Comparison of PWM Techniques and Selective Harmonic Elimination for 3-Level Inverter

Ms. Surabhi Patil¹, Mrs. Sarika D Patil², Prof. Prashant Debre³
¹Rajiv Gandhi College of Engineering & Research, Nagpur, India
²Department of Electrical Engineering Rajiv Gandhi College of Engineering & Research, Nagpur, India
³Department of Electrical Engineering Rajiv Gandhi College of Engineering & Research, Nagpur, India

ABSTRACT
In this paper comparison of Selective Harmonic Elimination (SHE) method with different Pulse Width Modulation (PWM) technique which are used as gate pulse for firing the IGBT’s. Higher order harmonics are easily eliminated by selecting a proper tuned value filters but lower order harmonics such as 3rd, 5th, 7th, and 9th are not easily eliminated. This paper includes Newton-Rapson method with random initial guess is used for SHE reduction and shows where the solution can exit by solving transcendental non linear equations. With the use of this method lower order harmonics as well as Total Harmonic Distortion (THD) will get reduce. In this paper a cascaded H-bridge Multilevel Inverter using MATLAB/Simulink blocks is presented.

Keywords: Flexible AC Transmission System, Multilevel Inverter, Power Electronics, Selective Harmonic Elimination, SPWM-Sinusoidal Pulse Width Modulation

I. INTRODUCTION
Multilevel Inverter is most popular power electronics converters and is widely used in many industrial applications, where the requirement is medium voltage and high power applications. These are widely used in chemical, oil, and liquefied natural gas plants, water plants, marine propulsion, power generation, energy transmission, and power-quality devices, FACTS Devices [1-3]. Here, Cascaded H-bridge converter topology is used and particularly useful for renewable energy and DSTATCOM applications [4-5], [9]. While in comparison with 1 two-level voltage source inverters, multilevel inverters have several advantages. The main advantage is that of its stepwise output voltage. This advantage results in higher power quality, lower switching losses, higher voltage capability, it has low distortion, and low dv/dt and can operate with a lower switching frequency. With several number of dc voltages as inputs desired output can be obtained from multilevel inverter. By increasing the number of levels the output voltage and current waveform approaches to the sinusoidal waveform. Different topologies, control strategies and modulation techniques used for multilevel inverters have been presented in [6-7].

The generalized formulation of Selective Harmonic Elimination of multilevel inverter is presented in literature recently. SHE involves nonlinear equations which can be solved by different methods like Newton-Rapson, genetic algorithm, particle swarm optimization, bee algorithm and bacterial foraging. This paper involves solving of nonlinear equations by using Newton-Rapson method and MATLAB/Simulink.

II. REVIEW OF GENERALIZED SHE FOR MULTILEVEL INVERTER

The A multilevel cascade inverter consists a number of H-bridge cells that are connected in series per phase, and each module needs separate DC source for generation of voltage levels at the output of inverter.

\[V_{out} = \begin{cases}
+V_{dc} & I_{1}, I_{3} \text{ON} \\
0 & I_{1}, I_{3} \text{ON} \\
-V_{dc} & I_{2}, I_{3} \text{ON}
\end{cases} \quad (1) \]

The switching inputs shown as \(Si, i=1 \text{ to } 4 \) in the Fig. 1 allows obtaining output voltage as per (1). The H-bridge cells are serially connected over AC outputs to obtain expanded phase voltage levels. Cascade Multilevel Inverter (CMLI) is one of the most important topology.
As compared to diode-clamped and flying capacitors, it requires the least number of components. The minimum number of levels and the voltage rating of the active devices (IGBTs, GTOs, power MOSFETs, etc.) are inversely proportional to each other. A higher voltage rating of the devices will require the minimum number of levels and vice versa. The cascaded multilevel inverter consists of a number of H-bridge inverter units which require a separate dc source for each unit and is connected in cascade as shown in Fig. 1. The output voltage levels as seen from Fig. 2.

\[m = 2s + 1 \quad \ldots \ldots (2) \]

Switching devices \(= 2(m-1) \)
DC Bus capacitors \(= (m-1)/2 \ldots \ldots (3) \)

Where ‘s’ is the number of bridges, ‘m’ is the number of levels. The Fourier series expansion of the general multilevel stepped output voltage is given in (4), where \(n \) is the harmonic number of the output voltage of inverter.

\[V(\omega t) = \sum_{n=1}^{\infty} \frac{Vn}{n} \sin(n\omega t) \quad \ldots \ldots \ldots \ldots \ldots \ldots (4) \]

Where

\[V(n) = \frac{4Vdc}{n\pi} \sum_{n=1}^{\infty} \cos(n\theta) \quad \text{for odd } n \]
\[0 \quad \text{for even } n \]

The switching angles can be chosen so that minimum voltage harmonics are obtained. Normally, these angles are chosen so as to reduce lower frequency harmonics. The selective harmonic elimination method is also called fundamental switching frequency method based on the harmonic elimination theory proposed in this paper. The major difficulty for selective harmonic elimination methods is to include the fundamental switching frequency method and methods to solve the transcendental equations for switching angles.

To obtain fundamental voltage and to eliminate 5th and 7th harmonics, three nonlinear equations are as follows.

\[V_1 = \frac{4Vdc}{\pi} [\cos(\theta_1) + \cos(\theta_2) + \cos(\theta_3)] = V_1^* \quad \ldots \ldots \ldots \ldots (5) \]
\[V_5 = \frac{4Vdc}{5\pi} [\cos(5\theta_1) + \cos(5\theta_2) + \cos(5\theta_3)] \]
\[= 0 \quad \ldots (6) \]
\[V_7 = \frac{4Vdc}{7\pi} [\cos(7\theta_1) + \cos(7\theta_2) + \cos(7\theta_3)] \]
\[= 0 \quad \ldots (7) \]

Subject to \(0 < \theta_1 < \theta_2 < \theta_3 < \frac{\pi}{2} \)

These equations are nonlinear transcendental equations are solved by Newton-Raphson method using Random Initial Guess, as the solution doesn’t depend upon the guess. This paper presents a multilevel inverter model with mathematical model for SPWM modulator to minimize THD.

III. DIFFERENT TOPOLOGIES OF PWM METHOD

PWM methods are classified in three parts
1) Single-pulse-width modulation.
2) Multiple-pulse-width modulation.
3) Sinusoidal pulse-width modulation.
Single pulse width modulation

Single pulse width modulation involves only one pulse per half cycle and the width is varied to control inverter output voltage. The gating signals are generated by comparing a rectangle reference signal with a triangular reference signal. Fig shows generation of gating signals:

\[M = \frac{A_r}{A_c} \]

The rms output voltage can be found from

\[V_o = \frac{2}{2\pi} \int V_1^2 \cos^2(\omega t) \frac{d}{d\theta} = V_s \sqrt{\frac{1}{\pi}} \]

By varying \(A_r \) from 0 to \(A_c \), pulse width \(\delta \) can be modified from 0 to 180 and the rms output voltage \(V_o \) from 0 to \(V_s \).

Multiple-pulse-width modulation

Multiple-pulse-width modulation multipke pulse per half cycle is used. The gating signals are generated by comparing reference signal with a triangular reference signal. Harmonic content is reducing in this technique.

\[V_o = V_s \left(\sum_{n=1}^{\frac{p}{2}} \frac{\delta_m}{\pi} \right)^{1/2} \]

Fig shows generation of gating signals:
IV. SELECTIVE HARMONIC ELIMINATION METHOD

In this technique sinusoidal wave is compared with a constant. Intersection points of sinusoidal wave n constant generate the gate signal. This gate signal is given to trigger the IGBT/MOSFET. SHE technique contains transcendental equation which can be solved by this method is used to find the switching angles. The switching angles lie between 0 to $\pi/2$ producing fundamental voltage with elimination of 5th & 7th harmonic component. The N-R method is basically based on trial and error method with random initial guess and modulation index m_1 for which solution exists. Initial guess ranges from 0 to $\pi/2$ and switching angles along with the error are computed for complete range of m_1 by increasing its value in small steps (let 0.0001).

Algorithm for N-R method is given as

1) Assume any random initial guess for switching angles (say α_0) such as $0 \leq \alpha_1 < \alpha_2 \leq \pi/2$.
2) Set $m_1 = 0$.
3) Calculate $F(\alpha_0)$, $B(m_1)$ and Jacobian $J(\alpha_0)$.
4) Compute $\Delta \alpha$ during the iteration using following equation,

 \[\Delta \alpha = J^{-1}(\alpha_0) \times B(m_1) - F(\alpha_0) \]

5) Update the switching angles i.e.

 \[\alpha (k+1) = \alpha (k) + \Delta \alpha (k) \]

6) To bring switching angles in range solve the following equation

 \[\alpha (k+1) = \cos^{-1}(\text{abs}(\cos(\alpha (k+1)))) \]

7) Repeat steps (3) to (6) for number of iterations to attain error goal.
8) Increment m_1 by a fixed step.
9) Repeat steps (2) to (8) for range of m_1.
10) Plot the switching angle as a function of m_1.
11) Take one solution sets at a time and compute complete solutions set for the range of m_1, where it exists.

The output equation with switching angles

\[4V_{dc}/\pi \left[\cos(\alpha_1) + \cos(\alpha_2) + \cos(\alpha_3) + \ldots + \cos(\alpha_n) \right] = V_1 \]

where

\[V_{1,\text{max}} = 4sV_{dc}/\pi \]

Modulation index is given as

\[m_1 = \pi V_1/4sV_{dc} \]

By using the algorithm of N-R method switching angles is calculated. With respect to these switching angles respective THD and 3rd harmonic is also calculated. These switching angles and harmonic are shown in below table.
TABLE 1- Switching Angles and % of Harmonics

<table>
<thead>
<tr>
<th>M</th>
<th>Switching angle(deg)</th>
<th>3rd Harmonic %</th>
<th>THD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>29.475</td>
<td>0.30</td>
<td>31.17</td>
</tr>
</tbody>
</table>

By inserting notches at a particular instant, total THD is reduced to 31.17%.

![FFT analysis of SHE Technique](image)

Comparison of PWM Techniques And SHE Technique

<table>
<thead>
<tr>
<th>S.No</th>
<th>Techniques</th>
<th>3rd harmonic %</th>
<th>5th harmonic %</th>
<th>7th harmonic %</th>
<th>THD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single pulse-width modulation</td>
<td>10.01</td>
<td>24.42</td>
<td>50.08</td>
<td>79.9</td>
</tr>
<tr>
<td>2</td>
<td>Multiple pulse-width modulation</td>
<td>10.01</td>
<td>25.07</td>
<td>48.31</td>
<td>77.68</td>
</tr>
<tr>
<td>3</td>
<td>SPWM</td>
<td>33.31</td>
<td>20.02</td>
<td>17.32</td>
<td>72.23</td>
</tr>
<tr>
<td>4</td>
<td>Selective harmonic elimination</td>
<td>0.83</td>
<td>1.98</td>
<td>2.01</td>
<td>31.17</td>
</tr>
</tbody>
</table>

Fig: FFT analysis of SHE Technique

V. CONCLUSION

The results obtained from simulation of MATLAB/Simulink shows that the harmonic THD contents and also third, fifth and seventh harmonics are within 3% tolerance and other higher order harmonics are eliminated by filter. From above comparison of PWM Technique and SHE-PWM Technique we can conclude that SHE-PWM technique contains less % of harmonic compared to other PWM techniques.

REFERENCES

[9]. Muhammad H. Rashid, “Power Electronics Circuits, Devices and Applications”.