X^{2}=12 T^{2}+1
$$

Whose general solution $\left(\tilde{T}_{n}, \tilde{X}_{n}\right)$ is given by

$$
\tilde{X}_{n}+\sqrt{12} \tilde{T}_{n}=(7+2 \sqrt{12})^{n+1}
$$

Since irrational roots occur in pairs, we have
$\tilde{X}_{n}-\sqrt{12} \tilde{T}_{n}=(7-2 \sqrt{12})^{n+1}, \quad n=0,1,2, \ldots$
From the above two equations, we get
$\tilde{X}_{n}=\frac{1}{2}\left[(7+2 \sqrt{12})^{n+1}+(7-2 \sqrt{12})^{n+1}\right]$
$\tilde{T}_{n}=\frac{1}{2 \sqrt{12}}\left[(7+2 \sqrt{12})^{n+1}-(7-2 \sqrt{12})^{n+1}\right]$

$$
n=0,1,2 \ldots
$$

Applying Brahmagupta Lemma between the solutions $\left(T_{0}, X_{0}\right)$ and $\left(\widetilde{T}_{n}, \tilde{X}_{n}\right)$, the general solution (T_{n+1}, X_{n+1}) of (3) is found to be

$$
\begin{gathered}
T_{n+1}=\tilde{X}_{n}-3 \widetilde{T}_{n} \\
X_{n+1}=-3 \tilde{X}_{n}+12 \widetilde{T}_{n} \\
n=-1,0,1, \ldots
\end{gathered}
$$

Substituting these values in (2), the sequence of integral solutions of (1) can be written as

$$
\begin{gathered}
x_{n+1}=\tilde{X}_{n} \\
y_{n+1}=3 \tilde{T}_{n}, \quad n=-1,0,1, \ldots
\end{gathered}
$$

The values of x and y satisfies the recurrence relations

$$
\begin{aligned}
& x_{n+3}-14 x_{n+2}+x_{n+1}=0 \\
& y_{n+3}-14 y_{n+2}+y_{n+1}=0
\end{aligned}
$$

A few interesting properties among the solutions are presented below:

1. The x-values are odd and y-values are even.
2. $y_{n+1} \equiv 0(\bmod 6), \quad \mathrm{n}=0,1,2, \ldots$
3. $x_{2 n-1} \equiv 0(\bmod 7), \mathrm{n}=1,2, \ldots$
4. Each of the following expression represents a Nasty number:
(i) $y_{n+2}-13 y_{n+1}-12 y_{n}$
(ii) $x_{n+2}-13 x_{n+1}-12 x_{n}$
(iii) $x_{n+3}-15 y_{n+2}-13 x_{n+1}$
(iv) $y_{n+3}-11 y_{n+2}-40 y_{n+1}-10 y_{n}$
(v) $y_{n+2}-12 y_{n+1}-26 y_{n}$
5. $y_{n+3}-14 y_{n+2}+2 x_{n+1}$ is a cubical integer.
6. $y_{n+3}-10 y_{n+2}-54 y_{n+1}-8 y_{n} \equiv 0(\bmod 6)$
7. $\left(o b l_{x}\right)^{2}\left(p p_{x}\right)^{2}-25\left(p_{x}^{2}\right)^{2} \equiv 0(\bmod 3)$
8. $6\left(p_{x}^{5}\right)-4\left(t_{3, x}\right) \equiv 0(\bmod 2)$
9. $\left(p_{y}^{3}\right)+6\left(t_{3, y+1}\right) \equiv 0(\bmod 3)$
10. Choose $r=s, s=x-y$ Treat r and s as the generators of the Pythagorean triangle (α, β, γ) where $\alpha=2 r s, \beta=2 r^{2}-$ $s^{2}, \gamma=r^{2}+s^{2} \quad$ Then this Pythagorean triangle is such that $\beta+4 \alpha-3 \gamma=3$.
11. If we take the smallest positive integer solution (T_{0}, X_{0}) of (3) is $T_{0}=1, X_{0}=+3$ The result does not change.

It is worth mentioning that, instead of (2) one may also consider the linear transformations

$$
x=X-4 T, \quad y=X-3 T
$$

For this case, the corresponding integral solutions of (1) are represented by

$$
\begin{array}{r}
x_{n+1}=X_{n+1}-4 T_{n+1}=-7 \tilde{X}_{n}+24 \tilde{T}_{n} \\
y_{n+1}=X_{n+1}-3 T_{n+1}=-6 \tilde{X}_{n}+21 \tilde{T}_{n} \\
n=-1,0,1, \ldots
\end{array}
$$

III. GENERATION OF SOLUTIONS

Let $\left(x_{0}, y_{0}\right)$ be any given solution of (1)
Assume $x_{1}=x_{0}+\mathrm{h}, y_{1}=h-y_{0}$
to be the second solution of (1).
Substitution of (4) in (1) leads to

$$
h=6 x_{0}+8 y_{0}
$$

Employing the value of h in (4), one obtains

$$
\begin{aligned}
& x_{1}=7 x_{0}+8 y_{0} \\
& y_{1}=6 x_{0}+7 y_{0}
\end{aligned}
$$

Representing the above solution in matrix form, we have

$$
\left(x_{1}, y_{1}\right)^{t}=\mathrm{A}\left(x_{0}, y_{0}\right)^{t}
$$

Where t is the transpose and A is the second order matrix given by

$$
\mathrm{A}=\left(\begin{array}{ll}
7 & 8 \\
6 & 7
\end{array}\right)
$$

Repeating the above process, we get the generalized form of the matrix

$$
\begin{equation*}
\left(x_{n}, y_{n}\right)^{t}=A^{n}\left(x_{0}, y_{0}\right)^{t} \tag{5}
\end{equation*}
$$

Wherein $A^{n}=\left(\begin{array}{cc}\frac{1}{2}\left(\alpha^{n}+\beta^{n}\right) & \frac{1}{\sqrt{3}}\left(\alpha^{n}-\beta^{n}\right) \\ \frac{\sqrt{3}}{4}\left(\alpha^{n}-\beta^{n}\right) & \frac{1}{2}\left(\alpha^{n}+\beta^{n}\right)\end{array}\right)$ which $\alpha^{n} \beta^{n}=1$

Thus, substituting $n=1,2,3 \ldots$ inturn in (5), one can generate infinitely many integral solution satisfying (1).

IV. CONCLUSION

To conclude, one may search for any other binary quadratic equations and their corresponding properties.

REFERENCES

Books:

[1] Dickson L.E., (1952), History of Theory of Numbers, Vol. II, (Chelsea Publishing company, New York).
[2] Carmichael R.D.,(1959),The Theory of Numbers and Diophantine Analysis (Dover publication,New Delhi).
[3] Mordell L.J., (1969),Diophantine Equations(Academic Press, London).
[4] Telangs S.G., (1996),Number Theory(TataMcGraw-Hill Publishing company NewDelhi).

Journals:

[5] Gopalan M.A.,Gokila K., and Vidhyalakshmi S., (2007), On the Diophantine Equation $x^{2}+4 x y+y^{2}-2 x+2 y-6=$
0, ActaCienciaIndica(Vol. XXXIII M, No. 2, Pp. 567-570)
[6] Gopalan M.A., Vidhyalakshmi S., and Devibala S.,(2007), On the Diophantine Equation $3 x^{2}+x y=14$, ActaCienciaIndica(Vol. XXXIII M, No. 2, Pp. 645-646)
[7] Gopalan M. A., and Janaki G., (2008), Observations on $x^{2}-y^{2}+x+y+x y=$ 2,Impact j.Sci.,Tech.,(Vol. 2, No. 3, Pp. 143148).
[8] Gopalan M. A., and Anbuselvi R., (2008), Integral solutions of $4 a y^{2}-9 a-10 x^{2}=$ $3 a+1$, ActaCienciaIndica(Vol. XXXIV M, No. 1, Pp. 291-295).
[9] Gopalan M. A., Shanmuganandham P., and Vijayasankar A., (2008), On Binary Quadratic Equation $x^{2}-5 x y+y^{2}+8 x-$ $20 y+15=0, \quad$ ActaCienciaIndica $($ Vol . XXXIV M, No.4, Pp. 1803-1805).
[10] Gopalan M. A., and Parvathy G., (2010), Integral points on the Hyperbola
$x^{2}+4 x y+y^{2}-2 x-10 y+24=0$,
(AntarticaJ.MathVol .7,No.2, Pp. 149 - 155).
[11] Gopalan M. A., and Sangeetha A., (2010), A Remarkable Observation on $y^{2}=10 x^{2}+1, \quad($ Impact J.Sci.Tech.,Vol4, No 1., Pp. 103 - 106).
[12] Gopalan M. A., and Yamuna R.S., (2010), Remarkable Observation on the Binary Quadratic Equation $y^{2}=\left(k^{2}+2\right)+1, k \in$ $Z-\{0\}$, (Impact J Sci. Tech Vol.4, Pp.61$65)$.
[13] Gopalan M. A., and Sivakami B., (2010), Observations on the Integral Solutions of $y^{2}=7 x^{2}+1$ (AntarticaJ.MathVol. 7, No. 3, Pp. 291-296).
[14] Gopalan M. A., and Vijayalakshmi R., (2010), Observations on the Integral Solutions of $y^{2}=5 x^{2}+1 \quad$ (Impact J.Sci.Tech.,Vol. 4, No. 4, Pp. 125-129, 2010).
[15] Gopalan M. A., and PalanikumarR., (2011), Observations on $y^{2}=12 x^{2}+1$, (AntarticaJ.MathVol. 8, No. 2, Pp. 149-152).

