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I. INTRODUCTION 
When solving system problems in conditions 

of uncertainty and ambiguity, it is useful to use a 

fuzzy representation of the data. Idempotent 

operations are most often used to obtain the best 

solution on fuzzy sets, which is due to their 

convenience and reliability of estimates. However, if 

there is a need to perform arithmetic operations on 

fuzzy sets, then the advantages of fuzzy 

representation are lost. In this case, as a rule, the 

Zadeh generalization principle is used, but the 

calculations are cumbersome, the results are not very 

clear, and they are difficult to interpret [2, 3, 5]. 

Approximation of fuzzy values by different 

distributions (uniform, exponential, triangular, etc.) 

also does not allow using the advantages of fuzzy 

representation [1, 4, 9]. It should be borne in mind 

that in many system tasks of the optimal choice 

related to the analysis and synthesis of systems, 

decision making, control and evaluation, the specific 

numerical content of the quantities does not matter, at 

least at the stage of algorithmization of the task and 

solution search, but only the order relation between 

them. Therefore, it becomes necessary to operate on 

quantities without being tied to a numerical context. 

The author suggests an approach based on the use of 

fuzzy gradations, in which the numbers are replaced 

by quantities. In [6 – 8], the advantages of this 

approach in solving various problems were shown. 

The purpose of this paper is the application of fuzzy 

gradations in problems of optimal choice.  

 

II. ARITHMETIC OPERATIONS ON 

FUZZY GRADATIONS 
To describe the object area we use the fuzzy 

gradations in the range VL…VH. The range 

comprising gradations VL, L, M, H, VH (see below) 

we call the basic scale and with the adding of the 

intermediate gradations – extended scale [8]. 

Introduce also two marginal gradations out of range: 

VVL (lowest value) and VVH (highest value). 

Depending on condition of the task gradation VVL 

can be interpreted as zero, lower bound, exact lower 

bound etc. and gradation VVH – as unit, infinity, 

upper bound, exact upper bound etc. For any two 

gradations x and y of the scale we introduce a 

measure of distance. The relationship of similarity 

has the form 

( , ) ( , )d x y x y     (1)  

where ( , )x y –
 
the degree of proximity of the two 

gradations. Then the relationship of difference has 

the form 

( , ) ( , )d x y x y     (2) 

where ( , )x y
 
– the opposite value, i.e. if 

( , )x y = VH, then ( , )x y = VL, etc. Values 

( , )x y
 
are given in table 1, where due to 

symmetry ( , ) ( , )x y y x 

.  
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Table 1 The matrix of correspondences 

Fuzzy 

gradations  

VL VL-L L L-M M M-H H H-VH VH 

( , )x y  

VL VH H-VH H M-H M L-M L VL-L VL 

VL-L  VH H-VH H M-H M L-M L VL-L 

L   VH H-VH H M-H M L-M L 

L-M    VH H-VH H M-H M L-M 

M     VH H-VH H M-H M 

M-H      VH H-VH H M-H 

H       VH H-VH H 

H-VH        VH H-VH 

VH         VH 

Note. VL – very low value, (VL-L) – between very low and low, L – low, (L-M) – between low and middle, 

M – middle (medium), (M-H) – between middle and high, H – high, (H-VH) – between high and very high, VH 

– very high.   

 

For most applications the accuracy of table 1 

is sufficient; if necessary table 1 can be made in 

increments of half or a quarter of the gradation, 

however the simplicity and reliability of the 

calculations are lost. Consider the arithmetic 

operations (summation and multiplication) on the set 

of fuzzy gradations. The results for multiplication of 

fuzzy gradations defined in the extended range 

(scale) are given in table 2 and for summation – in 

table 3.  

When compiling the tables, it was assumed 

that the entire range of gradations corresponds to a 

numerical range of 0 ... 1 (any other range can be 

reduced to a single range by a linear transformation), 

which was divided into five equal intervals in the 

number of basic gradations. This establishes a one-to-

one correspondence between each fuzzy gradation of 

the scale and the corresponding numerical interval. It 

is assumed that the value of the gradation is 

concentrated in the center of the interval. When 

performing the calculations, fuzzy gradations VL, L, 

M, H, VH correspond with the values 0.1; 0.3; 0.5; 

0.7; 0.9 respectively. Intermediate gradations VL-L, 

L-M, M-H, H-VH correspond to values  0.2; 0.4; 0.6; 

0.8 respectively. The value VVL in the table 2 means 

that the result is outside the left boundary of the 

range; the value VVH means that the result is outside 

the right boundary of the range. It should be noted 

that in calculations it makes no sense to introduce 

small gradation shares, and rounding should be used 

towards the nearest gradation, since this does not 

affect the accuracy of the final result (see below). 

When the number of factors (summands) is greater 

than two, the result is also determined using tables. 

The process quickly converges as the number of 

components (factors or terms) increases, in the sense 

that, for three to four components, the extreme limits 

of the range are reached. From the tables, you can 

determine the results for inverse operations 

(subtraction and division). Of course, if necessary, 

fuzzy gradations can be interpreted in the form of 

named values corresponding to the object area. 

 

Table 2 

The calculation of the product of two fuzzy gradations 

Fuzzy 

gradations of 

factors 

VL VL-

L 

L L-M M M-H H H-VH VH 

VL VVL VVL VVL VVL VL VL VL VL VL 

VL-L  VVL VL VL VL VL VL VL-L VL-L 

L   VL VL VL-L VL-L VL-L VL-L L 

L-M    VL-L VL-L VL-L L L L-M 

M     L L L-M L-M M 

M-H      L-M L-M M M 

H       M M-H M-H 

H-VH        M-H H 

VH         H-VH 

Note. The values are given with rounding to nearest gradation of extended scale 
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Table 3 

The calculation of sum of two fuzzy gradations 

Fuzzy 

gradations of 

summands 

VL VL-

L 

L L-M M M-H H H-VH VH 

VL VL-L L L-M M M-H H H-VH VH VVH 

VL-L  L-M M M-H H H-VH VH VVH VVH 

L   M-H H H-VH VH VVH VVH VVH 

L-M    H-VH VH VVH VVH VVH VVH 

M     VVH VVH VVH VVH VVH 

M-H      VVH VVH VVH VVH 

H       VVH VVH VVH 

H-VH        VVH VVH 

VH         VVH 

Note. The values are given with rounding to nearest gradation of extended scale 

The operation of bounded summation is also used in practical applications; the results for it are given in table 4. 

 

Table 4 

The calculation of restricted sum of two fuzzy gradations: x [+] y = x + y – xy 

Fuzzy 

gradations of 

summands 

VL VL-L L L-M M M-H H H-VH VH 

VL VL-L L L-M M M-H M-H H H-VH VH 

VL-L  VL-L VL-L M M-H H H-VH H-VH VH 

L   M M-H H H H-VH VH VH 

L-M    M-H H H-VH H-VH VH VH 

M     H-VH H-VH VH VH VVH 

M-H      H-VH VH VH VVH 

H       VH VH VVH 

H-VH        VVH VVH 

VH         VVH 

Note. The values are given with rounding to nearest gradation of extended scale 

The results of calculations for traditional fuzzy set idempotent operations m in and m a x  are given in table 5 

and table 6 respectively.  

Table 5 

The calculation of operation m in for two fuzzy gradations 

Fuzzy 

gradation of 

components 

VL VL-L L L-M M M-H H H-VH VH 

VL VL VL VL VL VL VL VL VL VL 

VL-L  VL-L VL-L VL-L VL-L VL-L VL-L VL-L VL-L 

L   L L L L L L L 

L-M    L-M L-M L-M L-M L-M L-M 

M     M M M M M 

M-H      M-H M-H M-H M-H 

H       H H H 

H-VH        H-VH H-VH 

VH         VH 
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Table 6 

The calculation of operation m a x for two fuzzy gradations 

Fuzzy 

gradation of 

components 

VL VL-L L L-M M M-H H H-VH VH 

VL VL VL-L L L-M M M-H H H-VH VH 

VL-L  VL-L L L-M M M-H H H-VH VH 

L   L L-M M M-H H H-VH VH 

L-M    L-M M M-H H H-VH VH 

M     M M-H H H-VH VH 

M-H      M-H H H-VH VH 

H       H H-VH VH 

H-VH        H-VH VH 

VH         VH 

 

It should be noted that for most applications 

the accuracy of tables 2 – 6 is sufficient; if necessary, 

tables can be compiled with a step of half or even a 

quarter of the gradation, although at the same time 

the simplicity of computation and reliability are lost. 

In a certain sense, we can speak of fuzzy arithmetic, 

since all operations are performed directly on fuzzy 

gradations. In ordinary arithmetic, the axiom of 

generating numbers is valid: n (+) 1 = n + 1, where n 

= 1, 2, .... In fuzzy arithmetic, it should be replaced 

by the axiom of generating quantities (amounts), 

since we are dealing with sets: u (+) VL = u + VL, 

where u = VL, VL-L, L etc.  From the results given 

in tables 2-6, it follows that for two arbitrary 

gradations x and y there is a chain of inequalities (in 

view of rounding) 

xy < min(x, y) ≤ max(x, y) ≤ x[+]y≤ x + y .              (3) 

Note that operations of multiplication and bounded 

summation belong to Archimedean operations and 

the summation operation within the range under 

consideration belongs to nilpotent operations. This 

operation can be also defined outside the range, if it 

is necessary [7]. Fuzzy gradations form an Abelian 

addition group and an Abelian semigroup for 

multiplication.  

 

III. THE CERTAINTY OF 

CALCULATIONS IN FUZZY 

ARITHMETIC 
Since the degree of certainty is determined 

by the index of fuzziness, we consider the change in 

the index of fuzziness when performing operations of 

multiplication, bounded summation and summation. 

Designate x, y etc. – the values represented as fuzzy 

gradations; νx, νy etc. − the indexes of fuzziness 

corresponding to values are also represented as fuzzy 

gradations. Each gradation is a function value of 

which is concentrated in the center of the 

corresponding interval, and the value of the 

membership function is 1. In this sense the accuracy 

of determining the gradation is equal to 1(the index 

of fuzziness is 0), if it is not stipulated special 

conditions. We consider the distribution on the 

gradations. Then the accuracy (certainty) of the result 

is defined as for fuzzy set elements of which are 

individual gradations. This case is of interest for 

practice. For the index of fuzziness we use two 

expressions. The first of these has the form  

2 m in ( , )
x

x x  ,    (4) 

where x  – the opposite value to x; for example, if 

x = VL, then x = VH etc. Multiplication by the 

number 2 is understood as the summation of two 

equal values represented as fuzzy gradations. The 

expression (4) corresponds to the strong condition 

β > ν, or 

β > H (0.7),     (5) 

where β is an estimate of the degree of certainty 

(reliability) of the result r or r . In brackets here and 

below is given numeric value corresponding to the 

maximum of the gradation. The second expression 

for the index of fuzziness has the form 

m in ( , )x x  ,    (6) 

which corresponds to a softer condition β > ν/2 or 

β > M (0.5),      (7) 

Consider the derivation of general relations for (4) 

and then discuss how they change for (6). Operation 

of multiplication. For product of two graduations we 

obtain four relations for index of fuzziness. 

1. 
x y x y

    .     (8a) 

Ratio (8a) is true under the conditions: if {x and 

y < H and simultaneously x or y ≤ M} or {x and 

y < M-H (0.6); ({x or y < H} for extended scale). 

2. m a x ( , )
x y x y

    .    (8b) 

Ratio (8b) is true under the conditions: if {x or y < H 

and simultaneously xy < L-M (0.4)} or {x or y ≤ M}. 

3. 
x y x y

    .    (8c) 

Ratio (8c) is true under the conditions: if {x or 

y  H}. If {x or y = VVH}, then νxy = νx + νy. 

4. m in ( , )
x y x y

    .  (8d) 
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Ratio (8d) is true under the conditions: if {x 

and y < H} or {x and y ≤ H and simultaneously x or 

y ≤ M}. 

Operation of bounded summation. In this case we 

have four relations. 

1. νx [+] y ≤ νx  [+]  νy.        (9a) 

The ratio (9a) is correct for the basic scale, if {x or 

y  M}. For the extended scale (9a) is correct under 

the conditions: if {x = VL or VL-L and 

simultaneously y  M} or {x = L or L-M and 

simultaneously y  L-M} or {x and y  M}.  

 2.νx [+] y < νx  +  νy.        (9b) 

The ratio (9b) is always correct, since the left part is 

always less than the right part.  

3. νx [+] y ≤ max (νx, νy).       (9c) 

The ratio (9c) is true for both scales, if {x or y  M}; 

it is true for the extended scale, if {x = L-M and 

simultaneously y  L-M}. 

4. νx [+] y ≤ min (νx, νy).               (9d) 

The ratio (9d) is true for the basic scale under 

following conditions: if {x or y > H} or {x and y  L 

and simultaneously x or y > M} or {x and y  M}. 

These conditions can be also written in alternative 

form, namely (9d) is true for the basic scale if 

{x = VL and simultaneously y > H} or {x = L and 

simultaneously y > M} or {x and y  M}. For the 

extended scale ratio (9d) is true under the conditions: 

if {x and y  VL  and simultaneously x or y > H-

VH(0.8)} or {x and y > VL  and simultaneously x or  

y  H-VH} or {x and y  L  and simultaneously x or 

y  M-H(0.6)} or {x and y > L  and simultaneously x 

or y  L-M} or {x and y  M}. These conditions can 

be also written in alternative form, namely (9d) is 

true for the extended scale if {x = VL and 

simultaneously y > H-VH} or {x = VL-L(0.2) and 

simultaneously y  H-VH} or {x =  L and 

simultaneously  y  M-H} or {x = L-M and 

simultaneously y  L-M} or {x and y  M}. 

Operation of summation. In this case we have three 

ratios.  

1. 
x y x y

  


  .    (10a) 

The ratio (10a) is always true. 

2. m a x ( , )
x y x y

  


 .    (10b) 

The ratio (10b) is true, if {x + y > M and 

simultaneously x or y < L} or {x and y  L and 

simultaneously x + y  H}. 

3. m in ( , )
x y x y

  


     (10c) 

The ratio (10c) is true for the basic scale, if {x + y  

VH and simultaneously x or y < L} or {x and y  L 

and simultaneously x + y  H}. These conditions can 

be also written in alternative form, namely (10c) is 

true for the basic scale, if {x = VL and 

simultaneously y = VH} or {x  L and 

simultaneously y  M}. For the extended scale ratio 

(10c) is true under the conditions: if {x or y  H-VH} 

or {x and y  VL-L and simultaneously x or y  M-

H} or {x and y  L and simultaneously x or y  L-M} 

or {x and y  M}. These conditions can be also 

written in alternative form, namely (10c) is true for 

the extended scale under the conditions: if {x = VL 

and simultaneously y  H-VH (x + y  VH)} or {x = 

VL-L and simultaneously y  M-H (x + y  H-VH)} 

or {x  L and simultaneously y  L-M (x + y  H)} or 

{x and y  M}. We also write general ratios for 

operations min, max on fuzzy gradations that have 

the form  

m in( , )
m ax( , )

x yx y
   ,    (11a) 

m ax( , )
m ax( , )

x yx y
   .   (11b) 

These ratios are correct unconditionally (absolutely). 

They can be defined more exactly, if we   make 

additional assumptions about the change of initial 

values. In particular, we have  

m in( , )
m in( , )

x yx y
   ,   (11c) 

if {x or  y < M
 

and simultaneously  

),max(),min( yxyx  }.  

m ax( , )
m in( , )

x yx y
   ,   (11d) 

if {x or  y < M
 

and simultaneously 

),max(),min( yxyx  }. 

),max(),min( yxyx
   = ),min(

yx
 =

),max(
yx

 ,                    (11e) 

if {x or y < M
 

and simultaneously 

m in ( , ) m a x ( , )x y x y }, where the line above 

means the opposite value of fuzzy gradation (vide 

supra). If several relations are valid at the same time, 

then we must choose a relation with the smallest 

permissible value of the right-hand side, ceteris 

paribus. Here is an example of calculation in which 

the results obtained by the numerical method. Let x = 

VL, y = H, then νx = VL-L, νy = M-H, νxy = VL, 

νxνy = VL, νx[+]y = M-H, νx [+] νy = H, νx+y = L-M, 

νx +  νy = H-VH, νmin(x,y) = VL-L, νmax(x,y) = M-H, 

min(νx, νy) = VL-L, max(νx, νy) = M-H, min(x, y) = 

VL, max(x, y) = H, L),max( yx . It is seen that 

the obtained general relations are correct. For νxy we 

have the case (8a); for νx[+]y  we have the case (9c); 

for νx+y we have the case (10b); for νmin(x,y) we have 

the case (11c); for νmax(x,y) we have the case (11b). 

When we use expression (6) for the index of 

fuzziness it is easy to see that for the operation of 

multiplication the relation (8a) is shifted towards 

smaller values, because the right part is reduced 

stronger than the left. Equation (8a) will be correct, if 

{x and y < M}. Ratios (8b) – (8d) do not change. For 

the operation of bounded summation the ratio (9a) 

will be always true, as the right side increases 

because of the decrease of value νxνy in expression 
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νx [+] νy = νx + νy – νxνy. Relation (9b) will be always 

true. Relations (9c), (9d) will be true under the same 

conditions. For the operation of summation ratios 

(10a) – (10c) remain correct under the same 

conditions.  

 

IV. 4. FUZZY MODELS OF OPTIMAL 

CHOICE 
We apply our results to the problem of 

optimal choice. The problem is formulated as 

follows. There are many possible solutions 

(alternatives) X = {x1,..., xm}. Each alternative is 

evaluated by a set of criteria {K1,..., Kn}. We also 

know the weights (importance) of the criteria {a1,..., 

an}. The values of the criteria and weights are 

represented in the form of fuzzy gradations. It is 

required to determine the fitness of alternatives for 

purpose and to choose the best solution. To solve the 

formulated problem, it is expedient to use the method 

of threshold criteria and the distance method. The 

first method allows us to obtain a lower estimate, and 

the second gives an upper estimate and allows us to 

determine the so-called indirect costs. We also 

consider two methods occupying an intermediate 

position: convolution by the worst criterion, at which 

the risk of a selection error due to the model is the 

smallest and additive convolution corresponding to 

the averaging strategy. To apply the threshold criteria 

method, the threshold values of the criteria should be 

known. We define them directly from the initial data 

(see table 7). Then the value of the general criterion 

for an arbitrary alternative x is given by the following 

expression that does not depend on the weight of 

criteria 

)(min/)(min)( xKxKxK
j

x
j

j

 ,   (12)  

and the best solution is 

)(maxarg xKx
Xx


 .    (13) 

For the application of the distance method, an "ideal" 

solution should be known. We define it, as above, 

directly from the experimental data (see table 7). As a 

measure of distance, we use the Hamming function 

and Euclid's function, corresponding to the strategy 

of the mean and the mean square, respectively, as 

well as the functions of the greatest and smallest 

difference, corresponding to the limiting strategies. In 

the case of the Hamming function, we have for the 

distance of an arbitrary alternative x to an ideal 

solution 






j

j
Xx

jj
xKxKaxd )(max)()(   (14) 

In the case of Euclid's function, the analogous 

expression has the form 
2/1

2

2
)(max)()(














 


j

j
Xx

jj
xKxKaxd  (15) 

In the case of a function of the greatest difference, we 

have the expression 

)(max)(max)( xKxKaxd
j

Xx
jj

j 

  (16) 

In the case of a function of the smallest difference, 

we can write 

)(max)(min)( xKxKaxd
j

Xx
jj

j 

   (17) 

The best solution in all cases is defined as the closest 

to the ideal 

)(minarg xdx
Xx


 .    (18) 

In the case of the convolution by the worst criterion 

the value of the general criterion for an arbitrary 

alternative x is given by the following expression 

)(min)( xKaxK
jj

j

     (19) 

In the case of the additive convolution we have the 

relation 

)()( xKaxK
j

j

j     (20) 

The best solution in both cases is defined from (13). 

Note that when using a representation in the form of 

fuzzy gradations, it is not necessary to fulfill the 

normalization condition for the weights of the 

criteria, it is only necessary that the results of the 

calculations do not go beyond the scale, which is 

ensured by multiplying by a small gradation (see 

below). It should be borne in mind that the estimates 

obtained are not absolute, but relative, since they are 

satisfied in the scale of order and allow any 

monotonic transformation at which the result remains 

within the scale. Let's consider a concrete example. 

Let X – the set of objects, for example, projects of 

technical system, consisting of five variants of 

solutions (alternatives), each of which is evaluated 

according to five criteria, where K1 is a functional 

criterion, K2 is economic, K3 is ergonomic, K4 is 

ecological, and K5 is social. Generalized criteria were 

used to simplify the calculations. The initial data are 

given in table 7. The degree of certainty (reliability) 

of the data is assumed to be equal to VH, so that 

condition (5) is satisfied. It is easy to see that 

alternatives form the Pareto set, so none of them can 

be excluded. 
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Table 7 

The initial data for the example 

Alternatives, xi  Criteria, Kj 

K1 K2 K3 K4 K5 

x1 H M M L VH 

x2 VH H M L H 

x3 M-H M L M M-H 

x4 M M M M M 

x5 M L VH H M 

“Threshold” solution M L L L M 

“Ideal” solution VH H VH H VH 

Note. All values are given in the direct scale. Hereinafter, a short line is used to denote an intermediate 

gradation, and long line means a subtraction operation.  

 

When using the threshold criteria method, 

calculations according to (12) give K(x1) = min{H/M, 

M/L, M/L, L/L, VL/M} = 1(one unit). Similarly, we 

have K(x2) = 1(one unit), K(x3) = 1(one unit), K(x4) = 

1(two units), K(x5) = 1(three units). It follows from 

(13) that all solutions are equivalent. If we take into 

account the number of units, i.е. coincidences with 

the threshold values, then solutions can be 

distinguished. The most preferable solutions are x1, 

x2, x3, which correspond to the smallest number of 

units (one unit). The ranking according to the "degree 

of admissibility" has the form {x1, x2, x3}, x4, x5. We 

apply the distance method using the Hamming 

function, Euclid's function and functions of the 

greatest and smallest difference. Suppose that the 

importance of the criteria is the same a1 = a2 = ... = 

a5 = M. In this case, the weight of the criteria may 

not be taken into account; it can be used to ensure 

that the result remains within the scale. In the case of 

the Hamming function, calculations from equation 

(14) using tables 2 and 3 give for alternative x1: 

d(x1) = M(VH – H) + M(H – M) + M(VH – M) +  

M(H – L) +  M(VH – VH) = M-H. Similarly for 

other alternatives, we have d(x2) = M, d(x3) = H-VH, 

d(x4) = H-VH, d(x5) = M-H. The best solution in 

accordance with (18) is x2. The ranking by degree of 

proximity to the ideal solution has the form x2, {x1, 

x5}, {x3, x4}. The solutions in braces are equivalent. 

In the case of the Euclid's function, the results are 

almost the same, but the solutions are less distinct. 

We have from (15): d
2
(x1) = d

2
(x2) = d

2
(x4) = d

2
(x5) = 

VL, d
2
(x3) = VL-L. The ranking has the form{x1, x2, 

x4, x5}, x3. In the case of function of the greatest 

difference, calculations from equation (16) using 

tables 2, 3 and 6 give for alternative x1: 

d(x1) = max{M(VH – H); M(H – M); M(VH – 

M); M(H – L); M(VH – VH)}= VL-L. Similarly for 

other alternatives, we obtain d(x2) = d(x4) = d(x5) = 

V-L, d(x3) = L. So, the solutions 1, 2, 4 and 5 are 

equivalent. The ranking has the form{x1, x2, x4, x5}, 

x3. In the case of function of the smallest difference, 

calculations from equation (17) using tables 2, 3 and 

5 give for alternative x1: d(x1) = min{M(VH – 

H); M(H – M); M(VH – M); M(H – L); M(VH – 

VH)}= 0(one zero). Similarly d(x2) = d(x5) = 0(two 

zeros), d(x3) = d(x4) =VL. The best solutions in 

accordance with (18) are x2 and x5. The ranking has 

the form{x2, x5}, x1, {x3, x4}. Note that with our initial 

data, the result for the function of the smallest 

difference does not depend on the weight of the 

criteria (see below). In the case of the convolution by 

the worst criterion, calculations from equation (19) 

using tables 2 and 5 give for alternative x1: 

K(x1) = min{MH; MM; MM; ML; MVH} = VL-

L. Similarly K(x2) = K(x3) = K(x5) = V-L, K(x4) = L 

(with rounding). So, the best solution in accordance 

with (13) is x4; the solutions 1, 2, 3 and 5 are 

equivalent. The ranking has the form x4, {x1, x2, x3, 

x5}. In the case of the additive convolution, 

calculations from equation (20) using tables 2 and 3 

give for alternative x1: K(x1) = MH + MM + MM + 

ML + MVH = L-M. Similarly K(x3) = K(x4) = 

K(x5) = L-M, K(x2) = M. So, the best solution in 

accordance with (13) is x2; the solutions 1, 3, 4 and 5 

are equivalent. The ranking has the form x2, {x1, x3, 

x4, x5}. Let's explore how the result depends on 

changing the importance of the criteria. Suppose that 

the importance of criteria increases from K1 to K5, 

and the importance of the criteria K1 and K2 is 

approximately the same. Let a1 = a2 = L, a3 = L-M, 

a4 = M, a5 = M-H. In the case of the Hamming 

function, calculations from equation (14) using tables 

2 and 3 give for alternative x1: d(x1) = L(VH – 

H) + L(H – M) + (L-M)(VH – M) + M(H – 

L) + (M-H)(VH – VH) = M. Similarly we have 

d(x2) = M, d(x3) = H, d(x4) = H, d(x5) = L-M. It 

follows from (18) that the best solution is x5. The 

ranking by degree of proximity to the ideal solution 

has the form x5, {x1, x2,}, {x3, x4}. For the Euclid's 

function, the results are similar. We have from (15): 

d
2
(x1) = d

2
(x2) = d

2
(x3) = d

2
(x4) = d

2
(x5) = VL, so all 

solutions are equivalent; the ranking has the form 

{x1, x2, x3, x4, x5}. In the case of function of the 

greatest difference, calculations from equation (16) 
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using tables 2, 3 and 6 give 

d(x1) = d(x2) = d(x3) = d(x4) = d(x5) = VL-L. So, all 

solutions are equivalent. The ranking has the form 

{x1, x2, x3, x4, x5}. In the case of function of the 

smallest difference, calculations from equation (17) 

using tables 2, 3 and 5 give the same result as above 

with an equal weight of the criteria: d(x1) = 0(one 

zero), d(x2) = d(x5) = 0(two zeros), d(x3) = d(x4) =VL. 

The best solutions in accordance with (18) are x2 and 

x5. The ranking has the form{x2, x5}, x1, {x3, x4}. In 

the case of the convolution by the worst criterion, 

calculations from equation (19) using tables 2 and 5 

give: K(x1) = K(x2) = K(x3) = K(x4) = VL-L, 

K(x5) = VL (with rounding). So, the solutions 1, 2, 3 

and 4 are equivalent. The ranking has the form {x1, 

x2, x3, x4}, x5. In the case of the additive convolution, 

calculations from equation (20) using tables 2 and 3 

give: K(x1) = K(x2) = K(x5) = L-M, K(x3) = K(x4) = L. 

In the calculation, each term of the sum was 

multiplied by a gradation L so that the results 

remained within the scale. The solutions x1, x2, x5 are 

equivalent. The ranking has the form 

{x1, x2, x5}, {x3, x4}. We will change the priorities, 

assuming that the importance of the criteria decreases 

from K1 to K5, and the importance of the criteria K4 

and K5 is approximately the same. Assume that 

a1 = M-H, a2 = M, a3 = L-M, a4 = a5 = L.  In the case 

of the Hamming function, the calculations from (14) 

using tables 2 and 3 give d(x1) = (L-H)(VH –

 H) + M(H – M) +(L-M)(VH – M) + L(H –

 L) + L(VH – VH) = M. Similarly we have for other 

alternatives d(x2) = L-M, d(x3) = d(x4) = H, d(x5) = M. 

The best solution in accordance with (18) is x2. The 

ranking has the form x2, {x1, x5}, {x3, x4}. For 

Euclid's function, we have from (15): 

d
2
(x1) = d

2
(x3) = d

2
(x4) = d

2
(x5) = VL, d

2
(x2) = VVL. 

So, the best solution in accordance with (18) is x2; the 

ranking has the form x2, {x1, x3, x4, x5}. In the case of 

function of the greatest difference, we have from 

equation (16): 

d(x1) = d(x2) = d(x3) = d(x4) = d(x5) = VL-L. So, all 

solutions are equivalent. The ranking has the form 

{x1, x2, x3, x4, x5}. In the case of function of the 

smallest difference, the results do not change (see 

above). In the case of the convolution by the worst 

criterion, we obtain from (19) using tables 2 and 5: 

K(x1) = K(x2) = K(x3) = VL, K(x4) = K(x5) = VL-L. 

The best solutions in accordance with (13) are x4 and 

x5. The ranking has the form {x4, x5}, {x1, x2, x3}. In 

the case of the additive convolution, we obtain from 

(20) using tables 2 and 3: K(x1) = (M-

H)H + MM + (L-M)M + LL + LVH = L-M. In the 

calculation, each term of the sum was multiplied by a 

gradation L so that the results remained within the 

scale. Similarly for other alternatives, taking into 

account the same factor L, we obtain K(x2) = L-M, 

K(x3) = L, K(x4) = L, K (x5) = L-M (the last result is 

obtained with rounding towards a larger gradation). 

The best alternatives from (13) are {x1, x2, x5}. The 

ranking has the form {x1, x2, x5}, {x3, x4}. A summary 

of the results is given in table 8. So, in our example, 

the most justified is the application of the distance 

method (the distance of the smallest difference). The 

calculations show that the most "intensive" is the 

variant x2 (economic components prevail), and the 

most "gentle"(humane) is x5 (ergonomic and 

ecological components prevail). 

  

Table 8 

The summary of results 

Method (model) The best solution Ranking Weight (importance) of 

criteria 

Threshold criteria 

method 

{ x1, x2, x3} {x1, x2, x3}, x4, x5 arbitrary 

Hamming function x2 x2, {x1, x5}, {x3, x4} equal 

x5 x5, {x1, x2}, {x3, x4} a1 = a2 = L, a3 = L-M, 

a4 = M, a5 = M-H 

x2 x2, {x1, x5}, {x3, x4} a1 = M-H, a2 = M, a3 = L-

M, a4 = a5 = L.   

Euclid's function {x1, x2, x4, x5}  {x1, x2, x4, x5}, x3 equal 

{x1, x2, x3, x4, x5}  {x1, x2, x3, x4, x5} a1 = a2 = L, a3 = L-M, 

a4 = M, a5 = M-H 

x2 x2, {x1, x3, x4, x5} a1 = M-H, a2 = M, a3 = L-

M, a4 = a5 = L.   

Function of the 

greatest difference 

{x1, x2, x4, x5} {x1, x2, x4, x5}, x3 equal 

{x1, x2, x3, x4, x5} {x1, x2, x3, x4, x5} a1 = a2 = L, a3 = L-M, 

a4 = M, a5 = M-H 

{x1, x2, x3, x4, x5} {x1, x2, x3, x4, x5} a1 = M-H, a2 = M, a3 = L-

M, a4 = a5 = L.   

Function of the {x2, x5} {x2, x5}, x1, {x3, x4} equal 



 

 

  

 

Vadim N. Romanov. Int. Journal of Engineering Research and Application                    www.ijera.com 

ISSN: 2248-9622, Vol. 7, Issue 11, (Part -3) November 2017, pp.07-15 

 

 
www.ijera.com                              DOI:  10.9790/9622-0711030715                            15 | P a g e  

 

 

smallest difference {x2, x5} {x2, x5}, x1, {x3, x4} a1 = a2 = L, a3 = L-M, 

a4 = M, a5 = M-H 

{x2, x5} {x2, x5}, x1, {x3, x4} a1 = M-H, a2 = M, a3 = L-

M, a4 = a5 = L.   

Convolution by the 

worst criterion 

x4 x4, {x1, x2, x3, x5} equal 

{x1, x2, x3, x4} {x1, x2, x3, x4}, x5 a1 = a2 = L, a3 = L-M, 

a4 = M, a5 = M-H 

{x4, x5} {x4, x5}, { x1, x2, x3} a1 = M-H, a2 = M, a3 = L-

M, a4 = a5 = L.   

Additive 

convolution 

x2 x2, {x1, x3, x4, x5} equal 

{x1, x2, x5} {x1, x2, x5},  {x3, x4} a1 = a2 = L, a3 = L-M, 

a4 = M, a5 = M-H 

{x1, x2, x5} {x1, x2, x5},  {x3, x4} a1 = M-H, a2 = M, a3 = L-

M, a4 = a5 = L.  

 

V. CONCLUSION 

Thus, the selection of a preferred solution 

depends on the importance of criteria (priorities) 

defined by external purpose, as well as, the type of 

the model, which is determined by the initial data and 

preferences of the person (subject) making the 

decisions. The representation of data in the form of 

fuzzy gradations eliminates the problem of 

standardization of criteria and their importance 

arising in decision-making on many criteria in 

connection with the transition from the physical scale 

to the scale of order for each criterion. 

Approximation of calculations and estimates using 

fuzzy arithmetic allows us to smooth or eliminate 

inconsistency and errors of the initial data, which 

increases the reliability of decision making and 

allows us to reduce the risk associated with the 

inadequacy of the optimization model.  
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