
Deepika Sonal et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.144-148

 www.ijera.com 144 | P a g e

Preventing Covert Channel Attacks By Using Software Agents

Deepika Sonal
1
, D.Kiranmayi

2
1
(Department Of Computer Science and Engineering, Vignan Institute of Information Technology,

Visakhapatnam, Andhra Pradesh.)
2
 (Department Of Computer Science and Engineering, Vignan Institute of Information Technology,

Visakhapatnam, Andhra Pradesh)

Abstract:
 Information sharing and their protection is a major problem for organisations having sensitive data. Shared

resources are utilized by the covert channel for indirectly transmit sensitive information to unauthorized parties.

For security purpose some mechanism such as seLINUX rely on the tagging the file system with access control

properties. Such mechanism does not provide strong protection so colored LINUX, an extension to seLINUX is

used to “color” the content of the file according to security classification to enhance resistance information

laundering. In this paper we discuss about the mobile agent based approach to provide the environment to

automate the process of detecting and coloring the respective file system(host) and monitoring the colored file

system for instance of potential information leakage.

Keywords: covert channel, information laundering, information leakage, notify, overwhelming

I. Introduction
Information protection is one of the most

pressing current challenges in distributed system.

Different organization has sensitive information,

which needs to be transferred by covert channel, e.g.

personal health information, credit card details within

banks, government agencies and so on. A covert

channel is a by product of shared resources like

memory, network, and execution time on computing

device and can be created and accessed dynamically

[1]. Because the covert channels are created from

shared resources, it is difficult to detect and prevent

their occurrences. Covert channel attacks utilise

shared resources to indirectly transmit sensitive

information to unauthorised parties.

According to survey in 2006 of global security

system, 28 percent of information leakage

contributed 18 percent of internal breaches [2].

Internal breaches occurs inside the organisations by

the legitimate and authenticated users, most

conventional security measurements cannot

effectively detect and prevent such activities. Now

days operating systems counter unauthorized

accesses through the use of access control tags, or

labels applied to subjects (processes or users) and

objects (files . Now these labels are compared with

the permissions assigned to users attempting to

access the labelled files. SELINUX is use to provide

this mechanism, which is effective in access control

in most of the situation, it is vulnerable to covert

channel attacks. The attacks enable laundering of

access control tags or tags reassignment. An

extension to SELINUX that is colored LINUX [3]

provides data watermarking, or coloring. The main

advantage of their approach is that it does not need

any knowledge of covert channels since it

modification of operating system is on filesystem

kernel to monitor read and write accesses. But this is

strongly applicable for “close” system that has

modified operating system.

To overcome this drawback, we proposed an

information leakage detection (ILD) agent system.

This approach involves the ability to modify and add

detection capability in modular fashion and also

provide conditional deployment of such capabilities

with the help of mobile agent. The agent based

approach also makes the coloring scheme effective in

an open system which is a hybrid of machines

running modified operating system. Mobile-c [4] is

chosen for mobile agent platform, as it meets all our

requirements.

 In our next section 2, related work on information

detection is presented. Section 3 details about agent

system, section 4 and 5 provides detection schemes

and proposed strategies, section 6 communication

systems present in agent model, section 7 and 8

contains implementation details and results. Finally

section 9 provides conclusion and future directions.

II. Related work

Most of the work done in network security is

for preventing outsider access, only few literatures

are base on insider leakage of information’s. To

protect share information among organization one

mechanism is introduce that is Trusted Platform

Module (TPM) [5]. TPM devices introduce that data

can be shared only by trusted devices. Cover channel

attacks are discussed on [6]. covert channel on

RESEARCH ARTICLE OPEN ACCESS

Deepika Sonal et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.144-148

 www.ijera.com 145 | P a g e

network based storage based on IP to live (TTL) is

designed in [7]. A link layer network based covert

channel in MAC protocol based on the splitting

algorithm is proposed in [8]. Detection of covert

channel attacks so many methods are proposed such

as information flow analysis technique [9], time-

domain anomaly, but it is impossible to enumerate all

covert channels in a real system.

Watermarking offers a strong security tags and can

be detect information leakage from both insiders as

well as through covert channels attacks. Finally,

approach proposed in this paper to colored LINUX

methodologies with mobile agent is novel.

III. Agent system
Classification of information leakage

detection (ILD) agent system is given in the figure 1.

Properties and responsibilities of each type of agent

are differ from each other and discussed below.

1. Controller agent (CA)

CA is responsible for coordinating activities

and dispatching to subordinate agents.

2. Detection agent(DA)

DA is to identify new host in the network

and to verify the host’s states.

3. Queue agent

QA provides the ordering approach to

dispatching agents to newly discovered

hosts. QA avoid the overwhelming of

agents.

4. Monitoring agent (QA)

MA will perform active monitoring on the

host filesystem through the inotify kernel

subsystem to identify file write and creation

operation.

5. Watermarking agent(WA)

The responsibility of this agent is to

watermark all files on the host’s filesystem

and to perform subsequent watermark

analysis at the request of Monitor agents.

6. Permission agents(PA)

PA handles permissions issues involving

Monitor agent and Watermarking agents

with their target host.

7. Environment agents(EA)

EA is responsible for handling necessary

agent environment such as software

dependencies without the intervention of the

target host’s administrator.

IV. Proposed strategies
Process flow is depicted in figure 2.

Objective of each step and how they can achieved

explains in below subsections

 1. Host in the network
In this agent system all operations begins with, and

are coordinated by CA. Initially networks are clean,

yet unknown. A DA is dispatched to scan the

network for SELINUX-based hosts. After

discovering the first host the DA is to determine

whether or not the newly host is colored. If the host

is un-colored, it is reported to the CA.

2. Non-colored host

Now the CA will create a queue agent and aware it

with the reported host. After that all the host reports

will also be forwarded to the QA. And when CA will

query for the new host, than the QA will dequeue and

forward to CA.

3. Permission granted and management

CA assigns a new host to PA. PA use standard

LINUX remote management facilities, as a mobile

agent environment has not yet been installed on the

target host and will attempt to determine proper

permission to target host and operation of

subsequently dispatched. Once this process has

completed, the CA remotely installs the appropriate

agent environment on the target host.

4. Watermarking target host

After installation of the agent environment on the

target host, the CA dispatches WA to the host, WA

“colored” all files on the host’s filesystem. This

process continues until the controller agent instructs

the Watermarking Agent to terminate.

5. Detection methodologies

Kernel –level system call hooking is use to maintain

the high performance and mitigate the time cost

associated with “write” and “create” operation

detection, possibility and feasibility of detecting such

 Figure 1. Agent classification.

Deepika Sonal et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.144-148

 www.ijera.com 146 | P a g e

operations via their respective system calls at the

kernel level.

V. Agent communication system
Communication among agent will follow

FIPA communicative act specification which is based

on speech act theory to facilitate communication

interoperability between different agent platform

[10]. Table 1 through 7 illustrates the communication

details.

TABLE1: Controller Agent Communications
From: Controller Agent (CA)

To: Detection Agent (DA)

 Ask the DA to report CA when the first

un-colored host is Detected.

(REQUEST-WHEN)

 After first host found, ask the DA to report

to QA whenever un-colored hosts are

found. (REQUEST-WHENEVER)

To: Queue Agent (QA)

 Ask the QA to upgrade current non-

colored hosts to its queue.

(REQUEST)

 Retrieve the hosts in the QA’s queue.

(REQUEST with INFORM)

To: Permission Agent (PA)

 Request PA to prepare target host for

agent environment installation.

(REQUEST)

To: Watermarking Agent (WA)

 Ask the WA to watermark the host’s

filesystem and report the completion.

(REQUEST-WHEN)

To: Monitor Agent (MA)

 Ask the MA to monitor the target host and

notify the CA when information leakage

occurred. (SUBSCRIBE)

To: Environment Agent (EA)

 Ask the EA to check for, and resolve,

software dependencies on the target host

which may inhibit the functionality of

subsequently dispatched agents.

(REQUEST)

TABLE 2: Detection agent communications

From: Detection Agent (DA)

To: Controller Agent (CA)

 Confirm to CA that network scan to

determine non-colored host

 is proceeding. (AGREE)

 Report to CA when the first non-colored

host is found. (INFORM)

 Confirm to CA that notification to QA

about non-colored hosts

 can proceed. (AGREE)

To: Queue Agent (QA)

 Ask the QA to insert current non-colored

hosts in its queue.

TABLE 3: Queue agent communications

From: Queue Agent (QA)

To: Controller Agent (CA)

 Confirm to CA that queue insertion has

been performed.

 (AGREE)

 Return the current hosts in queue to CA.

(INFORM)

 To: Detection Agent (DA)

 Confirm to DA that queue insertion has

occurred. (AGREE)

 TABLE 4: Permission agent communications

From: Permission Agent (PA)

To: Controller Agent (CA)

 Confirm to CA to prepare the host for

agent environment

 Installation. (AGREE)

 Notify CA of the result of host

preparation. (INFORM)

TABLE 5: watermarking agent communications

From: Watermarking Agent (WA)

To: Controller Agent (CA)

 Confirm with CA to perform

watermarking operation. (AGREE)

 Return the result of watermarking

operation to CA. (INFORM)

Deepika Sonal et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.144-148

 www.ijera.com 147 | P a g e

TABLE 6: Monitor agent communications

From: Monitor Agent (MA

To: Controller Agent (CA)

 Confirm with CA to perform queue

insertion. (AGREE)

 Notify CA of the occurrence of

information leakage. (INFORM)

TABLE 7: Environment agent communications

From: Environment Agent (EA)

To: Controller Agent (CA)

 Confirm with CA to perform

environment checking and dependency

 Resolution. (AGREE)

VI. Implementation approach
Mobile–c is accepted as mobile agent

framework due to its low memory footprint when

compare to other popular agent architecture. Mobile-

c agents were developed to perform initial

watermarking of a portion of filesystem and also use

for detection of leakage.

 We focused on the image file for our experiments.

The watermarking algorithm is explain in [11].this

algorithm has many nice properties, especially that of

blindness, which is require for system.

 Dependencies can be handling by agent execution

environment; mobile-c uses Ch, an embeddable, C99-

compliant,c-language interpreter as its execution

environment. Certain dependencies such as NetPBM,

cannot be detect by the agent themselves and

therefore we added several package to Ch execution

environment, for this purpose watermarking agents

shall be employed.

 Watermarking agents are prepared by

watermarking all files with particular permission tags

in filesystem. Given tags are essentially identify the

sensitivity of a file are used in conjunction assigned

to individual user’s. Watermarking agents will detect

the presence of watermark in all scanned file prior to

watermarking. If it is not detected then it provides it

immediately. And in the case of detection watermark

WA will compare the watermark with the permission

tags. Algorithm 1 provides the work done by

watermarking agent.

 Monitor agents perform the primary role of

monitoring the target filesystem for any “creation”

and “write” operations and notifying the

watermarked agent for further processing. Algorithm

2 explain the performance of the monitoring agent

operation in notify kernel system.

Algorithm 1
 Watermark (file C)

1: while C has children do

2: ci child i of C

3: if ci is a file then

4: Watermark(ci)

5: else

6: boolean w = DetectWatermark(ci)

7: if w = TRUE then

8: Compare watermark of “ci “with permissions tag

9: if Watermark does not match tag then

10: Quarantine or Securely Remove “ci”

11: end if

12: else

13: Watermark ci with signature = permissions tag

14: end if

15: end if

16: end while

17: return

Algorithm 2
 Monitor()

1: D inotify event descriptor

2: for all Target directories ci do

3: Add inotify watch descriptor for “write” and

“create”

 operations within ci

4: end for

5: loop

6: f Read event from event descriptor W

7: Pass f to Watermarking Agent for Analysis

8: end loop

VII. Results
In the covert channel, if the information is

leaked than the detection methods prevents any

disassociation of leaked information. If the

permission is changed or altered during leakage, they

will not match the information’s embedded

watermark. And if the information is altered, then the

watermark will no longer be valid. Initial test is

conducted on Intel-based machine with LINUX

kernel version 2.6 and SELINUX security extension.

Watermarking test was introducing in test and next is

monitor agent was introduced that tested the

functionality by creating new file, and writing the

existing files in the filesystem.

 Agents correctly identified the invalid

watermarks by comparing it with permission tags and

modified it. Information leakage detection is vibrant

and further researches needs for continue

development in this field.

VIII. Conclusion and future work
Leakage detection approach on agent system

based modifies and adds the capability of central

control mechanism in distributed system. All the

Deepika Sonal et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.144-148

 www.ijera.com 148 | P a g e

actions are performing by the different agents

mention in the paper. Mobile agents are able to

provide the unique detection scheme that will benefit

the detection and control of information leakage in

covert channel.

 Future work should done in this area is to

provide blockage in covert channel if prior

information of leakage is detected. Covert channels

sense the attacks before the transfer of the

information by providing some basic sense of

detection from prior attacks and update it with some

kind of intelligence.

REFERENCES
[1.] National Computer Security Center. “A

Guide to Understanding Covert Channel

Analysis of Trusted Systems” NCSC-TG-30,

November 1993,

http://www.radium.ncsc.mil/tpep/library/rain

bow

[2.] A. Melek and M. MacKinnon, “2006 Global

Security Survey. Research Report”

Deloitte2006. http://www.deloitte.com

[3.] H. Okhravi and S. Bak, “Colored LINUX:

Covert Channel Resistant OS Information

Flow Security”,

[4.] http://www.mobilec.org/

[5.] Trusted platform module (tpm) summary
Https://www.trustedcomputinggroup.org/..

./trusted_platform_module_tp.

[6.] S. Zander, G. Armitage, P. Branch, “Covert

Channels and Countermeasures in Computer

Network Protocols”, IEEE Communications

Magazine, vol. 45, issue 12, pp. 136-142,

December 2007.

[7.] H. Qu, P. Su,and D. Feng, “A typical noisy

covert channel in the IP protocol”, In

Proceedings of the 38
th

 Annual International

Carnahan Conference on Security

Technology, pp. 189-192, 2004.

[8.] S. Li and A. Ephremides, “A covert channel

in MAC protocols based on splitting

algorithms”, IEEE Wireless

Communications and Networking

Conference, vol. 2, pp. 1168-1173, 2005

[9.] C. Tsai, V. Gligor and C. Chandersekaran,

“On the Identification of Covert Storage

Channels in Secure Systems”, IEEE

Transactions on Software

Engineering, vol. 16, no. 6, pp. 569-580,

1990

[10.] FIPA communicative Act Library

Specification. “Foundation for Intelligent

Physical Agents”, 2000.

http://www.fipa.org/specs/fipa00037

[11.] R. Dugad, K. Ratakonda, and N. Ahuja, “A

New Wavelet-based Scheme for

Watermarking Images”. In

Proceedings of the International

Conference on Image Processing, vol. 2,

pp. 419-423,

http://www.radium.ncsc.mil/tpep/library/rainbow
http://www.radium.ncsc.mil/tpep/library/rainbow
http://www.deloitte.com/
http://www.mobilec.org/
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCkQFjAA&url=https%3A%2F%2Fwww.trustedcomputinggroup.org%2Fresources%2Ftrusted_platform_module_tpm_summary&ei=6yg_U53JFoGJrAfW8oGACw&usg=AFQjCNEsWEv1NrKd_-iHDeFhDuukNaa4ww&sig2=DqObWpS44_VATEt0Q4AQjQ&bvm=bv.64367178,d.bmk
https://www.trustedcomputinggroup.org/.../trusted_platform_module_tp
https://www.trustedcomputinggroup.org/.../trusted_platform_module_tp
http://www.fipa.org/specs/fipa00037

