
Khadijah M. Abualnaja. Int. Journal of Engineering Research and Application             www.ijera.com 

ISSN : 2248-9622, Vol. 6, Issue 12, ( Part -1) December 2016, pp.01-10 

 
www.ijera.com                                                                                                                               1 | P a g e  

 

 
 

Analytical and Exact solutions of a certain class of coupled nonlinear 

PDEs using Adomian-Padé method 
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ABSTRACT 
The purpose of this study is to introduce a modification of the Adomian decomposition method using 

Padé approximation and Laplace transform to obtain a closed form of the solutions of nonlinear 

partial differential equations. Several test  examples  are  given;  illustrative  examples  and  the  

coupled nonlinear  system  of  Burger’s  equations.  The obtained results ensure that this modification 

is capable for solving the nonlinear PDEs that have wide application in physics and engineering. 
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I. INTRODUCTION 
In this paper, the Adomian 

decomposition method (ADM) [3] is used to 

solve nonlinear partial differential equations 

(NPDEs). It is based on the search for a 

solution in the form of a series and on 

decomposing the nonlinear operator into a 

series in which the terms are calculated 

recursively using the Adomian’s polynomials 

([4], [7]). In recent years, a growing interest 

towards the applications of this method in 

nonlinear problems has been devoted by 

engineering practice, see ([1], [2], [6], [9], 

[11], [12]). This method has many advantages 

such as, fast convergence, doesn’t require 

discretizations of space-time variables, which 

gives rise to rounding off errors, and doesn’t 

require solving the resultant nonlinear system 

of discrete equations. Unlike, the traditional 

methods, the computation in this method 

doesn’t require a large computer memory. 

Also, we are going to improve the accuracy of 

ADM by using the Padé approximation and 

apply the improved method to solve some 

physical models of NPDEs, namely, illustrative 

examples and the system of Burger’s 

equations. 

 

II. ANALYSIS OF THE ADOMIAN DECOMPOSITION METHOD 
In this section, the basic idea of ADM to solve NPDEs is introduced as follows: Consider the 

following nonlinear partial differential equation 

 

 (x, t), N (u) = f u(x, t) +
xt

A     (1) 

with suitable initial and boundary conditions. Where  
xt

A is the partial differential operator    and N(u) 

is the non-linear term. 

 

Let xt
 + Rx+ L

t
= L

xt
A   where t

 L  is the highest partial derivative with respect to t (assume 

of order n), Lx is the highest partial derivative with respect to x and xt
R  is the remainder from the 

operator, therefore, (1) will take the following operator form 

                             Lt u(x, t) = f (x, t) − (Lx + Rxt)u(x, t) − N (u).       (2) 

By applying the inverse operator on both sides of (2), we get 

             u(x, t) = φ(x, t) + 
1

t
 L  [ f (x, t) − (Lx + Rxt)u(x, t) − N (u) ],       (3) 

 

where the inverse operator is defined by: 
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dtdt

t

foldnt
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0

,...

0
......

(.)(.)
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and φ(x, t) is the solution of the homogeneous differential equation Lt u(x, t) = 0 with the same initial 

conditions of  (1). 

Now, ADM suggests that the solution can be expressed as an infinite series of the following form 

          ,

n

(x,t)
n

uu(x,t) 







0

           (4) 

and the nonlinear term expanded in terms of Adomian’s polynomials
n

A  

   







0

,

n

AN(u)
n

           (5) 

where these polynomials are defined by the relation 

  . ,    n
λ

]

n

i
i

u
i

λN(
n

d λ

n
d

[

n!
n

A 0
0

0

1







               (6) 

Substituting from (4) and (5) in (3), we obtain 

], 

0

 - 

0

)
xt

R + x(L - t)(x, f [
1

  +  t)(x, = 

0


















 n
n

A

n

(x,t)
n

u
t

 L 

n

(x,t)
n

u   

equating the similar terms in both sides of the above equation, we get the following  recurrence 

relation 

t)](x, f [
1

t
L 


  + t) (x,= t) (x,u 
0

   

    . n ],       
n

A(x,t) 
n

)u
xt

 + Rx(L(x,t) =nu 1
11







                      (7) 

Now,  we  present  some  basic  definitions  of  the  Taylor  series  method,  Padé  approximation  ([5], [13]), 

needed in the next sections of the paper. 

 

III. THE PADÉ APPROXIMANTS ON THE SERIES SOLUTION 
The general setup in approximation theory is that a function f is given and that one wants to 

approximate it with a simpler function g but in such a way that the difference between f and g is small. The 

advantage is that the simpler function g can be handled without too many difficulties, but the disadvantage is 

that one loses some information since f and g are different.  
 

Definition 1. 

When we obtain the truncated series solution of order at least L+M in t by ADM, we will use it to obtain 

(x,t)
M

L
PA










 Padé approximation for the solution u(x,t) . The Padé approximation ([4], [25]) are a particular 

type of rational fraction approximation to the value of the function. The idea is to match the Taylor series 

expansion as far as possible.  

We denote the 










M

L
PA  to 







0i

i
x

i
aR(x)  by: 

   ,PA
(x)

M
Q

(x)
L

P
(x)

M

L











                                                                              (8) 

where (x)
L

P  is a polynomial of degree at most L and (x)
M

Q  is a polynomial of degree at most M. 

.
M

x
M

q...
2

x
2

qx
1

q1(x)
M

Q   ,
L

x
L

p...
2

x
2

px
1

p
0

p(x)
L

P                   

(9) 
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To determine the coefficients of (x)
L

P  and (x)
M

Q , we may multiply (8) by (x)
M

Q , which linearizes the 

coefficient equations. We can write out (8) in more detail as:  

      

0,
M

q
L

a...
1

q
1-ML

a
ML

a

...                            

0,
M

q
2M-L

a...
1

q
1L

a
2L

a

0,
M

q
1M-L

a...
1

q
L

a
1L

a






















               (10) 

 

     

.
L

p
L

q
0

a...
1

q
1-L

a
L

a

....              

,
2

p
2

q
0

a
1

q
1

a
2

a

,
1

p
1

q
0

a
1

a

,
0

p
0

a









              (11) 

 

To solve these equations, we start with 

Eq.(10), which is a set of linear equations for all the 

unknown q's. Once the q's are known, then Eq.(11) 

gives an explicit formula for the unknown p's, 

which  complete the solution.  Each choice of L, 

degree of the numerator and M, degree of the 

denominator, leads to an approximant. The major 

difficulty in applying the technique is how to direct 

the choice in order to obtain the best approximant. 

This needs the use of a criterion for the choice 

depending on the shape of the solution. A criterion 

which has worked well here is the choice of 










M

L
 

approximation such that L=M. We construct the 

approximation by built-in utilities of Mathematica 

in the following sections. If ADM truncated Taylor 

series of the exact solution with enough terms and 

the solution can be written as the ratio of two 

polynomials with no common factors, then the 

Padé approximation for the truncated series provide 

the exact solution. Even when the exact solution 

cannot be expressed as the ratio of two 

polynomials, the Padé approximation for the ADM 

truncated series usually greatly improve the 

accuracy and enlarge the convergence domain of 

the solutions. 

 

IV. THE MODIFIED ALGORITHM OF 

ADM 
In spite of the advantages of ADM, it 

has some drawbacks. By using ADM, we get 

a series, in practice a truncated series 

solution. The series often coincides with the 

Taylor expansion of the true solution at point 

x = 0, in the initial value case. Although the 

series can be rapidly convergent in a very 

small region, it has very slow convergent rate 

in the wider region we examine and the 

truncated series solution is an inaccurate 

solution in that region, which will greatly 

restrict the application area of the method. 

All the truncated series solutions have the 

same problem. Many examples given can be 

used to support this assertion [12]. 

Padé  approximation  [5]  approximates  

any  function  by  a  ratio  of  two  polynomials. 

The  coefficients of the powers occurring in 

the polynomials are determined by the 

coefficients in the Taylor expansion. 

Generally, the Pade approximation can enlarge 

the convergence  domain of the truncated 

Taylor series and can improve greatly the 

convergent rate of the truncated Taylor series 

[10]. 

The suggested modification of ADM can be 

done by using the following algorithm. 

 

Algorithm 

Step 1.   Solve the differential equation using 

the standard ADM; 

Step 2.  Truncate the obtained series solution 

by ADM;  

Step 3.  Take  the Laplace transform of the 

truncated series;  

Step 4.   Find the Padé approximation of the 

previous step;  

Step 5.  Take the inverse Laplace transform. 

This modification often gets the closed form of 

the exact solution of the differential equation. 

Now, we implement this algorithm to some 

examples of linear and nonlinear differential 

equations to illustrate our modification. 
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V. ILLUSTRATIVE EXAMPLES 
Example 1: 

Consider the following differential equation 

  ,u

dt

ud
0

2

2

                  (12) 

subject to the initial conditions 1000 ) = (u, ) = u(  . We can rewrite (12) in an operator form as 

follows 

,) = u(t) + u(t
t

L 0            (13) 

where the differential operator 
t

L  is 
2

2

dt

d

t
L  . 

 

 

By applying the inverse operator on (13) and using the initial conditions, we can derive 

   u(t),
t

L) (
t

) + tuu(t) = u(
1

00


    (14) 

where the operator 
1

t
L  is an integral operator and given by  


t t

dtdt
t

L

0 0

.(.)(.)
1

 

The ADM [3] assumes that the unknown solution can be expressed by an infinite series of the 

following form 

.

0

 

n

(t)
n

uu(t) 





           (15) 

Substituting from (15), into (14) and equating the similar terms in both sides, we get the following 

recurrence relation 

  
. n (t),  nu

t
L(t) =

n
u),(

t
)+tu(t)=u(u 0    

1

1
       00

0





         (16)

            

 

Now, from the recurrence relationship (16) we obtain the following components of the solution u(t) 

  t,00)(
0

 )(
t

)+tuu(tu  

, 

!

t
(t)u

t
L(t)u

3

3

0

1

1





  

... ,

!5

5

)(
1

1
)(

2

t
tu

t
Ltu 




 

. 

)!12(

12
 )1(

)(
1

)(
1












n

n
t

n

tnu
t

Lt
n

u

 
By the same procedure we can obtain the components of the solution.  Therefore, the   approximate 

solution can be readily obtained by 

  .

0
)!12(

12
 )1(

)( 









n

k
k

k
t

k

(t)ntu                 (17) 

Which is the partial sum of the Taylor series of the solution u(t) at t=0. Figure 1 shows the error 

between the exact solution u(t) and (t), 
5

 from this figure we can find that the error  at t ∈ [0, 5] is  

nearly to 0, but at t∈ [5,10] the error takes large values. 

 



Khadijah M. Abualnaja. Int. Journal of Engineering Research and Application             www.ijera.com 

ISSN : 2248-9622, Vol. 6, Issue 12, ( Part -1) December 2016, pp.01-10 

 
www.ijera.com                                                                                                                               5 | P a g e  

 

Figure 1: The error between the exact solution u(t) and the solution by ADM, .
5

(t)  

Now, because (12) is an oscillatory system, here we can apply Laplace transform [8] to (t)
n

 which 

yields  

.
22

 
1

)1(
...

6

1

4

1

2

1
]£[







n

s

n

sss

(t)
n

  

For the sake simplicity, let 
t

s
1

  then:   

.
221

)1(...
642

]£[



n

t
n

ttt(t)
n

  

Its ]
n

n
[

1

1




Padé approximations with n>0 yields .

2
1

2

1

1

t

t
]

n

n
[







    

Replace 
s

t
1

 , we obtain ]
n

n
[

1

1




 in terms of  s as follows:   

,
2

1

1

1

1

s

]
n

n
[







 

by using the inverse Laplace transform to ]
n

n
[

1

1





 
we obtain the true solution of  (12): 

u(t) = sin(t). 

Example 2: 

Consider the following nonlinear partial differential equation 

t
u u + xxu

tt
u 2 = g(x, t) =−2 sin

2
(x) sin(t) cos(t), (18) with the initial conditions  u(x, 0) = 

sin(x), ut(x, 0) = 0. 

The exact solution of this equation is u(x, t) = sin(x) cos(t). 

First, to overcome the complicated excitation from the term g(x,t), which can cause difficult 

integrations and proliferation of terms, we use the Taylor expansion of the function g(x, t) at t = 0, 

in the following form 

...),
7

315

45

15

23

3

2
)((

2
sin2

0

)(),( 





 ttttx

k

k
tx

k
gtxg  

in this case, (18) reduces to the form 

.

k

k
(x)t

k
g =

t
u u + xxu

tt
u 







0

2                                                 (19) 

We can rewrite (19) in an operator form as follows 

,

0

)( 







k

k
(x)t

k
g =uu + NxLu

t
L                                                          (20) 
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where the differential operator 
2

2

t
t

L




 the nonlinear term is 

t
uuN (u) = 2 . By applying the 

inverse operator on (20) and using the initial conditions, we can derive 

.

0

])([
1

)0,()0,(),( 










k

k
(x)t

k
g uN

xx
 u

t
Lx

t
tuxutxu                                    (21) 

The ADM [3] assumes that the unknown solution can be expressed by an infinite series of the form 

(4) and the nonlinear operator term can be decomposed by an infinite series of polynomials, given by 

(5), where the components  0n  t),(x,nu  will be determined recurrently and An are the so-called 

Adomian’s polynomials of ,...
2

u,
1

u,
0

u defined by (6), these polynomials can be constructed for all 

nonlinearity according to algorithm set by   Adomian.  

Substituting from (4), (5) into (21) and equating the similar terms in both sides of the equation, we 

get the following recurrence relation 

u0(x, t) = u(x,0),                0, n       ],
n

 t(x)ng + nA [
1

),(
1





 nxx

 u
t

Ltx
n

u           (22)  

where the first An Adomian’s polynomials that represent the nonlinear term N (u) = 2uut 

are given by 

t
uu = A

00
2

0
, 

),
t

u + u
t

u(u = A
0110

2
1

  

),
t

u + u
t

u + u
t

u(u= 
 

A
201102

2
2

  

), ...
t

u + u
t

u + u
t

u +  u
t

u( u = A
21301203

2
3

  

other polynomials can be generated in a like manner. 

Now from the recurrence relationship (22) we obtain the following resulting components 

(x),
t

(x,t)   u          (x),      (x,t)u sin
!2

2

1
sin

0


  

(x),
t

(x,t)  u          (x),      
t

(x,t)u sin
!6

6

3
sin

!4

4

2


  

.sin
!10

10

5
sin

!8

8

4
(x)

t
(x,t)   u          (x),      

t
(x,t)u


  

Having n,...,,(x,t),   i
i

u ,210 , the solution is as follows 

  .

n

i

(x,t)
i

u(x,t)
n

u(x,t) 







1

0

                                                                                     (23) 

In our calculations we use the truncated series (x,t)
4

̂  to order t
8
, i.e., 

  ,sin
8

8

6

6

4

4

2

2

1
4

ˆ (x))
!

t

!

t

!

t

!

t
((x,t)                                                                   (24) 

which coincides with the first five terms of the Taylor series of the solution u(x, t) at t = 0. Here, we 

apply Laplace transformation to ),(
4

ˆ tx , which yields 

.sin
9

1

7

1

5

1

3

11
]

4
ˆ£[ (x))

sssss
((x,t)                                                                    

For the sake simplicity, let 
t

s
1

  then: 
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]
4

ˆ£[ (x,t) = (t − t
3 

+ t
5 

− t
7 

+ t
9
) sin(x). 

All of the ]
M

L
[ Padé approximants of the above equation with L > 0,  M > 1 and L+M <10 yields 

.sin
2

1

(x)

t

t
]

M

L
[



    Replace 
s

t
1

 , we obtain ]
M

L
[ in terms of  s as follows:   

.sin
2

1

(x)

s

s
]

M

L
[



  

By using the inverse Laplace transform to ]
M

L
[  we obtain the true solution of (18) 

u(x, t) = sin(x) cos(t). 

 

VI. IMPLEMENTATION THE MODIFICATION OF ADM TO SYSTEM OF BURGERS’ 

EQUATIONS 
        Consider the following coupled nonlinear system of Burgers’ equations 

                              ut − uxx − 2uux + (uv)x = 0, (25) 

                               vt − vxx − 2vvx + (uv)x = 0, (26)  

subject to the following initial conditions 

                               u(x, 0) = v(x, 0) = sin(x). (27) 

Now, we will solve the system (25)-(27) by using the above algorithm as follows: 

 

Step 1. Solve the system (25)-(27) by using ADM 

In this step, we apply ADM to the system (25)-(27), so, we rewrite it in the following operator form 

                                 0, =  v)(u,
1

N + xxuu 
t

L   (28) 

                                 0. =  v)(u,
2

N + xxv v
t

L   (29) 

By using the inverse operator, we can write the above system (28)-(29) in the following form 

                             u(x, t) = u(x, 0) + 
1

t
L  [uxx] − ]

1
[

1
(u, v)N

t
L


, (30) 

                            v(x, t) = v(x, 0) + 
1

t
L  [vxx] − ]

2
[

1
(u, v)N

t
L


, (31) 

where the inverse operator is defined by 


t
dt

t
L

0

,(.)(.)
1

 and the nonlinear terms (u, v) N
1

 

and (u, v) N
2

are defined by  

x(uv) + x2uu
1

(u, v) N ,   x(uv) + x2vv
2

(u, v) N .                   (32) 

The ADM suggests that the solutions u(x,t) and v(x,t) be decomposed by an infinite series of 

components  

,

0

),(),(              ,

0

),(),( 













n

txnvtxv

n

txnutxu                                (33) 

and the nonlinear terms defined in (32) are decomposed by the infinite series: 

 , 

m
m

A(u, v)  N ,   

m
m

A(u, v) N 













0
22

   

0
11

                              (33) 

where uk(x,t) and vk(x,t), k ≥ 0 are the components of u(x,t) and v(x,t) that will be elegantly 

determined, Akn are called Adomian’s polynomials and defined by  

, . . .  ,,m ,      k
λ

)]

i
i

v
i

λ),

i
i

u
i

λ (
k

N
m

dλ

m
d

 [

m!
km

A 210    ,2,1
0

00

1















  
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From the above considerations, the decomposition method defines the components uk(x,t) and 

vk(x,t) for k ≥ 0, by the following recursive relations 

u0(x, t) = u(x, 0), un+1(x, t) = 
1

t
L  [unxx] − 

1

t
L  [

n
A

1
],                 (34) 

v0(x, t) = v(x, 0), vn+1(x, t) = 
1

t
L  [vnxx] − 

1

t
L  [

n
A

2
].                           (35) 

 

This will enable us to determine the components un(x,t) and vn(x, t) recurrently. However, in many 

cases, the exact solution in a closed form may be obtained. 

For numerical comparison purpose, we construct the solutions u(x,t) and v(x,t) 

   ,         , (x,t)
n

Lim

n

v(x,t)(x,t)
n

Lim

n

u(x,t) 







                                       

where  

  1.n      , 

1

0

       ,

1

0















n

i

(x,t)
i

v(x,t)
n

n

i

(x,t)
i

u(x,t)
n

                                         (36) 

Now, by using the above procedure to the system (25)-(26), we can derive the solution of this system 

as follows 

u0(x, t) = sin(x), v0(x, t) = sin(x), 

u1(x, t) = −t sin(x), v1(x, t) = −t sin(x), 

(x).
!

t
(x,t)   v(x),    

!

t
(x,t)u sin

2

2

2
     sin

2

2

2
  

The rest of components of the iterative formulas (34)-(35) are obtained in the same manner using the 

Mathematica package version 5. Where the first Adomian’s polynomials of Ain, i = 1, 2 are given by 

A10 = 2u0u0x − (u0v0x + v0u0x), 

A20 = 2v0v0x − (u0v0x + v0u0x), 

A11 = 2(u0u1x + u1u0x) − (u0v1x + u1v0x + v0u1x + v1u0x), 

 A21 = 2(v0v1x + v1v0x) − (u0v1x + u1v0x + v0u1x + v1u0x). 

In the same manner, we can compute other components of Ain, i =1,2. 

 

Step 2. Truncate the series solution obtained by ADM 

    We have applied ADM by using the fourth order approximation only, i.e., the approximate 

solutions is 

   (x),)
!

t

!

t

!

t
t(

n

i

(x,t)
i

uU(x,t)u(x,t) sin
4

4

3

3

2

2

1

1

0







                            (37) 

  .sin
4

4

3

3

2

2

1

1

0

(x))
!

t

!

t

!

t
t(

n

i

(x,t)
i

vV(x,t)v(x,t) 





                               (38) 

The behavior of the error between the exact solution and the solution obtained by ADM in the 

regions 0 ≤ x ≤ 1 and 0 ≤ t ≤ 5 is shown in the figures (2 and 3). The numerical results are 

obtained by using fourth order approximation only from the formulas (34)-(35). From these figures, 

we achieved a very good approximation for the solution of the system at the small values of time t, but 

at the large values of the time t, the error takes large values. 
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Figure 2:  The error−u = |u(x, t) − U (x, t)|. 

 

 
Figure 3:  The error−v = |v(x, t) − V (x, t)|. 

 

Step 3. Take the Laplace transform of the equations (37)-(38) 

                       sin(x), )
5

s

1

4
s

1

3
s

1

2
s

1

s

1
( =  t)](x, £[U     (39) 

                        sin(x), )
5

s

1

4
s

1

3
s

1

2
s

1

s

1
( =  t)](x, £[V   (40) 

For the sake simplicity, let 
t

s
1

  then 

                       sin(x), )
5

t
4

t
3

t
2

t(t =  t)](x, £[U     (41) 

                        sin(x). )
5

t
4

t
3

t
2

t(t =  t)](x, £[V   (42) 

Step 4.  Find the Padé approximation of the equations (41)-(42) 

All of the ]
M

L
[ Padé approximants of the above equation with L > 0,  M  >0  yields  

.sin
1

(x)
t

t
]

M

L
[


  

Replace 
s

t
1

 , we obtain ]
M

L
[  in terms of  s as follows:   

.sin
1

1
(x)

s
]

M

L
[


  
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Step 5. Take the inverse Laplace transform 

By using the inverse Laplace transform to ]
M

L
[ , we obtain the true solution 

                                u(x, t) = e
−t 

sin(x), v(x, t) = e
−t 

sin(x),  

which are the same exact solution of the system (25)-(26). 

 

VII. SUMMARY AND CONCLUSIONS 
In this paper, we presented a 

modification of ADM, this modification 

considerably capable for solving a wide-range 

class of linear and nonlinear differential 

equations; especially the ones of high 

nonlinearity order in engineering and physics 

problems. This purpose was satisfied by 

solving physical model of nonlinear coupled 

system of PDEs. From the obtained results, we 

can conclude that the application of Padé 

approximants  to  the  truncated  series  

solution  (from  ADM)  greatly  improve  the 

convergence domain and accuracy of the 

solution.  Also, we can conclude that the 

approximate solutions of the presented 

problems are excellent agreement with the 

exact solution. Finally, we point out that the 

corresponding analytical and numerical 

solutions are obtained according to the 

iteration equations using Mathematica 5. 
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