Kinematic Synthesis of Four Bar Mechanism using Function Generator

Nishant H. Patel*
* (Department of Mechanical engineering, S Vbit, Vasan, Gandhinagar)

ABSTRACT
This article describes the detailed steps in the kinematic synthesis of a four bar Mechanism using Function Generator.

Keywords – synthesis, function generation

I. INTRODUCTION
If the dimensions of the mechanism are given, and we attempt to determine its motion characteristics, the process is called analysis. Synthesis is the inverse process. Given set of performance requirements, we attempt to proportion a mechanism to meet those specification. Synthesis is the procedure by which a product is developed to satisfy a set of performance requirements.

There are three customary tasks for kinematic synthesis: motion, path and function generation.

Motion generation or rigid body guidance

In motion generation (Fig. 1a) requires that an entire body be guided through a prescribed motion sequence. The body to be guided usually is a part of "floating link" (not directly connected to the fixed link). The corresponding input (driving) link motion may or may not be prescribed.

Path generation

In path generation (Fig. 1b) a point of a floating link is to trace a part defined with respect to the fixed frame of reference. If the path points are to be correlated with either time or input link positions, the task is called path generation with prescribed timing.

Function generation

A frequent requirement in design is that of causing an output member to rotate, oscillate, or reciprocate according to a specified function of time or function of the input motion. This is called function generation. That is correlation of an input motion with an output motion in a linkage. A simple example is that of synthesizing a four-bar linkage to generate the function \(y = f(x) \). In this case, \(x \) would represent the motion (crank angle) of the input crank, and the linkage would be designed so that the motion (angle) of the output rocker would approximate the function \(y \). (Fig. 1c) the motions of input and output (driven) link are correlated by the prescribed function. Since any real mechanism has a finite number of dimension parameters it is not possible in general to obtain a mathematical exact solution but that the mechanism match given function, path or body positions at only a finite number of positions called accuracy or precision points. Between these points generated (actual) function \(\Phi(x) \) deviates from the given (prescribed) mathematical function \(F(x) \).
Three accuracy points are taken in the interval 1<x<2 with Chebyshev spacing (fig. 4) whence the corresponding values of the variables x and y are:

\[
\begin{align*}
\phi_1 &= 1.0669 & \psi_1 &= 1.54 \\
\phi_2 &= 1.5 & \psi_2 &= 2.19 \\
\phi_3 &= 1.933 & \psi_3 &= 2.81
\end{align*}
\]

The ranges of variation of \(\phi\) and \(\psi\) must be selected. They are chosen as \(\Delta \phi = 124.4^\circ\) and \(\Delta \psi = 1.46\) and \(y_1 = 2.92\).

\[
\phi_2 - \phi_1 = \Delta \phi = 54.73^\circ & - \psi_2 & = \frac{x_2 - x_1}{\Delta x} \Delta \phi = 108.2^\circ \\
\phi_3 - \phi_1 = \Delta \phi = 163.8^\circ & - \psi_2 & = \frac{x_3 - x_1}{\Delta x} \Delta \phi = 108.2^\circ \\
\phi_3 - \phi_1 = \Delta \phi = 163.8^\circ & - \psi_3 & = \frac{x_3 - x_1}{\Delta x} \Delta \phi = 108.2^\circ
\]

With the present method, the angles \(\phi\) and \(\psi\), crank and follower positions corresponding to the first accuracy point, must also be selected at the start. Choosing \(\phi_1 = \psi_1 = 55.6^\circ\).

Choosing \(\phi_2 = 110.3^\circ, \psi_2 = 110.9^\circ\)

Choosing \(\phi_3 = 163.8^\circ, \psi_3 = 163.8^\circ\)

Finding the proper values of \(a_1, a_2, a_3\) and \(a_4\) for three related pairs \((\phi_1, \psi_1), \psi_2, \psi_2\), and \((\phi_3, \psi_3)\), this equation yields a system of three equations linear with respect to \(k_1, k_2, k_3\).

\[
k_1 \cos \phi - k_2 \cos \psi + k_3 = \cos (\phi - \psi)
\] (1)

Where,

\[
k_1 = \frac{a_4}{a_3} \\
k_2 = \frac{a_4}{a_1} \\
k_3 = \frac{a_1^2 + a_2^2 + a_3^2 + a_4^2}{2a_1a_3}
\] (2)

This equation was deduced from Eq.(1) by rearranging the terms. When written for three pairs of values, \((\phi_1, \psi_1), (\phi_2, \psi_2), (\phi_3, \psi_3)\), this equation yields a system of three equations linear with respect to \(k_1, k_2, k_3\).

\[
\begin{align*}
k_1 \cos \phi_1 - k_2 \cos \psi_1 + k_3 &= \cos (\phi_1 - \psi_1) \\
k_1 \cos \phi_2 - k_2 \cos \psi_2 + k_3 &= \cos (\phi_2 - \psi_2) \\
k_1 \cos \phi_3 - k_2 \cos \psi_3 + k_3 &= \cos (\phi_3 - \psi_3)
\end{align*}
\]

Tedious third-order determinants may be avoided by first subtracting the second and third equations from the first, thus eliminating \(K_3\).

\[
k_1 (\cos \phi_1 - \cos \phi_2) - k_2 (\cos \psi_1 - \cos \psi_2) = \cos (\phi_1 - \psi_1) - \cos (\phi_2 - \psi_2)
\]
$$k_1(\cos \phi_1 - \cos \phi_3) - k_2(\cos \psi_1 - \cos \psi_3)$$

$$= \cos(\phi_1 - \psi_1) - \cos(\phi_3 - \psi_3)$$

and solving the following resulting system of two equations with two unknowns,

$$m_1k_1 - m_2k_2 = m_3$$

$$m_4k_1 - m_5k_2 = m_6$$

Thus

$$k_1 = \frac{m_2m_6 - m_3m_5}{m_2m_4 - m_1m_5}$$

(3)

$$k_2 = \frac{m_1m_6 - m_3m_4}{m_2m_4 - m_1m_5}$$

(4)

In which

$$m_1 = \cos \phi_1 - \cos \phi_2$$

$$= 0.91$$

$$m_2 = \cos \psi_1 - \cos \psi_2$$

$$= 0.92$$

$$m_3 = \cos(\phi_1 - \psi_1) - \cos(\phi_2 - \psi_2)$$

$$= 0.01$$

$$m_4 = \cos \phi_1 - \cos \phi_3$$

$$= 1.52$$

$$m_5 = \cos \psi_1 - \cos \psi_3$$

$$= 1.52$$

$$m_6 = \cos(\phi_1 - \psi_1) - \cos(\phi_3 - \psi_3)$$

$$= 0$$

Put this value in equation (3) and equation (4) we get

$$k_1 = -1$$ or $$k_2 = -1$$.

Substituting values of K1 and K2 into one of the three original equations yields K3 as

$$k_3 = \cos(\phi_i - \psi_i) - k_1\cos \phi_i + k_2\cos \psi_i$$

$$= 1$$.

Now put value of k1, k2 or k3 in equation (2).

$$k_1 = \frac{a_4}{a_3}$$

$$-1 = \frac{a_4}{a_3}a_3 = -a_4$$

(5)

$$k_2 = \frac{a_4}{a_1}$$

$$-1 = \frac{a_4}{a_1}a_1$$

$$a_1 = -a_4$$

(6)

$$k_3 = \frac{a_1^2 - a_2^2 + a_3^2 + a_4^2}{2a_1a_3}$$

$$a_2 = a_4$$

(7)

III. CONCLUSION

In conclusion, we performed synthesis of four-bar mechanism. From synthesis of four bar mechanism using function generators we conclude that this planar four bar mechanism are parallelogram.

REFERENCES