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ABSTRACT 
This paper focuses on how the competitiveness of forestry companies in Canada is impacted by forest products 

distribution and transportation costs, especially in the context of exports. We propose a new two-steps approach, 

consisting of building a good initial solution and then improving it to solve multi-objective forest vehicle routing 

problem. The main objective of this paper is to solve a multi-objective forest vehicle routing problem using the 

Savings-insertion, followed by the Reactive tabu, with a variable threshold. To that end, first, a mathematical 

model is established; secondly, our new Savings-insertion builds a good initial solution, and thirdly, our new 

Reactive tabu with a variable threshold improves the initial solution. The three main objectives are the 

minimization of a number of routes, the minimization of total distance and the minimization of total time by 

respecting the specified time window and the demand of all customers, which are sometimes important in this 

field. Finally, the experimental results obtained with our methodology for the named vehicle routing problem are 

provided and discussed. 
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I. INTRODUCTION 
Forest product distribution is a process by 

which forest products are moved from sources to 

customers. The increase of the distance between 

forest areas and mills causes a considerable in-crease 

in forest companies’ transportation costs. According 

to [1], transportation costs typically represent 10-

20% of the final price of goods on the market; ref. 

[2] point out that in Quebec, transportation accounts 

for over 30% of provisioning costs for wood 

transformation mills, i.e., approximately $15 per 

cubic meter of round wood. According to [2], the 

average distance between forest areas where wood is 

collected and mills to which the wood is transported 

is around 150 km, and about 50% of the fuel 

required per cubic meter of the wood collection is 

consumed by forest trucks traveling, half of the time 

empty, between forest areas and mills. 

According to [3], in countries like Chile, 

Canada, Sweden, Finland and New Zealand, the 

forest industry is mainly dependent on exports. 

According to [4], Canada is the largest exporter of 

forest products in the world, with $31 billion in sales 

in 2014. The sector thus ranks second in exports 

after the oil and gas sector, accounting for almost 

6% of all Canadian exports in 2014. Secondly, 

according to [5] and [6], transportation costs account 

for a great portion of the total cost of forest 

operation. Thirdly, according to [3], to be 

competitive, the forest industry must maintain or 

improve the effectiveness of all its operations. 

 

Over the past 20 years, the Vehicle Routing Problem 

(VRP) was mainly solved through the use of meta-

heuristics (see [7] and [8]). Ref. [9] carried out a 

taxonomic review of VRP characterizing this 

research field, and conducted a detailed 

classification of variants with many examples. 

Following the review of previous classifications and 

taxonomies, major journals having published articles 

on the subject issue are listed, and a taxonomy is 

proposed. It conducted a classification by type of 

study, scenario characteristics, physical 

characteristics of the problem, and by characteristics 

of information and data used. Ref. [10] in turn 

conducted a review of biologically-inspired 

algorithms used to handle the VRP. It highlighted 

the different variants of the problem and the 

different methodologies used to solve them. These 

include evolutionary algorithms, ant colonies, 

particle swarm optimization, neural networks, 

artificial immune systems and hybrid algorithms. 

Ref. [11] for its part conducted a review of the state 

of the art of large scale VRP, indicating the 

difficulty of solving the problems of more than 100 

customers with exact methods. It criticized the major 

works on large scale VRP by highlighting the 

techniques used. The review compared the 

performance of different algorithms and conducted 

an analysis based on key attributes such as 

effectiveness, efficiency, simplicity, and flexibility. 

Ref. [12] proposed a model of long-haul VRP and 

scheduling integrating working hour’s rules. The 
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resolution method used was a bi-objective tabu 

search algorithm. The first objective is to minimize 

the number of vehicles used, and the second, to 

minimize the total cost, which is the weighted sum 

of the total distance traveled and the corresponding 

total time. Ref. [13], based on the work of [12], 

established a multi-criteria optimization model of 

long-haul VRP and scheduling integrating working 

hours rules. The solution method used was a bi-

objective tabu search algorithm determining a set of 

heuristic non-dominated solutions. The mechanism 

consists of a single thread in which the weights 

assigned to the two objectives, namely, operating 

costs and driver inconvenience, are dynamically 

modified, and in which dominated solutions are 

eliminated throughout the search. Ref. [14] proposed 

a multi-depot VRP with a simultaneous delivery and 

pick-up model. The resolution method used was the 

iterated local search embedded adaptive 

neighborhood selection approach. Ref. [15] tested 

local search move operators on the VRP with split 

deliveries and time windows. To that end, it used 

eight local search operators, in combinations of up to 

three of them, paired with a max-min ant system. 

  Ref. [16] developed a dynamic model for 

solving the mixed integer programming of forest 

plant location and design, as well as production 

levels and flows between origins and destinations. 

Ref. [17] proposed a multi-depot forest 

transportation model solving the tactical problem of 

the flow between origins and destinations without 

solving the operational problem of VRP. The 

solution method used was column generation. Ref. 

[6] proposed a model for forest transportation, 

solving the problem of flow between origins and 

destinations, and involving a sedimentation 

constraint. It did not address the VRP, and ignored 

the time windows constraint for customers. The 

resolution method used was the ant colony 

algorithm. Ref. [18] established a bi-level model 

using a genetic algorithm to solve the problems of 

locating and sizing mills and of transporting forest 

products. In this model, individual members of the 

initial population are found by solving the location 

and size of plants, at which point the VRP is solved 

for each individual. It does not integrate the time 

windows constraint for customers. Ref. [19] 

proposed a multi-depot forest transportation model. 

The resolution method it used involved the 

generation of transport nodes by solving the linear 

programming problem of flow distribution and 

routing of these nodes using a tabu search. Ref. [20] 

developed two linear programming models of 

planning for collaborative forest transportation for 

eight companies in the south of Sweden. The first 

model was based on the direct flow between supply 

and demand points, while the second one included 

backhauling. According to [20], in the Swedish 

forest industry, transportation costs represent 

approximately one-third of total raw material costs. 

According to [21], the Vehicle Routing Problem is 

assimilated to an extension of the traveling salesman 

problem. According to [22], this problem is known 

as an NP-complete problem. Therefore, the Vehicle 

Routing Problem is NP-complete. 

Unlike other authors making an arbitrary 

hierarchy of optimality criteria, we evaluate them all 

simultaneously. This simultaneous evaluation 

provides good solutions least questionable. It is done 

by minimizing the total cost which is an aggregation 

of costs due to different optimality criteria: the 

number of vehicles, the total distance and total travel 

time. The goal of this paper is to present a new two-

steps resolution approach for the Multi-Objective 

Forest Vehicle Routing Problem (MOFVRP). Our 

main contribution is the establishment of Savings-

insertion heuristic for generating an initial solution 

and the establishment of Reactive tabu with a 

variable threshold improving the solution. Applying 

our methodology to a practical case shows its 

effectiveness in solving concrete problems. This 

methodology clearly provides a good compromise 

solution for the forest transportation optimization 

problem. 

In the next section, we explain our 

methodology: first, we describe the problem and 

propose our mathematical model; secondly, we show 

our global methodology; thirdly, we establish our 

Savings-insertion heuristic, and fourthly, we 

establish our Reactive tabu with a variable threshold 

meta-heuristic. In the third section, we present our 

results, followed by a discussion, and finally, we end 

with a conclusion in the fourth section. 
 

II. METHODOLOGY 
2.1. Problem description and mathematical model 

To perform an MOFVRP optimization, we 

propose an optimization based on Savings-insertion, 

followed by the Reactive tabu with a variable 

threshold. This allows the minimization of the total 

transport cost, including hard capacity and hard time 

windows. Below, we present our improved and 

completed mathematical model (see [23], [24] and 

[25]).  

Let us assume that m vehicles, with a load 

capacity of Q, are needed. There are L customers 

and one depot, which takes the index 1 at the start of 

the route and the index L+2 at the route end. The 

fleet is homogeneous, and every customer demand 

must be satisfied within his time window. We split 

every customer having a demand upper than the 

vehicles’ load capacity to get each customer demand 

lower than or equal to the vehicles’ load capacity. 

The following assumptions are made in modeling 

the problem: 
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Assumptions 

a. Each customer location (xj, yj), demand qj, and 

time window (t
s
j = start time, t

e
j = end time) are 

known; 

b. Each customer is served only by one vehicle at a 

time; 

c. Each vehicle leaves the depot (index 1) and 

returns to the depot (index L+2); 

d. All vehicles needed are immediately available;  

e. The average vehicle moving speed VS is known; 

f. Each customer demand qj is lower than or equal 

to vehicles’ load capacity Q. 

 

Notation 

xj, yj customer j location 

t
s
j customer j start time 

t
e
j customer j end time 

qj customer j demand 

Ct total transport cost 

m number of vehicles used 

VS average moving speed of vehicles 

Q vehicles’ load capacity 

L  number of customers 

cf unit vehicle fixed cost, covering loading 

and unloading 

cijk unit transport cost per kilometer of vehicle 

k from i to j 

dij distance between two locations i and j 

xijk indicates if vehicle k goes from i to j 

cvt unit route time cost of vehicle 

cdt unit work time cost of driver  

tjk arrival time of vehicle k to customer j 

wjk waiting time for vehicle k at customer j 

sj customer j service time 

tij time spent from i to j 

yjk indicates if customer j is served by vehicle 

k 

Tk end of vehicle k time 

 

The studied problem is modeled and the 

mathematical model objective is given in (1):  
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This objective function is the total transport 

cost, where the first element is the total fixed vehicle 

cost, the second is the total distance cost summation, 

and the third is the total vehicle route time cost and 

total driver work time cost summations. This 

aggregation permits to find a trade-off between three 

objectives: the minimization of a number of 

vehicles, the minimization of total distance traveled 

and the minimization of total time spends to travel. 

The time spent going from i to j is: 

   /      1, 1 , 2 , 2
ij ij

t d V S i L j L     (2) 

The waiting time for vehicle k at customer j is: 

     m ax(     , 0 )    j 2 , 2 ,  1,
s

jk j jk
w t t L k m     (3) 

There are eleven constraints restrictions: 

The (4) is the first constraint, and imposes the 

condition that the variable yjk be binary. The (5) is 

the second constraint, and imposes the condition that 

the variable xijk be binary. 


1,                  

0 ,  
 

th e cu sto m er j is served b y th e veh ic le k

jk o th erw ise
y  (4) 


1,                

0 ,  
 

th e veh ic le k g o es fro m i to j

ijk o th erw ise
x  (5) 

The (6) is the third constraint, and imposes the 

condition that every vehicle leaves the depot (index 

1). The (7) is the fourth constraint, and imposes the 

condition that every vehicle returns to the depot 

(index L+2). 

1
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The (8) is the fifth constraint, and imposes 

the condition that every customer is served only by 

one vehicle. The (9) is the sixth constraint, and for 

each customer j, it means that the customer is served 

only by one vehicle passing through only one other 

customer. The (10) is the seventh constraint, and 

indicates that the total load for vehicle k cannot 

exceed the vehicles’ load capacity Q.  
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The (11) is the eighth constraint, and gives the 

relation between vehicle k arrival time to the 

customer i and its arrival time to customer j. The 

(12) is the ninth constraint, and indicates that the 

service at customer j must begin before Tk, the end 

of the vehicle k time. 

     (   )   1, 1 ,  2 , 2 , 1,
jk ijk ik ik i ij

t x t w s t i L j L k m         (11) 

           2 , 2 , 1,
jk jk k

t w T j L k m     (12) 

The (13) is the tenth constraint, and indicates that no 

customer can be served before his start time. The 

(14) is the eleventh constraint, and indicates that no 

customer can be served after his end time. 

      2 , 2 , 1,
s

jk jk j
t w t j L k m     (13) 

        2 , 2 , 1,
e

jk jk j
t w t j L k m     (14) 

These eleven constraints restrictions allow the 

realization of the objective of minimizing the total 

transport cost by obtaining a feasible solution 
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directly. In the next subsection, we explain the new 

global methodology proposed to solve this mixed-

integer linear programming problem. 

 
 

2.2. Global methodology 

The proposed approach to solve the 

MOFVRP consists of two-steps. The initial solution 

technique for the MOFVRP based on the Savings-

insertion technique for generating the initial solution 

is developed (Fig. 2) in order to serve as the starting 

point of our improvement technique. The 

improvement technique for MOFVRP developed is 

based on a Reactive tabu with a variable threshold, 

and is used to improve the initial solution (Fig. 3). 

This allows us to find a good solution of the 

problem. The different steps of the global 

methodology are presented in Fig. 1. In the next 

subsection, we propose and present our initial 

Savings-insertion solution technique. 

 

Start MOFVRP solving global methodology

Initialize Savings-insertion parameters

Import MOFVRP data

Apply Savings-Insertion for generating 

MOFVRP initial solution S

Apply Reactive tabu with a variable 

threshold for MOFVRP optimization

Stop MOFVRP solving global methodology

Initialize Reactive tabu with a variable threshold 

parameters, Best solution Sbest = Initial solution S

Export MOFVRP two best solutions

 
Figure 1: global methodology 

 

2.3. Initial solution by Savings-insertion heuristic 
 

The VRP is one of the most studied 

combinatorial problems in operations research. The 

well-known [26] saving algorithm, which formed the 

basis for many other solving algorithms for the 

capacitated VRP, is a very fast and simple algorithm 

for solving the VRP. Ref. [27] provided the 

historical background for the development of the 

savings method, and subsequently proposed 

variations to the basic savings formula and other 

improvements. Ref. [28] proposed a new way of 

merging routes and a corresponding formula for 

calculating savings. They applied the method and 

developed a new heuristic that dynamically 

recalculates savings during iterations. Based on [26] 

saving algorithm, a Savings-insertion technique is 

proposed for generating the initial solution. Our first 

main algorithm is presented in Fig. 2.  

 
Start Savings-insertion

Initialize Savings-insertion parameters

Import MOFVRP data

Calculate numbers of smallest and biggest customers to insert

Order customers in ascending qj*(t1j+tj1)*(ts
j+te

j)

Insert best customer in best position of best route

j > jmax?

Yes

No

Remove insertion customers

Remaining customers are savings customers

Calculate the savings matrix of pairs of customers

Order insertion customers in descending qj*(t1j+tj1)*(ts
j+te

j)

Construct routes using savings technique, each time 

applying local-shift and local-swap to the affected route

Maxsav > 0?

Yes

No

Create new route using first customer 

qj = Q?

Yes

No

Create a full route using customer j

j = j+1

For all routes with more than one customer, apply 

local-shift and for all routes with more than two 

clients, apply the local swap to minimize the total cost

Are all customers 

inserted?

Yes

No

Stop Savings-insertion

Export Savings-insertion best solution

Calculate savings of all remaining customer 

insertions at all positions of all routes

% smallest >

% smallestmax

Yes

No

% smallest = % smallest+1

% biggest >

% biggestmaxYes

% biggest = % biggest+1

% biggest = 0

No

 
Figure 2: savings-insertion for generating the initial 

solution 
 

This Savings-insertion technique extends 

the [26] savings heuristic by adding the insertion of 

smallest customers (using a percentage of smallest 

customers) and biggest customers (using a 

percentage of biggest customers) according to the 

value of qj(t1j+tj1)(t
s
j+t

e
j). In the next subsection, we 

propose and explain our new Reactive tabu with a 

variable threshold. 
 

2.4. Improvement by Reactive tabu with a variable 

threshold meta-heuristic 

The tabu search is a meta-heuristic aims to 

avoid the weakness of neighborhood search 

algorithms which is its possible trap into local 

optima, by allowing non-improving moves. Our 

second main algorithm is presented in Fig. 3. This 

Reactive tabu with a variable threshold algorithm is 

an extension of the Reactive tabu search developed 

by [29]. This extension is done by adding a 

parameter for setting a minimum value of the tabu 

list size tls called Threshold. The variation of this 
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parameter improves the exploration of the search 

space by varying the compromise between 

intensification and diversification. It allows us to get 

a dynamic compromise between intensification and 

diversification. In summary, the more the same 

solutions found are repeated, the more the tabu list 

size increases, and vice versa; conversely, the more 

the solutions are different, the more the tabu list size 

decreases. This mechanism whereby the number of 

tabu solutions is increased when reaching local 

optima allows us to avoid the local optima trap by 

exploring other solutions in this case because all 

neighbors have become tabu. The optimization 

technique for the Reactive tabu with a variable 

threshold aimed at improving the initial solution 

(improvement) is developed (Fig. 3) in order to find 

the best compromise (optimal) solution of the 

problem. It can quickly check the feasibility of the 

movement suggested, and then react to the repetition 

to guide the search. This algorithm is performed via 

a tabu list size (tls) update mechanism elaborated in 

five steps, as shown in Fig. 3. The counters and 

parameters used in Reactive tabu with a variable 

threshold are defined in accordance with [30] as 

follows, and initialized to the following values. 

 Minimum of tabu list size (tls) value: Threshold 

= 1 to 10 

 Counter for often-repeated sets of solutions: 

Chaotic = 0 

 Moving average for the detected repetitions: 

MovAvg = 0 

 Gap between two consecutive repetitions: 

GapRept = 0 

 Number of iterations since the last change in tls 

value: LastChange = 0  

 Iteration number when an identical solution was 

last noticed: LasTimeRept = 0 

 Iteration number of the most recent repetition: 

CurTimeRept = 0 

 Maximum limit for often-repeated solutions: 

REP = 5 

 Maximum limit for sets of often-repeated 

solutions: Chaos = 5 

 Increase factor for the tabu tenure value: 

Increase = 2 

 Decrease factor for the tabu tenure value: 

Decrease = 0.5 

 The constant used for comparison with GapRept 

to get the moving average: GapMax = 100. 
 

According to [31], “The λ-interchange 

method is based on the interchange of customers 

between sets of routes. This technique generation 

mechanism can be described as follows. Given a 

solution to the problem represented by the set of 

routes S = {R1,…,Rp,…,Rq,…,Rk}, where each route 

is the set of customers serviced on this route, a λ -

interchange between Rp and Rq is the replacement of 

a subset of customers S1 ⊆ Rp of size |S1| ≤ λ by 

another subset S2 ⊆ Rq of size |S2| ≤ λ, and vice-

versa, to get two new routes R’p= (Rp - S1) + S2 and 

R’q= (Rq - S2) + S1 and a new neighboring solution 

S’ = {R1,…,R’p,…,R’q,…,Rk}”. In this work, we 

limited ourselves to sequences of consecutive 

customers. The neighborhood Nλ(S) of a given 

solution S is the set of all neighbors S' generated in 

this manner for a given value of λ. We established 

our 1-interchange+ by adding the operators (2, 1) 

and (1, 2) to 1-interchange. Thus, we can more 

explore the search space than the 1-interchange in 

less time than the 2-interchange.  

According to [30], “Neighborhood search 

algorithms can fall into the local optima trap. This 

can be avoided by using a metaheuristic that allows 

non-improving moves. The tabu search is a well-

known metaheuristic, and is considered by some to 

be the best approach for solving VRP problems (see 

[32] for further information). The Reactive tabu 

search was introduced by [29], and focuses on a tabu 

search component called the tabu list size (tls), often 

referred to as Tabu tenure, which determines how 

long a move can be locked up before it is allowed to 

reappear. The Reactive tabu search scheme uses an 

analogy with the theory of dynamical systems, 

where the tabu list size depends on the repetition of 

solutions, and consequently, tls is determined 

dynamically, as opposed to the standard version of 

the tabu search, where tls is fixed. Reactive tabu 

search employs two mechanisms, and both react to 

repetitions. The first mechanism is used to produce a 

balanced tabu list size, and consists of two reactions. 

A fast reaction increases the list size when solutions 

are repeated, while a slow reaction reduces the list 

size for those regions of the search space that do not 

need large list lengths. The second mechanism 

provides a systematic way to diversify the search 

when it is only confined to one portion of the 

solution space. The experiments of [29] and [33] 

showed the superiority of Reactive tabu search 

compared to other tabu search schemes”. 

Below, we present details of our Reactive 

tabu with a variable threshold, which updates the 

value of the Tabu list size (tls) during the search, 

according to repetitions. First, our Reactive tabu 

with a variable threshold extends the Reactive tabu 

by adding a parameter for setting a minimum value 

of the tabu list size (tls) called the threshold. 

Secondly, in accordance with [30], we use local-

shift, which is an intra-route move that relocates a 

customer to a different position within the route, if 

doing so improves the solution quality. Thirdly, we 

similarly use local-swap, which is an intra-route 

move that exchanges the positions of two customers 

within the route, if doing so improves the solution 

quality.  In the next section, the experimental data 

and results of our initial Savings-insertion solution 



Moussa Bagayoko.et.al.Int. Journal of Engineering Research and Application               www.ijera.com 

ISSN : 2248-9622, Vol. 6, Issue 12, (Part -1) December 2016, pp.56-64 

 www.ijera.com                                                                                                                               61 | P a g e  

and Reactive tabu with a variable threshold 

improved solution results are presented. 
 

Start Reactive tabu with a variable threshold

Repetition of solution S?

CurTimeRept = NbIt

GapRept = CurTimeRept-LasTimeRept

LasTimeRept(S) = NbIt 

Repetition(S) = Repetition(S)+1

Repetition(S) = REP+1?

Chaotic = Chaotic+1

Chaotic > Chaos

GapRept < GapMax?

LastChange > MovAvg

tls = max(tls*Decrease,Threshold )

LastChange = 0

Yes

Yes

Clear and rebuild Reactive tabu with a variable 

threshold data structures, apply escape

Yes

Yes

No

No

No

tls = tls*Increase, LastChange = 0

MovAvg = 0.1*GapRept + 0.9*MovAvg

Yes

No

No

LasTimeRept(S) = NbIt

Store the solution S 

Termination

criterion satisfied?

No

Yes

Initialize Reactive tabu with a variable threshold parameters, 

Best solution Sbest = Initial solution S, tls = Threshold

Import MOFVRP data and initial solution

Solution S’ = Best solution not tabu or 

new best solution overall, exploring the 

neighborhood of S using λ-interchange

Solution S” = Application of local-

shift and local-swap to the two affected 

routes, S = S”,

LastChange = LastChange+1

Tabu(Solutions) = max(Tabu(Solutions)-

1,0), NbIt = NbIt+1, Tabu(S) = tls

Cost(S) < Cost(Sbest) 

Sbest = S

Yes

No

Export Two best MOFVRP solutions

Stop Reactive tabu with a variable threshold

Threshold = Threshold+1

Threshold > 

Thresholdmax

Yes

No

 
Figure 3: reactive tabu with a variable threshold for 

improving the solution 

 

III. RESULTS AND DISCUSSION 
Below on TABLE II, we present our 

completed data (see [23], [24] and [25]). In our 

previous works, these data were adapted from [18]. 

The central depot, which takes the index 1 at the 

start of the route and the index L+2 at the route end, 

and from which all customers are served, is located 

at (0, 0), and is open from minutes 0 to 2400. 

TABLE II shows the data of each customer. The 

location coordinates are in kilometers; the weekly 

demand quantity is in cubic meters; the start and end 

times are in minutes. The fleet is homogeneous, and 

the vehicles used have a load capacity Q of 40 cubic 

meters, and an average speed VS of 60 kilometers 

per hour. For cost calculations, we assume that the 

unit vehicle fixed cost cf = $400, the unit transport 

cost per kilometer cijk = $2.8, the unit vehicle route 

time cost per minute cvt = $1.85, the unit driver work 

time cost per minute cdt = $0.45. We used 50 as a 

maximum percentage of smallest customers and 49 

as a maximum percentage of biggest customers. 

Thus, at one end, we fall on savings and the other on 

insertion. The distance between two locations i and j 

is calculated using a symmetric problem formula: 

   
2 2

( ) ( )        1, 1 , 2 , 2
ij i j i j

d x x y y i L j L         (15) 

Each route duration is calculated according to [34], 

as follows: departure at the depot start time (t
s
1) and 

forward scan to determine earliest finish time; 

reverse scan from earliest finish time to determine 

the latest start time for this earliest finish time (t1k); 

departure at the determined latest start time and 

second forward scan to delay waits as much as 

possible to the end of the route. 
 

Table I: Initial Savings-insertion solution results 

Savings-insertion route Cost ($) 

[1, 38, 54] 1493.2 

[1, 46, 54] 2865.1 

[1, 5, 6, 7, 8, 9, 10, 11, 14, 54] 5109.4 

[1, 16, 3, 19, 17, 18, 50, 49, 41, 40, 39, 32, 54] 6143.4 

[1, 15, 2, 52, 51, 42, 54] 5991.3 

[1, 13, 20, 4, 12, 54] 3404.1 

[1, 24, 22, 23, 28, 27, 29, 26, 25, 44, 43, 47, 54] 7048.8 

[1, 31, 37, 36, 48, 53, 35, 34, 33, 54] 3265.1 

[1, 21, 45, 54] 4807.6 

[1, 30, 54] 466.3 

Total cost 40,594.3 
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Figure 4: initial savings-insertion solution graphic 
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Table II: Experimental data 

Customer Location Demand 
Start 

time 

Finish 

time 

Service 

time 

1 0 0 0 0 2400 0 

2 50 -290 29.379 0 960 10 

3 -120 -250 3.711 0 960 10 

4 -90 -250 23.664 0 960 10 

5 -145 -320 4.79 0 960 10 

6 -100 -390 4.517 0 960 10 

7 -80 -390 2.018 0 960 10 

8 -82 -337 1.57 0 960 10 

9 -40 -332 5.317 0 960 10 

10 -46 -324.5 13.403 0 960 10 

11 -42 -286 3.725 0 960 10 

12 -63 -200.5 6.676 0 960 10 

13 -112.5 -199 6.78 0 960 10 

14 -38 -242 4.3 0 960 10 

15 9 -251 2.065 480 1440 10 

16 40 -230 5.335 480 1440 10 

17 -159 -108 3.797 480 1440 10 

18 -211 -126 0.856 480 1440 10 

19 -142 -163 5.631 480 1440 10 

20 -121 -242 1.496 480 1440 10 

21 -124 -213 24.741 480 1440 10 

22 -61 -6 3.464 480 1440 10 

23 -79 -11 3.691 480 1440 10 

24 -51 14 1.293 480 1440 10 

25 -117 18 7.899 480 1440 10 

26 -126 -8 2.255 480 1440 10 

27 -88 -28 2.664 480 1440 10 

28 -95 -9 1.504 960 1920 10 

29 -112 -54 0.859 960 1920 10 

30 3 -3 8.319 960 1920 10 

31 38 -29 1.299 960 1920 10 

32 -35 -41 1.715 960 1920 10 

33 -5 39 1.535 960 1920 10 

34 46 48 6.198 960 1920 10 

35 91 52 18.079 960 1920 10 

36 187 47 2.008 960 1920 10 

37 225 19 1.692 960 1920 10 

38 -40 -97 40 960 1920 10 

39 -40.001 -96.999 4.018 960 1920 10 

40 -90 -100 6.067 960 1920 10 

41 -83 -118 0.539 1440 2400 10 

42 0.5 -117 2.432 1440 2400 10 

43 -180 468 1.978 1440 2400 10 

44 -106 126 7.446 1440 2400 10 

45 -269 81 11.174 1440 2400 10 

46 34 237 40 1440 2400 10 

47 34. 001 236.999 3.413 1440 2400 10 

48 149.5 45 0.744 1440 2400 10 

49 -195 -198 2.103 1440 2400 10 

50 -200 -207 1.829 1440 2400 10 

51 -52 -231 0.676 1440 2400 10 

52 5 -446 3.978 1440 2400 10 

53 109.5 38 3.116 1440 2400 10 

54 0 0 0 0 2400 0 

 

 

 

Table III: Final reactive tabu with a variable 

threshold solution results 

Reactive tabu with a variable threshold route Cost ($) 

[1, 38, 54] 1493.2 

[1, 46, 54] 2865.1 

[1, 11, 10, 9, 8, 6, 7, 52, 51, 42, 54] 6668.0 

[1, 13, 20, 3, 5, 19, 17, 18, 45, 28, 54] 6373.8 

[1, 16, 2, 15, 32, 54] 3650.6 

[1, 14, 4, 12, 39, 54] 3373.0 

[1, 30, 24, 22, 23, 26, 25, 44, 43, 47, 54] 6672.4 

[1, 33, 34, 35, 53, 48, 36, 37, 31, 54] 3265.1 

[1, 27, 29, 40, 21, 50, 49, 41, 54] 3953.3 

Total cost 38,314.5 
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Figure 5: final reactive tabu with a variable 

threshold solution graphic 
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Figure 6: final reactive tabu with a variable 

threshold convergence graphic 

 

TABLE I shows initial MOFVRP solution 

results generated by Savings-insertion. Each route’s 

customers and cost are given, and the total cost is 

calculated. It is a ten-route solution having a total 

cost of $40,594.3. The corresponding total distance 

and total route duration are respectively 6731.8 

kilometers and 7715.4 minutes. Fig. 4 shows the 

initial MOFVRP solution location sequences 
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graphic. For example, the route [1, 31, 37, 36, 48, 

53, 35, 34, 33, 54] to the right in this figure means 

that the vehicle leaves the depot (index 1), goes 

successively to customers 31, 37, 36, 48, 53, 35, 34, 

33 and returns to the depot (index 54). TABLE III 

shows the final MOFVRP solution results generated 

by the Reactive tabu with a variable threshold. Each 

route’s customers and cost are given, and the total 

cost is calculated. It is a nine route-solution having a 

total cost of $38,314.5. The corresponding total 

distance and total route duration are respectively 

6406.2 kilometers and 7294.4 minutes. Fig. 5 shows 

the final MOFVRP solution location sequences 

graphic. Fig. 6 shows the Reactive tabu with a 

variable threshold MOFVRP convergence graphic; it 

shows the number of iterations at which the best 

solution is reached. This methodology clearly 

provides a good compromise solution for the 

MOFVRP optimization. 
 

IV. CONCLUSION 
In our paper, we resolved a practical 

MOFVRP using our approach based on Savings-

insertion, followed by the Reactive tabu with a 

variable threshold. To that end, we used our 

mathematical model to minimize the total transport 

cost, including hard capacity and hard time windows 

constraints. Our results show that minimizing the 

total cost, our methodology clearly provides a good 

compromise solution. We then conclude that 

Savings-insertion, followed by the Reactive tabu 

with a variable threshold is a promising approach, 

which will be used in our future research to further 

explore the MOFVRP. 
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