
Md. Mamun Hossain et al.. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 9,(part-4) Sep.2016, pp.88-97

www.ijera.com 88|P a g e

Performance Improvement Of Bengali Text Compression Using
Transliteration And Huffman Principle

Md. Mamun Hossain1, Ahsan Habib2, Mohammad Shahidur Rahman3

1Computer Science and Engineering, Bangladesh Army University of Science and Technology, Saidpur
2Computer Science and Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh
3Computer Science and Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh

ABSTRACT
In this paper, we propose a new compression technique based on transliteration of Bengali text to English.
Compared to Bengali, English is a less symbolic language. Thus transliteration of Bengali text to English
reduces the number of characters to be coded. Huffman coding is well known for producing optimal
compression. When Huffman principal is applied on transliterated text significant performance improvement is
achieved in terms of decoding speed and space requirement compared to Unicode compression.
Keywords: Data compression; ASCII code; UNICODE; Huffman principle; Avro; Bengali text; English Text;
Transliteration.

I. INTRODUCTION
Data compression is an important and

essential research area in computer science. For
faster transmission of information, text compression
has become popular research area in recent years.
The text compression algorithms can be broadly
classified into two categories. The first category
includes the dictionary based compression
algorithms. These algorithms are generally of the
Ziv-Lempel type and they replace a string with a
pointer to an earlier occurrence of the same string.
The second category includes the statistical
compression algorithms. These algorithms are in
general based on Huffman or arithmetic coding
where they exploit the uneven frequency
distribution of symbols, especially the dependence
of symbols on their neighboring context [1, 2].

Most of natural language text compressors
use general purpose data compression techniques
and perform compression at the character level [3].
Some of the text compressors are word based that
utlize words as the basic units for performing
compression. The alphabet of some natural
languages contains more symbols (e.g. Bengali,
Chinese) than others (e.g. English, Arabic). The
repetition of some symbols in same text will
increase if more symbolic language is represented
with less symbolic language. A number of works
have been reported on compressing Bengali text.
Islam and Rajon emphasized on designing a corpus
for evaluation of Dictionary Based Bengali Text
Compression Schemes [4]. Arif et al. worked on
static data compression technique [5]. They
attempted to balance between compression and
decoding speed using static Huffman Coding for
short message. In [6], the authors proposed a static
Huffman coding system for different symbol of

Bengali Text which published in 1990 before the
Unicode Consortium was incorporated on January
3, 1991. A Huffman header is proposed in [7,8]
using static Huffman coding. A dictionary based
database compression technique is explained in [9]
using variable length Huffman coding. We
proposed a transliteration based compression
technique using dynamic Huffman coding for
achieving better performance. The work presented
in this paper is based on the idea that Huffman
principle could be used on transliterated text to
achieve high compression ratios. This new
approach may be used to improve the traditional
compression technique [10, 11]. Experimental
result shows that proposed technique achieves
significant improvement in compression about 30%
compared to Unicode, ASCII code and regular
Huffman encoding.

II. BACKGROUND STUDY
When we encode an English character in

computer, an 8-bit ASCII code is assigned. Usually
characters are repeated in same file. It therefore
makes sense to assign shorter codes for more
repeated characters [12, 13]. To encode Bengali
characters, we assign each character a 16-bit code
based on UNICODE chart which is double in size
compared to English characters. To achieve better
compression we may transliterate Bengali text to
English and apply Huffman principle on
transliterated text.

A. Structure of Bengali Alphabet
The Bengali alphabet is composed of 39

consonants, those are কখ গঘ ঙ চ ছ য ঝঞট ঠ ড ঢ
ণ ট থ দ ধ নপফব ভ ময র লশষ সহড় ঢ়য় ৎ ◌ং ◌ঃ

RESEARCH ARTICLE OPEN ACCESS

Md. Mamun Hossain et al.. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 9,(part-4) Sep.2016, pp.88-97

www.ijera.com 89|P a g e

◌ঁ which are called “byanjonborrno” in Bengali, 11

vowels অআই ঈউ ঊ ঋএঐও ঔ which are called

“sorborno”, 10 vowel modifiers ◌া ি◌ ◌ী ◌ু ◌ূ ◌ৃ ?◌ ?◌
?◌া ?◌ৗ which are called “kar” and 5 consonant

modifiers ব - ব ফলা, - য ফলা, - র ফলা, - ?রফ ও -

হস? which are called “fola”. There are also some

join or conjunct characters in Bengali alphabet ? ?
?? ? ???? ? ?.

Figure 1. The UNICODE Bengali Characters chart

A detail list of Bengali symbols is
available in [14]. In Figure 1, it is observed that
there are some numeric characters 0-9 (0 ১ ২৩ ৪ ৫
৬ ৭৮ ৯), Bengali currency mark (Taka sign), i.e.৳
and some less used characters, i.e. ঌ ঽ ৠৡ৲৺. It
should be noted that there is no case sensitivity in
Bengali language.

B. Structure of English Alphabet
The English alphabet is composed of 21

consonants and 5 vowels. English language is case
sensitive. For upper and lower case, they have
different value in ASCII character set.

C. Transliteration
Transliteration is the conversion of a text

from one script to another. Transliteration is not
concerned with representing the phonemics of the

original: it only strives to represent the characters
accurately which is Graphemic conversion.
Transliteration is also different than translation.
From an information-theoretical point of view,
systematic transliteration is a mapping from one
system of writing into another, word by word, or
ideally letter by letter. Most transliteration systems
are one-to-one, so a reader who knows the system
can reconstruct the original spelling [15]. Figure 2
shows transliteration of some vowels Graphemes
from one language to another. When Transliterating
(decoding) from English to Bengali, ‘ph’ will
transliterated as ‘ফ’ and ‘poh’ will transliterate

‘পহ’. If we place two consonant together it will

make a conjunct in Bengali (kt as ?). If we want
two consonant separately we need to append an
extra ‘o’ (call null modifier, kot as কত).

Figure 2. Transliteration of vowels Graphemes

III. DESCRIPTION OF THE
PROPOSED METHOD

D. Mathematical Analysis
For transliterating Bengali to English, a

Bengali alphabet can be transliterated using a
uppercase or lowercase or conjunct of English

characters. To express 65 Bengali symbols we need
only 39 English. If we transliterate Bengali to
English the 39 English character will be repeated
and we achieve a better performance. The
transliteration between Bengali and English
symbols is shown in Figure 3.

Md. Mamun Hossain et al.. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 9,(part-4) Sep.2016, pp.88-97

www.ijera.com 90|P a g e

Figure 3. Avro Phonetic layout

A.1. The length (height) of Huffman tree
With 39 English symbols, the length of the

Huffman tree will be shorter than the length with 65
Bengali symbols. For Bengali alphabet, to represent
65 Bengali symbols, the bit requirement can be
calculated as following way:

Total number of node, NT = NI + NE =
64+65 =129; where, NE= Number of External
node=65; NI= Number of Internal node =NE -1 =65-
1=64.

The depth or height of the tree can be
calculated by the following equation Dn = Floor
(Log2 n +1) = Floor (Log2 129 +1) = Floor
(7.01+1) = 8; where n is the total number of nodes
[16].

Numbers of bit required to represent each
symbol = Largest level number = Depth -1=8-1=7

To represent 65 symbol maximum number
of bits require for Bengali, NB =65*7= 455

Whereas English alphabet, to represent the
same 65 Bengali symbols we need only 39 English
Symbols. The bit requirement can be calculated
follows:

Total no. of node, NT = NI + NE = 38+39
=77; where NE is number of External node and NI is
number of Internal node.

The depth or height of the tree can be
calculated by the following equation: Dn = Floor
(Log2 n +1) = Floor (Log2 77 +1) = Floor (6.27+1) =
7.

Maximum number of bit required to
represent each symbol = Largest level number =
Depth -1=7-1=6

To represent 39 symbol total number of
bits required for English, NE= 39*6= 234

The compression ratio (r) can be calculated
as, r = F (NB, NE) = ((NB - NE)/ NB)*100%

=((Number of bits required to represent
Bengali Text, NB - No. of bits require to represent
English Text, NE)/ No. of bits require to represent
Bengali Text, NB))*100% = ((455-234)/455)*100%
= 48.57%

A.2. Further Compression Using Huffman
Principle

With 39 in English symbols instead of 65
Bengali symbols, a considerable variation will occur
within the Huffman tree. The Huffman tree will
converse to extended binary tree or 2-tree from
complete binary tree and the weighted path length
will be minimum. The weighted path length of the
tree can be calculated using the formula, P = W1L1

+ W1L1 + … … … WnLn; P=weighted path length,
W and L denote the weight and the path length
respectively [16].

In Figure 4, the weighted path length P1 of
the tree T1, P1T1 = 2*2+ 2*2 +2*2+ 2*2 =16
whereas the weighted path length of P2 of the tree
T2, P2T2 = 1*3+1 *3+2 *2+1*4 =14 and the
weighted path of P3 of the tree T3, P3T3= 1*3+1
*3+1 *2+5*1 =13.

A.3.Conjunct Letters in Bengali
Almost every Bengali sentence contains

one or more conjuncts. Whenever we join two or
more Bengali letters we need an “hosont” (- হস?).

? is represented by only two symbols, k and t in
English. So to represent every joint word in Bengali
we need one more symbol than English which
increase the bit requirement but positive effect in
transliterated English text.

A.4. Frequent symbols in Bengali texts
There are only 17 Bengali symbols that required
two or more English symbols during transliteration.

Figure 4. Variation in Huffman Tree Figure 5. Frequent symbols in Bengali

Md. Mamun Hossain et al.. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 9,(part-4) Sep.2016, pp.88-97

www.ijera.com 91|P a g e

The transliterated English symbols for this
17 Bengali symbols are also used to represent other
Bengali symbols. For example, kh is require to
represent খ but ক is also represent by k and হ is also
represent by h. The frequency of k and h is increase
though kh is used to represent খ anywhere in the
text. According to the Bengali philosopher Munir

Chowdhury, the 9 graphemes in Figure 5, are the
most frequent in Bengali texts [17]. To represent
these most frequent Bengali symbols we need only
one English symbol. That means the Bengali
symbol which requires two or more symbols in
English has very negligible effect to achieve better
compression.

E. Data Analysis
Table I: Sample strings

We consider some sample Bengali text and transliterated to English. We count their frequencies in
terms of number of distinct symbols as well as number of total symbols. Details are shown in Table I.

Figure 6(a). Huffman Tree for sample string 1 (Bengali)

For sample Bengali text 1, the constructed Huffman tree are shown in Figure 6(a). The codeword and
some other parameter are also shown in Table II (a).

Md. Mamun Hossain et al.. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 9,(part-4) Sep.2016, pp.88-97

www.ijera.com 92|P a g e

Table II (a): Huffman code and Unicode for Sample String 1 (Bengali)

The Huffman tree for transliterated Bengali text-1 are shown in Figure 6(b). The required bit, code word
for each symbols and some other parameter are shown in Table II(b).

Figure 6(b). Huffman Tree for sample string 1 (English)

Table II (b): Huffman code and ASCII for sample 1 (English)

Md. Mamun Hossain et al.. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 9,(part-4) Sep.2016, pp.88-97

www.ijera.com 93|P a g e

B.1. UNICODE representation for sample text 1
The total number of bits required to

encode “sample text 1” using unicode encoding =
No. of Unicode code bits for a symbol * No. of
symbols in the text = 16*38 = 608. The thirty eight
Unicode symbols of the sample string-1 are
encoded by placing the 16- bit sequence symbols
one after another. There is no overhead expense
here. Decoding is petty straight forward. The
decoder will treat every 16 bits as a unique symbol
and assign its corresponding UICODE symbol
against that 16 bit. To encode this way, it require a
great amount of space but noticeable benefit is
decoding is simple.

B.2. Bengali Text Compression Using Huffman
Principles for sample text-1

At the time of encoding the message, we
have to take care about the decoding phase and
send the corresponding header information with the
data sequences. The message is composed with
data sequence and header sequence.
Data sequence for sample text-1: According to
Table II (a) the sequence is follows:
01100110111101001011111111001110010001101
01001111111010010101111111000111110111101
00111011000100010010010100110110000101010
001101000000010100001111000101

The total numbers of bit require to encode the
message can be calculated by the following
formula.

Number of bits for Huffman encoding =∑
(No. of Huffman bits for a symbol * frequency of
the symbol) =
∑Xi*Fi =5*16+4*7+3*15=80+28+45=153

The average code length for Huffman
Bengali text can be calculated as- Total number of
bits required to encode the message/ Number of
distinct symbols =153/38 =4.0263. Whereas the
average code length is 16 for UNICODE
representation. It indicates that proposed technique
will be faster than Unicode technique.

Header sequence for sample text 1: For
decoding the message it require the information of
original symbols and their corresponding huffman
bits. To form the header, initially sixteen bit
Unicode is added, then a constant 4 bit code which
represent a number to indicate how many next bits
are represent the Unicode symbol, and finally the
Huffman code of the symbol is added to make a
header information for a symbol. The procedure is
shown in Table III.

Number of bits required of header
information for sample text 1 = 16*Number of
distinct symbols + Number of Huffman bits to
represent the distinct symbols + Huffman bits of
the symbol = 20*16+20*4+91=491.

Table III: Overall Message instance

The total number of bits to process the
information is depicted in Table III and can be
calculated as: Header bits + Number of bits for
delimiter (Separator) + bits for data sequence
=491+8+153=652.

Using Huffman encoding it require few bit
to represent data than Unicode encoding. If we
wish to gain more compression ratio than regular
Huffman encoding technique we may transliterate
Bengali text into English and then apply Huffman
principle to encode the transliterated text.

B.3. Bengali Text Compression Using
Transliteration and Huffman Principles for
sample text-1

Data sequence for sample text-1: After
applying Huffman principle on transliterated
sample string -1 (English) we get Figure 6(b) as
Huffman tree and Table II(b) as Huffman code

word. Using these data the compress message will
be as follows.
11101100010000111111100101111110011101111
01111111010000011111011101010110001001011
11010101111101000001001110011010001000111
0010100001100101110100

Number of bits for Transliterated Huffman
encoding = ∑ (Number of Huffman bits for a
symbol * frequency of the symbol) = ∑Xi*Fi = 6*2
+5*13 +4*6+3*10+2*7 = 12+65+24+30+14 =145

The average code length for transliterated
English text can be calculated as-

Total number of bits required to encode
the message/ Number of distinct symbols =145/38
=3.8157 which indicates a faster search than those
of Unicode and Huffman Bengali text.

Number of header bits = 8*Number of
distinct symbols +Number of Huffman bits to
represent the distinct symbols+ Huffman bits of the
symbol = 8*18+4*18+83 =299

Md. Mamun Hossain et al.. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 9,(part-4) Sep.2016, pp.88-97

www.ijera.com 94|P a g e

Total number of bits to process the
information=Number of bits to encode the message
+ numbers of bit for the separator + numbers of bits
require to encode the header information=
299+8+145= 452.

If we transliterate the original Bengali text
to English and process the English string than the
original Bengali one, we need few memory to
represent data. Though the amount of memory

compression achieved is moderate for the small
text. It will increase sharply with the increase of the
text size.

B.4 Performance analysis for large text.
We have considered the sample text 2 and 3 in
Table I. we have constructed Huffman tree with the
symbols of the samples and listed the outcome in
Table IV and V repectively.

Table IV: Medium size text sample (string 2)

For sample text 2 and 3 in Table IV and V, we have listed the frequencies against each symbol in
terms of number of distinct and total symbols. From these data we have calculated the number of bits require to
encode Bengali and transliterated English text. For Bengali, we multiply the total symbols by 16, as 16 bit is
required to encode each Bengali character using Unicode encoding and in the same way for English, we
multiply the total symbols of the transliterated text by 8, as 8 bit can represent each English character according
to ASCII chart. To calculated the bit requirement for proposed technique we have calculated the number of bit
requre to process header as well as encode the original text. Than we have sumup the header bit with the bit
require to process the data sequence.

Table V: Using large sample (string 3)

We can calculated the average number of bit require to encode the entire message by dividing the total
number of bit with total number of symbols in the corresponding text in Bengali and transliterated English text.

Bengali English
Frequency ◌া=4; space=3; গ=2; ◌ং=1;ল=1; য়=1;

ন=1; আ=1; ম=1; ি◌=1; ব=1;ই=1; ।=1;

& EOF=1

a=5; g=3; space=3; i=2; n=2;
l=1; y=1; .=1; m=1 ; b=1; &
EOF=1

Distinct Char 42 30
Total character 169 189
Fixed Encoding Unicode = 169*16=2704 ASCII Code = 189*8=1512
Number of Header bits 42*16+42*4+246=1086 30*8+4*8+169=529
Separator 8 8
Number of bits for
sequence

=∑ (No. of Huffman code bits for a
symbol * frequency of the symbol)
=785

=∑ (No. of Huffman code bits
for a symbol * frequency of the
symbol) =804

Total Number of bits Header +Separator +sequence
=1086+8+785=1871

Header +Separator +sequence
=529+8+804=1333

Average code length 785/169=4.6450 802/189=4.2437

Bengali English
Frequency ◌া=4; space=3; গ=2; ◌ং=1;ল=1;

য়=1; ন=1; আ=1; ম=1; ি◌=1;

ব=1;ই=1; ।=1; & EOF=1

a=5; g=3; space=3; i=2; n=2;
l=1; y=1; .=1; m=1; b=1; &
EOF=1

Distinct Char 42 34
Total character 404 431
Fixed Encoding Unicode : 6464 bit ASCII code: 3448 bits
Number of Header bits 42*16+42*4+282=1122 34*8+34*4+206=614
Separator 8 8
Number of bits for
sequence

=∑ (No. of Huffman code bits for a
symbol * frequency of the symbol)
=1835

=∑ (No. of Huffman code bits
for a symbol * frequency of the
symbol) =1756

Total Number of bits Header +Separator +sequence
=1122 + 8 +1835 = 2965

Header +Separator +sequence
= 1756 + 8 + 614 = 2378

Average code length: 1835/404=4.5421 1756/431=4.0742

Md. Mamun Hossain et al.. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 9,(part-4) Sep.2016, pp.88-97

www.ijera.com 95|P a g e

B.5. Implementation
The Algorithm for encoding process is given
bellow:

Algorithm: Encoding Technique
Step 1: Input a Bengali Text.
Step 2: Transliterate the Bengali Text into English
as C.
Step 3: Call HUFFMAN (C) to construct a Huffman
Tree (HT) from the transliterated Text of step 2.
Step 4: Evaluate the Huffman codeword from the
HT of step 3.
Step 5: Create Data sequence from the Huffman
codeword of step 4.

The Algorithm for encoding process is given
bellow:
Algorithm: Decoding Technique
Step 1: Input the data Sequence.
Step 2: Call Decode Tree to get the symbols of the
English Text.
Step 3: Reconvert English text into Bengali using
transliteration.

The popular Huffman Algorithm is also given
bellow:
Huffman invented a greedy algorithm that
constructs an optimal prefix code called a Huffman
code. Here is the function, HUFFMAN (C) that we
use in encoding phase.

HUFFMAN(C)
1 n =|C|
2 Q = C
3 for i =1 to n -1
4 allocate a new node ´
5 z.left = x = EXTRACT-MIN(Q)
6 z.:right = y = EXTRACT-MIN(Q)
7 z. freq = x.freq + y.freq
8 INSERT (Q, z)
9 return EXTRACT-MIN (Q)

In the pseudo code that follows, we
assume that C is a set of n characters and that each
character c € C is an object with an attribute c:freq
giving its frequency. The algorithm builds the tree T
corresponding to the optimal code in a bottom-up
manner. It begins with a set of |C| leaves and
performs a sequence of |C| -1 “merging” operations
to create the final tree. The algorithm uses a min-
priority queue Q, keyed on the freq attribute, to
identify the two least-frequent objects to merge
together. When we merge two objects, the result is a
new object whose frequency is the sum of the
frequencies of the two objects that were merged
[18].

IV. PERFORMANCE ANALYSIS
The Table VI shows that, for sample string

1, the number of bits requires to encode the Bengali
text using Unicode is exactly twice than those of
transliterated English text using ASCII code. The
number of bit require to encode the Bengali text
using regular Huffman and proposed technique is
652 bit and 452 bit respectively. Which achieve
almost 31% compression ratio for transliterated text
than its counterpart regular Huffman. For sample
string 2, the number of bits requires for Bengali text
in Unicode is 2704 and for transliterated English
text in ASCII code is 1881, which is almost twice
more than those of transliterated text. And the
number of bit require to encode the Bengali text
using regular Huffman and applying Huffman
principal on transliterated English text is 1871 bit
and 1333 bit respectively, which achieve about
30% compression ratio. For sample string -3,
Unicode representation require almost twice as
much as those of ASCII representation and the
number are 6464 and 3448 for UNICODE and
ASCII code respectively. Applying Huffman
principal on Bengali text and transliterated English
text the number is 2965 and 2378 respectively,
which achieve almost 20% compression ratio.

Table VI: Overall compression comparison

In the bar diagram of Figure 7, the four
bar Cornflower Blue, Firebrick, Olive, Slate Blue
Drab respectively represent the total number of bit
require to represent using UNICODE, ASCII code,
regular Huffman and transliterated Huffman for

each of the sample string 1, 2 and 3. It has been
shown that for every sample, transliterated
compression performance is better than regular
Huffman technique.

S.N. UNICODE ASCII
Code

Regular
Huffman (RH)

Transliterated
Huffman (TH)

Compression Ratio (%)
=((RH-TH)/ RH)*100

1 608 304 652 452 30.67%
2 2704 1512 1871 1333 28.75%
3 6464 3448 2965 2378 19.79%

Md. Mamun Hossain et al.. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 9,(part-4) Sep.2016, pp.88-97

www.ijera.com 96|P a g e

Figure 7. Overall Compression Comparison

It is also noticeable that for small text, like
sample string 1 which consists of very few
symbols, is always expensive in terms of data
compression. But it is always cost-effective if we
apply Huffman principle on the transliterated text.
This is because of the Unicode header information.
If the text is very small where the number of total
symbols is nearly equal to the number of distinct
symbols, then regular Huffman encoding requires
more bits than Unicode technique or ASCII
encoding. In regular Huffman encoding technique
the text information has to process using Unicode
information. On the other hand, transliterated text
allows processing the information using ASCII
value which minimizes the space requirement.
Thus application of Huffman technique on
transliterated text yields better compression ratio
than the existing regular Huffman technique,
ASCII code or UNICODE representation.

V. CONCLUSION
In this paper, we have proposed a lossless

data compression technique for more symbolic
language like Bengali. Bengali text is first
transliterated to English and then Huffman encoding
is applied on the transliterated text. The resulting
compression ratios are compared with UNICODE,
ASCII and regular Huffman encoding.
Experimental result shows that the proposed method
achieved about 30% enhancement in compression.
Although the model has been developed and applied
to only Bengali texts, the underlying idea could be
investigated for other languages as well, especially
for languages that have more symbols than English.

REFERENCES
[1]. P. Fenwick, “Differential Ziv-Lempel

Text Compression,” Computer Journal of
Universal Computer Science, vol. 1, no. 8,
pp. 591-602, 1995.

[2]. A. Lelewer, and S. Hirschberg, “Data
Compression,” Computer Journal of ACM

Computing Surveys, vol. 19, no. 3, pp.
261-296, 1987.

[3]. M. Long, I. Natsev, and S. Vitter, “Text
Compression via Alphabet Re-
Representation,” Computer Journal of
Neural Networks, vol. 12, no. 4, pp. 755-
776, 1999.

[4]. M. R. Islam, and S. A. Rajon, “On the
design of an effective corpus for
evaluation of Bengali Text Compression
Schemes,” Proceeding of ICCIT 2008,
pp.236-241.

[5]. A. S. M. Arif, A. Mahamud and R. Islam,
“ an enhanced static data compression
scheme of bengali short message,”
International Journal of Computer Science
and Information Security,Vol.4, No-1&
2,2009.

[6]. S.M.Humayun, S.H. Rahman and M.
Kaykobad, “Static huffman code for
Bangla text,” Proceedings of the 15th
Annual Conference of BAAS, Section III,
(ACBS'90), AERE, Savar, pp: 5-8, 1990.

[7]. M.A.Mannan, R.A. Chowdhury and M.
Kaykobad, “A Storage Efficient Header
for Huffman Coding,” Proceeding of
ICCIT 2001, Dhaka, pp: 57-59.

[8]. C.K. Roy, M.M. Masud, M.M.
Asaduzzaman and H.M. Hasan, 2001, “ A
modification of huffman header,
“Proceeding of ICCIT 2001, pp: 62-65.

[9]. Ahsan Habib, A.S.M. Latiful Haque, Md.
Russel Hossain, H-HIBASE: Compression
Enhancement of HIBASE Technique
Using Huffman Coding, Journal of
Computers, Vol 8, No 5 (2013), 1175-
1183, May 2013.

[10]. I. Akman, “A New Text Compression
Technique Based on Language
Structured,” Computer Journal of
Information Science, vol. 21, no. 2, pp.
87-94, 1995.

Md. Mamun Hossain et al.. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 9,(part-4) Sep.2016, pp.88-97

www.ijera.com 97|P a g e

[11]. B. Diri, “A Text Compression System
Based on the Morphology of Turkish
Language,” in Proceedings of the 15th
International Symposium on Computer
and Information Sciences, Turkey,pp.
156-159, 2000.

[12]. Y. Wiseman, and I. Gefner, “Conjugation-
based Compression for Hebrew Texts,”
Computer Journal of ACM Transactions
on AsianLanguage Information
Processing, vol. 6, no. 1, pp. 1-10, 2007.

[13]. J. Yaghi, R. Titchener, and S. Yagi , “T-
Code Compression for Arabic
Computational Morphology,” in
Proceedings of the Australasian Language
Technology Workshop, Australia, pp. 425-
465, 2003.

[14]. Unicode List of Bengali: Available at
Official website of Unicode Standard 5.0,
Unicode Inc. http://www.unicode.org.
Retrieved on November 02, 2009.

[15]. N. S. Kharusi, &, A. Salman, (2011) The
English Transliteration of Place Names in
Oman. Journal of Academic and Applied
Studies Vol. 1(3) September 2011, pp. 1–
27 Available online at
www.academians.org

[16]. S. Lipschutz, and G.A.V. Pai, “Data
Structures”,Chapter-7, Page 4, 65-66,
2006

[17]. M. Chowdhury, (1963), "Shahitto,
shônkhatôtto o bhashatôtto (Literature,
statistics and linguistics)", Bangla
Academy Potrika (Dhaka) 6 (4): 65–76

[18]. Thomas H. Cormen, Charles E. Leiserson,
R. Rivest, and C. Stein, Introduction to
Algorithms, 2009, Massachusetts Institute
of Technology, The MIT Press
Cambridge, Massachusetts London,
England.

