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ABSTRACT 

The problem of analysis of the electromagnetic field behaviour from the open end of the parallel-plate 

waveguide with infinite impedance flanges is theoretically investigated. The case with the absence of impedance 

flanges is also considered. Furthermore, we take into account particular features of the waveguide edges. The 

effects of the impedance flanges and the edge features on the electromagnetic field and the radiation patterns of a 

plane waveguide with flanges are demonstrated. The method of moments (MoM) technique which was used to 

solve the integral equations is presented along with the numerical results.  
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I. INTRODUCTION 
To change the characteristics of radar location of 

military equipment, radar absorbing materials and 

coverings are effective when applied to mobile 

installations, as well as to those on which antennas 

systems are placed [1].  From the point of view of 

electrodynamics, the usage of radar absorbing 

materials and coverings amounts to changing the 

distribution of surface currents, by means of the 

management of surface wave amplitudes formed on 

the object by the attenuating structures.  However, 

the redistribution of fields on the surface of the object 

leads to variations not only in the scattering 

characteristics of the object but also in its radiation 

characteristics, in relation to antennas located nearby. 

Methods are known for decreasing the 

interaction between antennas using an alteration of 

amplitude and phase distributions on certain surfaces.  

Among the accepted measures used to decrease the 

coupling between antennas are mutual shielding of 

antennas and placement of additional screens across 

the interface. In the case of near-omnidirectional 

antennas, two groups of additional measures are 

applied: radio-wave absorbing materials, and surface 

decoupling devices. Since the waveguide as a 

radiating element finds much usage in antenna 

techniques, the analysis of the radiation 

characteristics of such a device represents a field of 

significant scientific interest [2]. Furthermore, the 

analysis of the impedance influence on the 

electromagnetic field behaviour across the open-end 

of the plane waveguide is one of the major applied 

problems of electrodynamics. It is also known [3] 

that varying the reactive resistance allows one to 

change the phase field re-radiated by the structure, 

which consequently facilitates managing the re-

radiated field. 

For an approximate solution to the analysis of 

electromagnetic wave radiation from a semi-infinite 

waveguide with ideally conducting flanges, the 

method of integral equations is often used [1]. It is 

necessary to generalize this familiar approach when 

considering a radiator with impedance flanges not 

equal to zero [4]. 

The purpose of this paper is to analyse the 

influence of an impedance on the electromagnetic 

field behaviour of a radiating plane waveguide. In 

particular, we investigate the behaviour of the 

tangential field components on a waveguide surface 

with infinite impedance flanges, taking into account 

the specificities of the edges and the radiation pattern. 

The paper is organized as follows: in section 2, 

we consider the solution to the problem of the 

electromagnetic field (EMF) radiation from the open 

end of a parallel-plate waveguide with infinite 

impedance flanges; numerical results are analyzed in 

Section 3, and section 4 is devoted to the conclusion. 

 

II. RADIATION OF A PARALLEL-PLATE 

WAVEGUIDE WITH INFINITE IMPEDANCE 

FLANGES 
2.1. Statement of the problem 

First, we consider the solution to the problem of 

EMF radiation from the open end of a parallel-plate 

waveguide with infinite impedance flanges in the 

following setting (Figure 1). Let a parallel-plate 

waveguide be excited by a wave characterized by 
ii H,E


, with components, 
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where 120W   is the characteristic resistance of 

free space and oH  is the amplitude of the incident 

wave. On the infinite flanges 

 ]0,(x;0y  and ),a[  , the boundary im-

pedance conditions of Shukin-Leontovich are ful-

filled:  

)Hn(nZEn


 ,                        (2) 

zx ZHE  , 

where yin


  is the unit normal to the 0y   plane, 

and E


 and H


 are the electric and magnetic fields, 

respectively. Z  is the surface impedance, so that 

0Z   specifies a perfect conductor.  

 
Figure 1. The open end of a parallel-plate wave-

guide with infinite impedance flanges. 

 

It is necessary to find the EMF in both regions: 

inside the waveguide ( 0y   and ax0  , region 2) 

and the upper half-space ( 0y  , region 1).  

The required EMF should satisfy Maxwell’s eq-

uations applied to radiation and the boundary condi-

tions on the flanges, as well as the conditions relevant 

to the infinite character of tangential components in 

the opening. We consider this problem two-

dimensionally. 

 

2.2. Solution of the problem 
For the solution of the proposed problem, we use 

the Lorentz lemma in integral form for regions 1V  

and 2V  as in [4-6], and we choose a thread in-phase 

with the magnetic current parallel to the z - axis: 

0j .ex.e 


  and  )q,p(Jij m
0z

.ex.m 


 , 

where  q,p   is a two-dimensional delta-function, 

p  is the point of observation, q  is the point of inte-

gration and, m
0J  is the current amplitude. 

As a result, the integral correlation for each re-

gion becomes: 

     




 xdx,xHxExH m
1z1x1z ,               (3) 

      

a

0

m
2z2x02z xdx,xHxEH2xH                (4) 

where  x,xH m
z1

  and  x,xH m
2z

  are the subsidiary 

magnetic fields in regions 1V  and 2V , respectively 

(defined below), and a  is the dimension of the open 

end of the waveguide. 

 

2.3. Integral equations relative to xE .  

Correlations (3) and (4) compose a system of 

integral equations on the 0y   plane. Taking into 

account the equality of the tangential field 

components, z2z1z HHH  ,and x2x1x EEE   

in the opening   a,0x,0y  , and the boundary 

condition of equation (2)  zx ZHE   on the parts of 

the flanges with finite impedance ( ])0,L[x(   

and ])L,a[x(  ), we can obtain a system of 

integral equations relative to the unknown tangential 

component of the electric field )x(Ex  on the 0y   

plane: 

     

   

   
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    (5) 

 

where the subsidiary magnetic fields,  

     )kR(HW2kJx,xH
)2(

0
m
0

m
z1

  

and 

      xcosxcoskWakx,xH nn

0n

nn
m
2z  





 , 

are solutions of the non-uniform Helmholtz equation 

for the complex amplitudes of the vector potential in 

regions 1V  and  2V , respectively. This equation can 

be solved using the standard method of separation of 

variables [7]. Here, 2k   is the wave number, 

  is the wavelength, 22 )'yy()'xx(R   is 
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the distance from the point of observation to the point 

of integration, 
 2
0H   is the zeroth-order Hankel func-

tion of the second kind, 
22

nn kk   is the 

propagation constant of the wave 









 ...2,1,0n;

a

n
n


 , and 










0.n2

,0n1
n  is the 

dielectric permittivity of layer n . 

 

2.4. Effect of the waveguide edges 

At the points 0x   and ax  , the sidewalls of 

the waveguide 2V  and the flanges converge at right 

angles to form edges. Because of the presence of 

these edges with zero curvature (see Figure 1), the 

surface density of the electric charge becomes locally 

infinite. As a result, the vector E


 at these points 

must be given special consideration [8]: 
3/1

xE   , 

where    is the distance from an edge. In order to 

properly take this edge into account in the solution, 

we formulate the required value on the interval  a,0  

as follows: 

  x'xa

)'x(X

W

)'x(Ex


 , 

where 3/1 , and the new unknown value  xX   

is not specified.  Equation (5) can then be rewritten as 

follows:  
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                                                                              (6) 

 

In the case of ideal conducting flanges 

( 0)x(Z  , which makes 0Ex   on the flanges), 

equation (6) turns into a single integral equation: 

  
]a,[x ,Hxd)]'x,x(H)'x,x(H[

x'xa

)'x(X m
z

a
m
z 02 02

0

1 


 
. 

                                                                              (7) 

The solution of equations (6) or equation (7) is 

conveniently solved with the use of the Krylov-

Bogolyubov method [9], which is a piece-wise conti-

nuous approximation to the required value.  In this 

case, the integral equations (6) transform into a sys-

tem of linear algebraic equations (SLAE): 

M,2,1n ,H2CX 0m,n

M

1m

m 


,                     (8) 

where 

  
xd)]'x,x(H)'x,x(H[

x'xa

1
C n

m
2z

x

x

n
m
1zm,n

m

m




 









,

x5.0   , )xx(x n1n   , 

and )M,2,1n(xn   are the lattice points. 

 

II. Results and discussion 
Figure 2a shows the results of the solution to the 

integral equation (7) for )x(X  (dashed line) and 

       
 xaxxXxEx  (solid line) for a wave-

guide antenna with dimensions, 4.0a  , with ideal 

conducting flanges, and with the number of lattice 

points 60M   (  01.0x  ). Analogous results are 

presented in Figure 2b for a waveguide with an open-

ing dimension of 8.0a  . The discretization step, 

x , in both cases is the same as in Figure 2a. Re-

search shows that the required precision in solving 

the integral equation is reached with a number of 

points across the opening equal to 8 or more.  

Figure 3 shows the modulus of the reflection 

coefficient (solid line) inside the waveguide, the ar-

gument of this coefficient (dotted curve) and the 

modulus of the complete field inside (dashed curve), 

which consists of the decaying fields and the reflect-

ed fields. Numerical analysis of the curves shows that 

the reflection coefficient is equal to 0.6 and its argu-

ment represents a travelling wave inside the wave-

guide in the form of a saw-tooth curve.  The complete 

field represents a travelling wave in sinusoidal form.  
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Figure 2. Solution of the integral equation for a 

waveguide antenna weith ideal conducting flanges. 

The dimension of the open end of the antenna is 

(a) 40.a  and (b) 80.a  . The width 40.L  . 

 

 
Figure 3. Modulus of the reflection coefficient (sol-

id curve), the argument of this coefficient (dotted 

curve) and the modulus of the complete field 

(dashed curve) inside the waveguide for the ra-

diated plane waveguide. Parameters used are 

40.a   and 40.L  . 

 

 

Figure 4. Behavior of vectors E


 (solid red curve) 

and  H


 (dashed blue curve) on the open end of 

the waveguide (a) in the absence of impedance 

flanges, 0Z , and (b-c) in the presence of the 

flanges (b) iZ 10 , and (c) iZ 10 . Parameters 

used are  40.a   and 40.L   in all cases. 

 

Figures 4(a-c) show the behaviour of vectors E


 

and  H


 on the open end of the waveguide in the ab-

sence of impedance flanges (Figure 4a), and in the 

presence of the flanges (Figures 4b and c). The para-

meters used are 4.0a   and 4.0L   in all cases. 

As shown, vector E


 in all cases has the form of a 

parabola over the open end of the waveguide. This 

form is inverted for the vector H


 in all cases. In the 
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presence of impedance flanges, we note a large inten-

sity of the electric field vector on the flanges for the 

case when i10Z  , while for the case with 

i10Z  , the field exponentially decreases away 

from the waveguide opening. Furthermore, the level 

of the electric field in the open end and on the flanges 

is higher for i10Z  . Numerical calculations show 

that these vectors are calculated with an error margin 

not higher than 5 %. 

 
Figure 5. Solution of the integral equation giving 

the real and imaginary parts of )x(Ex  for (a) 

iZ 10 , (b) iZ 10 , and (c) WZ 1 , respec-

tively. 

 

Let us consider the behavior of the tangential 

vector components of the field on the 0y   surface, 

for a waveguide with impedance flanges. Figure 5a 

presents the variation of the tangential component of 

vector E


  )x(Ex  for an antenna with capacitive 

impedance, i10Z  , over the regions  0,L  and 

 aL,a    4.0La   of the flanges (the imped-

ance is normalized to 120W  ).  Corresponding 

variations are presented in Figures 5b and 5c, for 

inductive  i10Z   and resistive  1Z   impedance 

cases, respectively, for the same dimensions as in 

Figure 5a (  ZRe , dashed line and  ZIm , solid 

line). As we can see, the presence of an inductive 

impedance leads to the appearance of an electric field 

anomaly at the edges of the waveguide antenna on 

the sides of the impedance flanges.  In addition, the 

intensity of the electric field vector located on differ-

ent sides of the waveguide edges has opposite phases. 

The presence of this specific feature at the edges of 

the waveguide at 0x   and ax   can be taken into 

account by introducing the required functional form 

in the following way: 

    

    
    
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





,            (9) 

where )x(X  is a new unknown function without any 

specification, and   and   define the impedance of 

the flanges with dimension L .              

In this case, the system of integral equations (6), 

in accordance with the Krylov-Bogolyubov method, 

becomes a SLAE relative to )x(XX nn  : 
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)x(ZZ nn  ; 1M , M , 2M  are the numbers of lat-

tice points in the regions   0,L ,  a,0 ,  2La,a  , 

respectively; 101 MMM  ;  10112 MMM  ; 
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Numerical research shows that the smoothest 

variation of the required function )x(X  is obtained 

with the following functional forms of the values of 

  and  : 

5,5Q17.033.0  and 3,4Q44.021.0  , 

where 
Z1

Z
Q


 .              

As an example, in Figures 6(a-c), we present the 

variation of )x(X  (dashed line) and the tangential 

component of vector E


  )x(Ex  (solid line) of an 

antenna with 4.0a  , 4.0LL  , and with the 

impedance flanges of i1Z   (Figure 6a), i10Z   

(Figure 6b) and iZ 100  (Figure 6c), respective-

ly.  Research shows that with 10ZIm  , the ano-

maly (seen in )x(X )  at edge of the impedance 

flange is higher than in the waveguide opening.  In 

the reverse case, it is vice versa. Thus, taking into 

account the anomaly of the electric field )x(Ex  at 

the edges allows us to reduce the solution of the 

boundary problem to the search for a gradually 

changing function )x(X  and consequently, to a sig-

nificant reduction in equation (10) of the order of the 

solved SLAE. 

The radiation patterns of the single waveguide 

antenna are shown in Figure 7 for the capacitive 

(solid line), inductive (dashed line), and the ideal 

conducting (dotted line) flanges. The impact on the 

radiation pattern caused by including impedance re-

gions on the flanges ( 4.0a  , 4.0L  , 0Z  , 

i10Z  , and i10Z  ), is seen as the difference 

between the solid and dashed lines.  As we can see, 

the capacitive impedance significantly distorts the 

wave by increasing the directivity of the antenna but, 

the presence of inductive impedance leads to signifi-

cant distortion of the radiation pattern and to a sig-

nificant growth of lateral lobes along the impedance 

structure, as well as the deviation of the main lobe, 

which is due to the appearance of travelling surface 

waves along the structure. 

  

 
Figure 6. Solution of the integral equation, giving 

)x(Ex  (solid red curve) and )x(X  (dashed blue 

curve) for (a) iZ 1 , (b) iZ 10 , and (c) 

iZ 100 . 
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Figure 7. Radiation patterns of a single waveguide 

antenna for ideal conducting ( 0Z , dotted line), 

capacitive ( iZ 10 , solid line), and inductive 

( iZ 10 , dashed line) flanges, respectively. The 

impact of the impedance part of the flanges on the 

radiation patterns is demonstrated with the solid 

and dashed lines. Parameters used are 40.a  , 

40.L  . 

 

III. Conclusion 
In summary, we have studied the radiation of a 

parallel-plate waveguide antenna. We have calculated 

a strict solution to the problem of analysis of the elec-

tromagnetic field behaviour of a single antenna in the 

shape of an open end of a parallel-plate waveguide 

with an infinite flat impedance flanges. We have 

shown that to obtain a higher precision when solving 

the integral equation we need to use a large number 

of points across the opening of the waveguide, and 

also to take into account the particular features of the 

waveguide edges. 

The electromagnetic field behaviour was investi-

gated by using the impedance approach and the Kry-

lov-Bogolyubov method, which is an iterative ap-

proximation to the required value. The choice of this 

method is explained by the fact that it is the most 

straightforward method and it allows us to obtain in 

analytical form the matrix of coefficients of the sys-

tem of linear algebraic equations, thereby reducing 

the computational time.  

Finally, we have also shown that a capacitive 

impedance distorts the wave by increasing the direc-

tivity of the antenna while, the inductive impedance 

leads to significant distortion of the radiation pattern 

and to a significant growth of lobes along the imped-

ance structure. We also note that the study of the im-

pedance influence on the electromagnetic field be-

haviour of a parallel-plate waveguide antenna is nec-

essary for solving the problem of coupling between 

apertures antennas located on a common impedance 

surface. 
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