
Sheeja Y.S. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -2) December 2017, pp.12-17

www.ijera.com DOI: 10.9790/9622-0712021217 12 | P a g e

Two Level Scheduler for Cloud Computing Environment

Sheeja Y.S.*, Dancy Kurian**, Kala Karun***
*(Department of Computer Science, College of Engineering Attingal, Kerala, India.

Email: yssheeja@gmail.com)

** (Department of Computer Science, College of Engineering Attingal, Kerala, India.

Email: dancyk@gmail.com)

*** (Department of Computer Science, College of Engineering Kottarakara, Kerala, India.

Email: kalavipin@gmail.com)

ABSTRACT
Cloud computing delivers infrastructure, platform, software and other applications as services, which are made

available as subscription-based services in a pay-as-you-go model to consumers. Quantifying the performance of

scheduling and allocation policy on Cloud infrastructures like hardware, software, services for different

application and service models under varying load, energy performance such as power consumption, heat

dissipation, and system size is an extremely challenging problem. This paper presents the implementation of an

efficient Quality of Service based Meta-Scheduler and Backfill strategy based light weight Virtual Machine

Scheduler for dispatching jobs. The user centric Meta-scheduler deals with selection of proper resources to

execute high level jobs. The system centric Virtual Machine scheduler optimally dispatches the jobs to

processors for better resource utilization.

Keywords - Back filling, Cloud Computing, Meta-scheduler, Quality of service, Virtual Machine.

Date of Submission: 27-11-2017 Date of acceptance: 08-12-2017

I. INTRODUCTION
Cloud computing is a cost effective model

for providing services and it makes IT management

easier and more responsive to the changing needs of

the business[1]. Cloud computing can be defined as

“a type of parallel and distributed system consisting

of a collection of inter-connected and virtualized

computers that are dynamically provisioned and

presented as one or more unified computing

resources based on service-level agreements

established through negotiation between the service

provider and consumers”[1]. Cloud computing is a

type of parallel and distributed system. Job

scheduling problem is a core and challenging issue

in cloud computing. It is impossible to predict the

job execution time in cloud environment. As Cloud

computing is a rapidly evolving research area, there

is a severe lack of defined standards, tools and

methods that can efficiently tackle the infrastructure

and application level complexities. Hence in the near

future there would be a number of research efforts

both in academia and industry towards defining core

algorithms, policies; application benchmarking

based on execution contexts. The access to the

infrastructure incurs payments in real currency in

cloud environment. The simulation based

approaches provide significant benefits, as it allows

researchers to test their proposed algorithms and

protocols in a repeatable and controlled environment

free of cost, and to find solution to the performance

bottlenecks before deploying in the real cloud [2].

By extending the basic functionalities already

exposed by CloudSim, researchers would be able to

perform tests based on specific scenarios and

configurations, hence allowing the development of

best practices in all the critical aspects related to

Cloud Computing. The CloudSim toolkit supports

First Come First Serve (FCFS) and Round Robin

(RR) scheduling strategies for internal scheduling of

jobs. FCFS and RR suffer from long average waiting

time for longer jobs which necessitates for the

deployment of a better scheduling strategy at the

cluster level. So here use a scheduling algorithm

based on backfilling which allows smaller jobs to

move forward in the schedule as long as such

movement does not cause any other scheduled jobs

to be further delayed. This will reduce the waiting

time of longer jobs. Clouds aim to power the next

generation datacenters by architecting them as a

network of virtual services (hardware, database,

user-interface, application logic) so that users are

able to access and deploy applications from

anywhere in the world on demand at competitive

costs depending on users QoS (Quality of Service)

requirements .

RESEARCH ARTICLE OPEN ACCESS

Sheeja Y.S. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -2) December 2017, pp.12-17

www.ijera.com DOI: 10.9790/9622-0712021217 13 | P a g e

II. PROBLEM DEFINITION
There are various scheduling techniques

available for the scheduling of jobs in cloud

computing. The CloudSim [3] toolkit supports First

Come First Serve (FCFS) and Round Robin (RR)

scheduling strategies for internal scheduling of jobs.

FCFS and RR suffer from long average waiting time

for longer jobs which necessitates for the

deployment of a better scheduling strategy at the

cluster level. Back filling scheduling policies allows

smaller jobs to move forward in the schedule as long

as such movement doesn’t cause any other

scheduled job to be further delayed.

This work concentrates on the design of a

system that schedules various types of jobs in cloud

environment. The activities involved in job

scheduling for cloud environment includes the

selection of processing resource like datacenter, host

and virtual machine and the processing order of

jobs(cloudlets) for every resource. Some of the

constraints to be considered for scheduling include

the QoS specifications like deadline, budget, and

software licenses of jobs, job dependencies and

resource limitations. The proposed two- level

scheduler focuses on optimizing the system

throughput by maximizing the overall resource

utilization and guaranteeing increased performance

of the applications. The proposed approach extends

the CloudSim toolkit [2], by implementing a novel

high-level meta-scheduler. The Meta scheduler

selects proper datacenter based on customer

requirements like deadline and budget. As meta-

scheduler cannot have a control over the resources at

a datacenter and the full set of jobs submitted to the

resources, implemented a low-level local scheduler

to perform efficient job scheduling in cloud

environment. This low level scheduler is designed

based on backfilling concept. The simple VM

Provisioner of the CloudSim chooses the host with

less PEs in use, as the host for VM. This heuristics

ensures load balancing. Nevertheless, many VM

Create Requests fail, even though the required

numbers of free PEs are available across various

hosts. This paper also modified the simple VM

provisioner to optimal VM provisioner.

III. LITERATURE SURVEY
The default algorithms used by current

batch job schedulers for parallel supercomputers are

all rather similar to each other. In essence, they

select jobs for execution in first- come-first-serve

(FCFS) order, and run each job to completion. The

problem is that this simplistic approach causes

significant fragmentation, as jobs do not pack

perfectly and processors are left idle [4]. Most

schedulers therefore use backfilling: if the next

queued job cannot run because sufficient processors

are not available, the scheduler nevertheless

continues to scan the queue, and selects smaller jobs

that may utilize the available resources.

3.1 Scheduling Algorithms
General concept of backfilling allows

smaller jobs to move forward in the schedule as long

as such movement does not cause any other

scheduled jobs to be further delayed. This section

discusses some of the variants of the Backfilling

scheduling strategies that can be used at the cluster

level. In EASY (Extensible Argonne scheduling

sYstem) backfilling, only the first queued job is

given Earliest Start Time.[6] Now it is possible to

schedule and dispatch the smaller jobs if they would

not delay the start of the job in the head of the

waiting queue. In the second approach namely,

Conservative Backfilling every queued job is given

guaranteed start time, so that it has a bounded delay

[5]. The third approach namely, Slack based

backfilling differs from conservative method by

supporting priorities. It assigns each waiting job

some slack, which measures the maximal amount of

time that the job may be delayed beyond its initially

assigned start time. When a job is delayed or speeds

up its slack changes accordingly. This way the

scheduler enjoys more flexibility than conservative

scheduling, but still retains the execution guarantee.

The conservative backfilling achieves the same

result as the slack based method, but it is

comparatively light weight. Hence this proposed

work implements conservative backfilling at the

cluster level for better throughput.

3.1.1 EASY (Extensible Argonne scheduling

System) Backfilling
Backfilling requires the runtime of jobs to

be known: both when computing the reservation

(requires knowing when processors of currently

running jobs will become available) and when

determining if waiting jobs are eligible for

backfilling (must terminate before the reservation).

Therefore, EASY required users to provide a

runtime estimate for all submitted jobs and the

practice continues to this day. Jobs that exceed their

estimates are killed, so as not to violate subsequent

commitments. The assumption is that users would be

motivated to pro-vide accurate estimates, because

jobs would have a better chance to backfill if their

estimates are tight, but would be killed if they are

too short [6].

In EASY backfilling, the scheduler may

backfill later jobs even if that delays the expected

start time of other jobs, so long as the first jobs

expected start time isn't delayed. EASY backfilling

selects a small job to backfill if it does not delay the

start time of the first job in the queue. The resource

utilization is improved. The requirement of user-

estimated run-time of jobs is lower. The small jobs

https://code.google.com/p/pyss/wiki/Backfilling

Sheeja Y.S. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -2) December 2017, pp.12-17

www.ijera.com DOI: 10.9790/9622-0712021217 14 | P a g e

will be able to get more opportunities for backfilling.

It is more flexible to backfill. However, the large job

may be delayed to run more easily. The main

drawback is the wide jobs get reservation only if

they are at front of the queue.

3.1.2 Conservative Backfilling
 A key benefit of Conservative Backfilling

is that each job is granted a guaranteed starting time

when it is submitted. (It may start earlier, but will

not be delayed later than this time.) These

guarantees lead Conservative Backfilling to benefit

wide jobs, jobs requiring many processors, relative

to other backfilling strategies From a fairness

standpoint, this guarantee ensures that wide or long

jobs, which are less likely to benefit from

backfilling, are not harmed by jobs that backfill

more easily. These guarantees also make the

scheduler more predictable since each user has a

bound on when their jobs will run [5] [6].

Conservative backfilling maintains a profile

containing a tentative schedule for all jobs. When a

job arrives, it is placed in the earliest possible spot

within the profile, i.e. it is scheduled to start at the

earliest time that does not disturb any previously

placed job. The only other profile changes occur

when a job finishes early, creating a “hole” that
potentially allows other jobs to move earlier. In this

case, Conservative initiates compression, the re-

examination of each job in the order of its current

starting time in the profile. Each job is removed

from the schedule and then reinserted at the earliest

possible time. Compression never delays a job since

the job can always fit back into the profile at the

same spot, but some jobs move earlier, into a hole or

spaces vacated by jobs that have moved. Since no

job’s planned start time is ever delayed, each job’s

initial reservation is an upper bound on its actual

starting time. EASY and Conservative Backfilling

use First-Come-First-Serve (FCFS) order. The

disadvantage is that it is unnecessary to provide

reservation to all jobs whether it is truly needed or

not. This will reduce the backfilling effect.

3.1.3 Slack Based Backfilling
This approach is based on conservative

backfilling but relaxes it by permitting constrained

delays, called slack. The goal is to increase

utilization in high-load phases and subsequently

response times by better packing, while keeping the

schedule close to FCFS. The low level local

scheduler is implemented using conservative

backfilling algorithm. When a job is delayed or

speeds up its slack changes accordingly. This way

the scheduler enjoys more flexibility than

conservative scheduling, but still retains the

execution guarantee [6]. The conservative

backfilling achieves the same result as the slack

based method, but it is comparatively light weight.

Hence our proposed work implements conservative

backfilling at the cluster level for better throughput.

3.2 Cloud Simulator-CloudSim
The access to real cloud infrastructure

incurs payments in real currency in cloud

environment. The simulation based approaches

provide significant benefits, as it allows researchers

to test their proposed algorithms and protocols in a

repeatable and controlled environment free of cost,

and to find solution to the performance bottlenecks

before deploying in the real cloud [2].

3.2.1 Modeling CloudSim
 The core hardware infrastructure services

related to the Clouds are modelled in the simulator

by a Datacenter component for handling service

requests. These requests are application elements

sandboxed within VMs, which need to be allocated a

share of processing power on Datacenter’s host

components. By VM processing, it means a set of

operations related to VM life cycle: provisioning of

a host to a VM, VM creation, VM destruction, and

VM migration.

 A Datacenter is composed by a set of hosts,

which is responsible for managing VMs during their

life cycles. Host is a component that represents a

physical computing node in a Cloud: it is assigned a

pre-configured processing (expressed in millions of

instructions per second –MIPS, per CPU core),

memory, storage, and a scheduling policy for

allocating processing cores to virtual machines. The

Host component implements interfaces that support

modeling and simulation of both single-core and

multi-core nodes.

 Allocation of application-specific VMs to

Hosts in a Cloud-based data center is the

responsibility of the Virtual Machine Provisioner

component. This component exposes a number of

custom methods for researchers, which aids in

implementation of new VM provisioning policies

based on optimization goals (user centric, system

centric). The default policy implemented by the VM

Provisioner is a straightforward policy that allocates

a VM to the Host in First-Come-First-Serve (FCFS)

basis. The system parameters such as the required

number of processing cores, memory and storage as

requested by the Cloud user form the basis for such

mappings. Other complicated policies can be written

by the researchers based on the infrastructure and

application demands.

 For each Host component, the allocation of

processing cores to VMs is done based on a host

allocation. The policy takes into account how many

processing cores will be delegated to each VM, and

how much of the processing core's capacity will

effectively be attributed for a given VM. So, it is

Sheeja Y.S. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -2) December 2017, pp.12-17

www.ijera.com DOI: 10.9790/9622-0712021217 15 | P a g e

possible to assign specific CPU cores to specific

VMs (a space-shared policy) or to dynamically

distribute the capacity of a core among VMs (time-

shared policy), and to assign cores to VMs on

demand, or to specify other policies.

3.2.2. Modeling VM Allocation
 One of the key aspects that make a Cloud

computing infrastructure different from a Grid

computing is the massive deployment of

virtualization technologies and tools. Hence, as

compared to Grids, we have in Clouds an extra layer

(the virtualization) that acts as an execution and

hosting environment for Cloud-based application

services.

 Hence, traditional application mapping

models that assign individual application elements to

computing nodes do not accurately represent the

computational abstraction which is commonly

associated with the Clouds. For example, consider a

physical datacenter host that has single processing

core, and there is a requirement of concurrently

instantiating two VMs on that core. Even though in

practice there is isolation between behaviors (a

context) of both VMs, the amount of resources

available to each VM is constrained by the total

processing power of the host. This critical factor

must be considered during the allocation process, to

avoid creation of a VM that demands more

processing power than the one available in the host,

and must be considered during application

execution, as task units in each virtual machine

shares time slices of the same processing core.

 To allow simulation of different policies

under different levels of performance isolation,

CloudSim supports VM scheduling at two levels:

First, at the host level and second, at the VM level.

At the first level, it is possible to specify how much

of the overall processing power of each core in a

host will be assigned to each VM. At the next level,

the VMs assign specific amount of the available

processing power to the individual task units that are

hosted within its execution engine.

IV. DESIGN
The Development is divided into three

modules. Fig.1 shows the components in cloud.

Cloud computing environment can be virtualized as

a collection of n datacenters. Upon which n hosts

can be created and each host may contain m virtual

machine with processing elements.

4.1 Meta Scheduler
In CloudSim, Datacenter Broker

component randomly selects the datacenter

irrespective of their heterogeneity in hardware,

software configuration and pricing schemes for

usage. Then the broker maps the submitted cloudlets

to the created virtual machines in a circular fashion

without considering the Processing Elements (PEs)

required by the cloudlets.

Fig. 1 Cloud Computing Components.

The proposed meta-scheduler that selects

the datacenter based on user defined QoS

specifications such as deadline and budget. For

example if the user requirement is budget

constrained, it tries to create as many VMs as

possible in a datacenter which has reduced price and

the remaining VMs in the other datacenters. Further

the meta-scheduler identifies a VM with sufficient

number of

Virtual CPUs (VCPUs) before mapping the

cloudlet to VM and thus failure in cloudlet execution

is avoided.

Algorithm

Step1.Create Datacenters

Step2.Create processing elements (PEs) and host

 in the datacenters created in step1

Step3. Create a Datacenter Characteristics object

that stores the properties of a data

center: architecture, OS, list of Machines,

allocation policy: time- or space-shared, time

zone and its price (G$/Pe time unit).

Step4. Submit the cloudlet (cloud application) that

consists of the requirements of customer

specification like the budget and deadline.

Step5.Compare the parameters in step 4 with those

were in datacenter and select an appropriate

datacenter.

4.2 Low Level Local Scheduler
The existing space shared local scheduler in

CloudSim employs simple FCFS Policy. It is

associated with each VM, which queues the newly

arrived cloudlets, in case of non availability of

required resources. When resources become free,

Sheeja Y.S. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -2) December 2017, pp.12-17

www.ijera.com DOI: 10.9790/9622-0712021217 16 | P a g e

only newly arrived cloudlets are served, but not the

queued ones, hence they suffer from starvation.

The proposed Intra VM Scheduler uses

Modified Conservative Backfilling method as the

queuing policy. In this every queued job is given a

guaranteed Earliest Start Time (EST) and the newly

arrived cloudlets are backfilled, only when it does

not affect the EST of the already queued cloudlets.

This hard guarantee eliminates starvation of queued

cloudlets also respecting FCFS. This is one of the

typical requirements for real time jobs.

Algorithm

1. Create a datacenter with one host

2. Create appropriate number of PEs in the host.

3. Submit cloudlets to Datacenter Broker

 with different arrival time

4. For each cloudlet in the queue

If the number of free PEs are greater than required

PEs and if the EST doesn’t affect cloudlet at front.

Schedule this for execution Else put to waiting

queue

5. Repeat step4 until all the cloudlets have been

scheduled

4.3 Optimal VM Provisioner
The simple VM Provisioner of the

CloudSim chooses the host with less PEs in use, as

the host for VM. This heuristics ensures load

balancing. Nevertheless, many VM create requests

fail, even though the required numbers of free PEs

are available across various hosts.

The optimal VM Provisioner in the

proposed system rectifies the said problem by

optimally creating VMs in the hosts by ordering the

request appropriately. The VM creation requests

with more resources are allocated followed by the

requests with fewer resources, thus minimizing the

number of failures in VM creation.

Algorithm

1. Use any sorting method to sort the VM create

request based on required number of PEs in

ascending order.

2. Create VM in Host having required number of

PEs.

V. RESULTS AND DISCUSSION
The Proposed system is tested for a number

of cloudlets. The Meta scheduler selects appropriate

data center with DCID 2 and the low level local

scheduler selects virtual machine (VMID 0) with

suitable number of processing elements. Then it

schedules the cloudlets to virtual machine. The low

level local scheduler is tested with eight cloudlets

numbered from Cl 0 to Cl 7. Each cloudlet requires

processing elements 2, 3, 2, 1, 2, 5,2and 2

respectively. The datacenter selected is Datacenter2

with VM0.The Table.1 shows the details of

scheduling of cloudlets and execution. The columns

in the table are cloud (Cl) ID, number of processing

elements(PE), datacenter (DC) ID, virtual

machine(VM) ID, execution(Ex) time, start time and

finish time.

Table.1 Scheduling Details

Cl

ID

No

PE

DC

ID

VM

ID

Ex.

Time

Start

Time

Finish

Time

0 2 2 0 800 0.1 800.1

3 1 2 0 400 800.1 1200.1

2 2 2 0 1200 80.1 1280.1

6 2 2 0 1200 1280.1 2480.1

4 2 2 0 2000 1200.1 3200.1

7 2 2 0 800 2480.1 3280.1

1 3 2 0 400 3280.1 4080.1

5 4 2 0 400 4080.1 4480.1

VI. CONCLUSION

The paper proposed the enhancement of the

existing scheduling strategy in the cloud

environment by proposing a two-level scheduler

optimizing scheduler. The implementation of an

efficient Quality of Service (QoS) based Meta-

Scheduler and Backfill strategy based light weight

Virtual Machine Scheduler for dispatching jobs

presented in the paper. The User centric meta-

scheduler deals with selection of proper resources to

execute high level jobs. The system centric Virtual

Machine (VM) scheduler optimally dispatches the

jobs to processors for better resource utilization. In

addition, the novel optimized VM Provisioner for

enhanced resource utilization is also implemented.

This scheduler can be extend to include inter VM

scheduling.

REFERENCES
[1] Srikumar Venugopal , Rajkumar Buyya, An

SCP-based Heuristic approach for Scheduling

Distributed Data-Intensive Applications on

Global Grids.Journal of Parallel and

Distributed Computing, Vol 68(4), 2008.pp.

471-487

[2] Anton Beloglazo, Rajkumar Buyya,Energy

Efficient Allocation of Virtual Machines in

Cloud Data Centers, Proceedings of the 10th

IEEE/ACM International Symposium on

Cluster Computing and the Grid (CCGrid),

Melbourne, Australia, 2010.

[3] Anton Beloglazov, Rajkumar Buyya, Young

Choon Lee, and Albert Zomaya, A

Taxonomy and Survey of Energy-Efficient

Data Centers and Cloud Computing Systems,

Advances in Computers, Vol 82, 2011.pp.47-

111

http://www.cloudbus.org/papers/datagrid_scheduling_jpdc2008.pdf
http://www.cloudbus.org/papers/datagrid_scheduling_jpdc2008.pdf
http://www.cloudbus.org/papers/datagrid_scheduling_jpdc2008.pdf
http://www.cloudbus.org/papers/datagrid_scheduling_jpdc2008.pdf
http://www.cloudbus.org/papers/datagrid_scheduling_jpdc2008.pdf
http://www.cloudbus.org/papers/EnergyEfficientVMAllocation-CCGrid2010.pdf
http://www.cloudbus.org/papers/EnergyEfficientVMAllocation-CCGrid2010.pdf
http://www.cloudbus.org/papers/EnergyEfficientVMAllocation-CCGrid2010.pdf
http://www.cloudbus.org/papers/EnergyEfficientVMAllocation-CCGrid2010.pdf
http://www.cloudbus.org/papers/GreenCloudTaxonomy2011.pdf
http://www.cloudbus.org/papers/GreenCloudTaxonomy2011.pdf
http://www.cloudbus.org/papers/GreenCloudTaxonomy2011.pdf
http://www.cloudbus.org/papers/GreenCloudTaxonomy2011.pdf

Sheeja Y.S. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 12, (Part -2) December 2017, pp.12-17

www.ijera.com DOI: 10.9790/9622-0712021217 17 | P a g e

[4] William Voorsluys, James Broberg, Rajkumar

Buyya, Introduction to Cloud

Computing,Cloud Computing: Principles and

Paradigms, (Wiley Press, New York, USA

).2011.pp.1-41.

[5] Mohsen Amini Salehi, Bahman Javadi,

Rajkumar Buyya. QoS and Preemption aware

Scheduling in Federated and Virtualized Grid

Computing Environments, Journal of Parallel

and Distributed Computing (JPDC), Vol 72

(2), 2012 Pages: 231-245.

[6] D. Lifka, “The ANL/IBM SP scheduling

system”. In Proc of 1
st
 Workshop on Job

Scheduling Strategies for Parallel Processing

(JSSPP),Vol 949. 1995.pp. 295–303.

International Journal of Engineering Research and Applications (IJERA) is UGC approved

Journal with Sl. No. 4525, Journal no. 47088. Indexed in Cross Ref, Index Copernicus (ICV

80.82), NASA, Ads, Researcher Id Thomson Reuters, DOAJ.

Sheeja Y.S "Two Level Scheduler for Cloud Computing Environment.” International Journal

of Engineering Research and Applications (IJERA) , vol. 7, no. 12, 2017, pp. 12-17.

http://media.johnwiley.com.au/product_data/excerpt/90/04708879/0470887990-180.pdf
http://media.johnwiley.com.au/product_data/excerpt/90/04708879/0470887990-180.pdf
http://media.johnwiley.com.au/product_data/excerpt/90/04708879/0470887990-180.pdf
http://www.amazon.com/Computing-Principles-Paradigms-Parallel-Distributed/dp/0470887990
http://www.amazon.com/Computing-Principles-Paradigms-Parallel-Distributed/dp/0470887990
http://www.amazon.com/Computing-Principles-Paradigms-Parallel-Distributed/dp/0470887990
http://www.cloudbus.org/papers/VirtualGrid-JPDC2012.pdf
http://www.cloudbus.org/papers/VirtualGrid-JPDC2012.pdf
http://www.cloudbus.org/papers/VirtualGrid-JPDC2012.pdf
http://www.cloudbus.org/papers/VirtualGrid-JPDC2012.pdf

