
Jinde Vijay Kumar et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.01-07

 www.ijera.com 1 | P a g e

FPGA Based Implementation of Pipelined 32-bit RISC Processor

with Floating Point Unit

Jinde Vijay Kumar
1
, Chintakunta Swapna

2
, Boya Nagaraju

3
 , Thogata

Ramanjappa
4

1,2Research Scholar, Department of Physics, S.K.University, Anantapur, A.P.

3Assistant Professor, Department of Physics, INTELL Engg. College, Anantapur, A.P.
4 Professor, Dean, Faculty of Physical Sciences, Department of Physics, S.K.University, Anantapur, A.P.

ABSTRACT
This paper presents 32-bit RISC processor with floating point unit to be designed using pipelined architecture;

through this we can improve the speed of the operation as well as overall performance. This processor is

developed especially for Arithmetic operations of both fixed and floating point numbers, branch and logical

functions. The proposed architecture is able to prevent pipelining from flushing when branch instruction occurs

and able to provide halt support. Floating point operations are widely used these days for many applications

ranging from graphics application to medical imaging. Thus, the processor can be used for diversified

application area. The necessary code is written in the hardware description language Verilog HDL. Quartus II

10.1 suite is used for software development; Modelsim is used for simulations and then implementation on

Altera DE 2 FPGA board.

Keywords - FPGA, RISC and Altera DE2 board

I. INTRODUCTION

Now-a-days, computer and mobile phones

are indispensable tools for most of everyday

activities. This places an increasing burden on the

embedded microprocessor to provide high

performance while retaining low power consumption

and small die size, which increases the complexity of

the device. However, as products grow in

complexity, more processing power is required while

the expectation on battery life also increases.

 The trend in the recent past shows the RISC

processors clearly outsmarting the earlier CISC

processor architecture. RISC is a type of

microprocessor that has a relatively limited number

of instructions. Though it may seem less effective for

a computational task to be executed with many

simple instructions rather than a few complex

instructions, the simple instructions take fairly the

same amount of time to be performed, making them

ideal for pipelining. It is designed to perform a

smaller number of types of computer instructions so

that it can operate at a higher speed (perform more

million instructions per second, or millions of

instructions per second). Earlier, computers used only

20% of the instructions, making the other 80%

unnecessary. One advantage of reduced instruction

set computers is that they can execute their

instructions very fast because the instructions are so

simple.

 This paper presents a very simple 32-bit data

width general purpose 4 stage pipelined processor

with floating point unit on FPGA. It has a complete

instruction set, program and data memories, general

purpose registers and a simple Arithmetic & Logical

Unit (ALU) with single precision floating point

arithmetic operations. In this design most instructions

are of uniform length and similar structure, arithmetic

operations are performed and the resultant value is

stored in the memory/registers and retrieved back

from memory when required. In this paper an

efficient FPGA implementation of 32-bit single

precision floating point unit which performs addition,

subtraction, multiplication and division.

II. ARCHITECTURE OF 32-bit RISC

PROCESSOR WITH FPU

Fig. 1 shows the proposed processor of 32-

bit pipelined RISC processor with Floating Point

Unit. The processor design is based on the RISC

instruction set which is characterised by 32-bit

architecture having four 32-bit registers. The RISC is

designed using the Hardware Description Language

Verilog HDL. Machine instructions were

implemented directly in hardware.

RESEARCH ARTICLE OPEN ACCESS

Jinde Vijay Kumar et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.01-07

 www.ijera.com 2 | P a g e

Fig.1 Architecture of 32-bit RISC Processor with FPU

The architecture of the pipelined 32-bit RISC

processor consists of instruction fetch, branch

prediction, instruction decode, execute, memory

read/write back, instruction set and floating point

unit. Pipelining technique allows for simulations

execution of parts or stages of instructions more

efficiently. With a RISC processor, one instruction is

executed while the following instruction is being

fetched. By overlapping these operations, the CPU

executes one instruction per clock cycle, even though

each instruction requires three cycles to be fetched,

decoded, and executed.

 The pipeline stages for different type of

instructions are processed as follows, in the fetch

stage; instructions are fetched at every cycle from the

instruction memory whose address is pointed by the

program counter (PC). During the decode stage, the

registers are read from the register file and the

opcode is passed to the control unit which asserts the

required control signals. Sign extension is also done

for the calculation of effective address. In the execute

stage, for register type instruction, the ALU operation

and also floating point arithmetic operations are

performed according to the ALU operations control

signals and for load and store instructions, effective

address calculation is done. The load and store

instructions write to and read from the data memory

in the memory stage while the ALU results and the

data read from the data memory are written in to the

register file by the register type and load instructions

respectively in the write-back stage.

There are basically three types of instructions namely

Arithmetic & Logical Instructions (ALU) with

floating point unit instructions, Load/Store

instructions and Branch Prediction instructions.

1. ALU instructions with Floating point unit:

The ALU is responsible for all arithmetic and logic

operations that take place within the processor. These

operations can have one operand or two, with these

values coming from either the register file or from the

immediate value from the instruction directly. The

operations supported by the ALU include add,

subtract, compare, and, or, not, increment, decrement,

nand, nor and xor. The output of the ALU goes either

to the data memory or through a multiplexer back to

the register file.

 All the arithmetic operations are performed like

addition, subtraction, multiplication and division

instructions are implemented on Single Precision

Floating Point Unit.

2. Load/Store Instructions:

Usually take a register as an operand and a 16-bit

immediate value. If the instruction is a load, memory

does a read using the effective address. If it is a store,

then the memory writes the data from the second

register read from the register file using the effective

address. The purpose of store unit is store the result

into corresponding register or memory.

3. Branch Prediction Instructions:

A branch prediction causes an immediate value to be

added to the current program counter. Some branch

Jinde Vijay Kumar et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.01-07

 www.ijera.com 3 | P a g e

Fig.2 Instruction Fetch Unit

Fig.3 Instruction Decoder Unit

instructions are BZ (Branch Zero), BRZ (Branch

Register Zero) and BRC (Branch Register Carry).

III. MODULES DESIGN OF RISC

This section presents the design of different

modules like instruction fetch, instruction decode,

register file, execute, floating point unit, memory

read/write back and instruction set along with four

general purpose registers namely Register0,

Register1, Register2 and Register3.

3.1 Instruction Fetch (IF):

The instruction pointed to by the PC is

fetched from memory into the instruction register of

the CPU, and the PC is incremented to point to the

next instruction in the memory. Normally, the PC is

incremented by one, during each clock cycle unless a

branch instruction is executed. When a branch

instruction is encountered, the PC is incremented by

the amount indicated by the branch offset. The block

diagram of Instruction Fetch Unit is shown in Fig.2

3.2 Branch Prediction:

The architecture

uses dynamic

branch prediction as

it reduces branch penalties under hardware control.

The prediction is made in Instruction Fetch of the

pipeline. Thus branch prediction buffer is indexed by

the lower order bits of the branch address in

Instruction Fetch. In this paper, the architecture

doesn’t need any control hazards, as auto branch

prediction is happening in the Fetch stage. Without

branch prediction, the processor has to wait until the

conditional jump has passed the execute cycle

before the next instruction can enter the fetch stage

in instruction pipeline. The branch predictor attempts

to avoid the waste of time whether the conditional

jump is most likely to be taken or not taken. The

branch prediction part to be the most likely is then

fetched and speculatively executed. This will

increase flow in instruction pipeline and achieve

high effective performance.

3.2 Instruction Decode (ID):

The control unit generates all the control signals

needed to control the coordination among the entire

component of the processor. This unit generates

signals that control all the read and write operation of

the register file, and the Data memory. It is also

responsible for generating signals that decide when to

use the multiplier and when to use the ALU, and it

also generates appropriate branch flags that are used

by

the Branch Decide

unit. The instruction decode unit is shown in Fig 3.

3.3 Register File:

This is a two port register file which can perform two

simultaneous read and one write operation. It

contains four 32-bit general purpose registers. The

registers are named R0 through R4. R0 is a special

register, which always contains the value zero and

any write request to this register is always ignored.

When the Reg_Write signal is high, a write operation

is performed to the register.

3.4 Execution Unit:

This unit is responsible for providing signals to the

ALU that indicates the operation it will perform. The

input to this unit is the 5-bit opcode and the 2-bit

function field of the instruction word. It uses these

bits to decide the correct ALU operation for the

current instruction cycle. This unit also provides

another set of output that is used to gate the signals to

the parts of the ALU that it will not be using for the

current operation.

 This stage consists of some control circuitry

that forwards the appropriate data, generated by the

Jinde Vijay Kumar et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.01-07

 www.ijera.com 4 | P a g e

Fig.4 Execution Unit

Fig.5 Floating Point

Unit

ALU or read from the Data Memory, to the register

files to be written into the designated register. The

block diagram of Execution Unit is shown in Fig. 4.

3.5 Floating Point Unit:

Most of today’s computers are equipped with

specialized hardware that performs floating-point

arithmetic with no special programming required.

Floating point computational logic has long been a

mandatory component of high performance computer

systems as well as embedded systems and mobile

applications. The advantage of floating point

representation over fixed-point and integer

representation is that it can support a much wider

range of values. In the present work 32-bit FPU is

incorporated, which supports Single Precision IEEE-

754 format. The IEEE-754 standard defines a Single

as 1 bit for sign, 8 bits for exponent and 23 bits for

mantissa.

 The FPGA implementation of 32-bit Single

Precision floating point unit provides to addition,

subtraction, multiply and division operations for any

two operands of the same format. The destination

format shall be at least as wide as the operands

format. The block diagram of floating point unit is

shown in Fig.5.

3.5.1Floating Point Addition/Subtraction

Algorithm:

Step I: Align exponents (if necessary)

Temporarily De-normalize one with smaller

exponent.

Add 2 to exponent! Shift significand right by 2.

Step II: add significands.

Remember overflow, it isn’t treated like integer

overflow.

Step III: Normalize result.

Shift significand right by 1 add 1 to exponent.

3.5.2 Floating Point Multiplication Algorithm:

Step I: Normalization

Step II: Addition of exponents in biased notation

(must subtract bias)

Step III: When multiplying two normalized

significands.

3.5.3 Floating Point Division Algorithm:

Step I: Normalization

Step II: Subtraction of exponents in biased notation

(must add bias).

Step III: Binary point placement.

Step IV: Compare the significands.

3.6 Memory Read/Write:

The architecture used is Modified Harvard

architecture .This module supports 512 depth of 32-

bit data words. The Load and Store instructions are

used to access this module. Finally, the Memory

Access stage is where, if necessary, system memory

is accessed for data. Also, if a write to data memory

is required by the instruction, it is done in this stage.

In order to avoid additional complications it is

assumed that a single read or write is accomplished

within a single CPU clock cycle.

3.7 Instruction Set:

The instruction set used in this architecture consists

of arithmetic, logical, floating point, memory and

branch instructions. It will have short (8-bit) and long

(16-bit) instructions. For all Arithmetic and Logical

operations 8-bit instructions are used, and for all

memory transactions and jump instructions 16-bit

instructions are used. It will also have special

instructions to access external ports.

Jinde Vijay Kumar et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.01-07

 www.ijera.com 5 | P a g e

Fig.6 Simulation Waveform of Instruction Fetch Unit

Fig.7 Simulation Waveform of Instruction Decoder Unit

Fig. 8 Simulation Waveform of Execution Unit

 The architecture will also have internal 64-bit

general purpose registers that can be used in all

operations. For all the jump instruction, the processor

architecture, will automatically flushes the data in the

pipeline, so as to avoid any misbehavior.

IV. SIMULATION RESULTS:

Jinde Vijay Kumar et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.01-07

 www.ijera.com 6 | P a g e

Fig.9 Simulation Waveform of Single Precision Floating Point Unit

Fig.10 Simulation Waveform of 32-bit RISC Processor

Fig.11 RTL Schematic view of Proposed Processor

Jinde Vijay Kumar et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.01-07

 www.ijera.com 7 | P a g e

Fig.13 Flow Chart of Proposed Processor

V. FLOW CHART OF PROPOSED

PROCESSOR

V. CONCLUSION

FPGA based pipelined 32-bit RISC

processor with Single Precision Floating Point Unit

is designed and Verilog coding adopted. The design

is implemented on Altera DE2 FPGA on which

Arithmetic operations, Branch operations, Logical

functions and Floating Point Arithmetic Operations

are verified. Pipelining would not flush when branch

instruction occurs as it is implemented using dynamic

branch prediction. This will increase flow in

instruction pipeline and high effective

performance. This architecture has become

indispensable and increasingly important in many

applications like signal processing, graphics and

medical.

REFERENCES
[1] R. Uma, “Design and Performance Analysis

of 8-bit RISC processor using Xilinx Tool”,

International Journal of Engineering Research

and Applications (IJERA), ISSN: 2248-9622,

Vol-2, Mar-Apr-2012.

[2] J. Poornima, G.V.Ganesh, M. Jyothi, M.

Shanti and A.Jhansi Rani,”Design and

implementation of pipelined 32-bit Advanced

RISC processor for various D.S.P

Applications”, Proceedings of International

Journal of Computer Science and Information

Technology, ISSN: 3208-3213, Vol-3(1),

June-2012.

[3] Xiao Li, Longwei Ji, Bo Shen, Wenhong Li,

Quianling Zhang, “ VLSI implementation of

a High-performance 32-bit RISC

microprocessor”, Communications, Circuits

and Systems and West Sino Expositions,

IEEE , International Conference, ISSN:1458-

1461,Vol-2,2002.

[4] http://elearning.vtu.ac.in/12/enotes/Adv_Com

_Arch/Pipeline/Unit2-KGM.pdf.

[5] Asmita Haveliya “Design and simulation of

32-point FFT using Radix-2 Algorithm for

FPGA Implementation” IEEE, 167-171,

2012.

[6] The pipelined RISC-16 ENEE 446: Digital

Computer Deisgn, Fall 2000 by Prof. Bruce

Jacob.

[7] Preetam Bhosle, Hari Krishna Moorthy,”

FPGA Implementation of Low Power

Pipelined 32-bit RISC Processor”,

Proceedings of International Journal of

Innovative Technology and Exploring

Engineering (IJITEE), ISSN: 2278-3075,

Vol-1, Issue-3, August 2012.

[8] Charles H.Roth Jr, “Deisgn Systems Design

using VHDL”, Prentice Hall 2
nd

 Edition,

2000.

[9] Samir Palnitkar,”Verilog HDL: A Guide to

Digital Design and Synthesis”, Prentice Hall,

2
nd

 Edition, 2003.

[10] http://en.wikipedia.org/wiki/Singleprecision_

floating-point_format.

[11] Galani Tina G,Riya Saini and R.D.Daruwala,

”Design and Implementation of 32-bit RISC

Processor using Xilinx”, International Journal

of Emerging Trends in Electrical and

Electronics(IJETEE)-ISNN:2320-9569,Vol

No.5,Issue 1,July-2013.

Start

Set initial Program Counter (PC)

value

Fetch instruction from instruction

Increment Program Counter (PC)

Decode from instruction register

Based on opcode instruction,

executes ALU operations and

Floating point unit

Stored into memory unit

