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Abstract: 

Frequent itemset mining (FIM) is a core area for many data mining applications as association rules 

computation, clustering and correlations, which has been comprehensively studied over the last decades. 

Furthermore, databases are becoming gradually larger, thus requiring a higher computing power to mine them in 

reasonable time. At the same time, the improvements in high performance computing platforms are 

transforming them into massively parallel environments equipped with multi-core processors, such as GPUs. 

Hence, fully operating these systems to perform itemset mining poses as a challenging and critical problems that 

addressed by various researcher. We present survey of multi-core and GPU accelerated parallelization of the 

FIM algorithms 

 

I. Introduction 
Data mining also called as Knowledge 

Discovery in Databases (KDD) [1]. Now a day many 

of the organization collect sales data. This data is 

stored in form of transaction, so each transaction 

represent sale order. In such database each record 

represent transaction and attribute represent item 

parches by customer. Now a day many of the 

organization collect sales data. This data is stored in 

form of transaction, so each transaction represent sale 

order. In such database each record represent 

transaction and attribute represent item parches by 

customer. 

Take an example of super market. In that, each 

transaction is collected and after getting large amount 

of data. They apply market basket analysis and find 

out the pattern. The discovered patterns are set of 

items that are most frequent in database. Like 60 

percent of people who buy bread also buy the butter. 

Decision making person use this detail for identify the 

customer buying habits. 

Association rule mining is help in finding relationship 

among the set of items in all transactions. Apriory 

algorithm used for discovering association rules 

between items in market-basket data [2]. Association 

rule mining require two predefined values, those 

values are minimum confidence and minimum 

support. This mining process is divide into two sub 

process. First one for finding those items which 

occurrences in database across the minimum threshold 

or minimum support count. That is call frequent items 

set or large items set. And second one for generating  

 

 

 

of rules from frequent items set with condition is that 

it satisfy the minimum confidence. 

Apriori Introduction 

Let D be the market-basket database, where 

each row contains T Transactions. Transactions 

tagged with unique identifier Tid. Now let I be the 

item set { I1, I2, I3} If an item set contain k-item then 

it called k-itemset, and all subset of k-itemset satisfy 

the minimum support count then it’s called Lk 

frequent itemset or large itemset. This algorithm need 

two basic steps are (a) Join, self-join with previous 

frequent k-itemset and create new candidate Ck+1 

itemset. (b) Prune, filter from the current candidate 

itemset whose subset is not frequent in previous 

step.Below step explain the working of Apriory 

algorithm. 

1. Assume that minimum support count and 

minimum confidence are given as min-sup and 

min-conf respectively 

2. Scan the entire database and find out candidate 1-

itemset C1 along with occurrence count. That is 

number of times each item appeared in database. 

3. From C1 eliminate those items which count is not 

satisfy minsup threshold. Remaining 1-items in 

C1 which called L1. 

4. L1 join L1, and create new C2, again scan the 

database and calculate number of times candidate 

2-itemset appeared in database. 

5. Apply the pruning in C2 and we get the L2. 

6. As this way iteratively step 2 to 5 is carried out 

until the CK is null 
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CUDA Programing 

At the start of multicore CPUs and GPUs the 

processor chips have become parallel systems. But 

speed of the program will be increased if software 

exploits parallelism provided by the underlying 

multiprocessor architecture [3]. Hence there is a big 

need to design and develop the software so that it uses 

multithreading, each thread running concurrently on a 

processor, potentially increasing the speed of the 

program dramatically. To develop such a scalable 

parallel applications, a parallel programming model is 

required that supports parallel multicore programming 

environment. NVIDIA’s graphics processing units 

(GPUs) are very powerful and highly parallel. GPUs 

have hundreds of processor cores and thousands of 

threads running concurrently on these cores, thus 

because of intensive computing power they are much 

faster than the CPU. 

CUDA stands for Compute Unified Device 

Architecture. It is a parallel programming paradigm 

released in 2007 by NVIDIA. It is used to develop 

software for graphics processors and is used to 

develop a variety of general purpose applications for 

GPUs that are highly parallel in nature and run on 

hundreds of GPU’s processor cores.   

CUDA uses a language that is very similar to C 

language and has a high learning curve. It has some 

extensions to that language to use the GPU-specific 

features that include new API calls, and some new 

type qualifiers that apply to functions and variables. 

CUDA has some specific functions, called kernels. A 

kernel can be a function or a full program invoked by 

the CPU. It is executed N number of times in parallel 

on GPU by using N number of threads. CUDA also 

provides shared memory and synchronization among 

threads. 

Parallel Algorithms 

Agrawal & Shafer [9] was presented first 

parallel version of Apriori. They implemented three 

different parallelization of Apriori on a distributed-

memory machine (IBM SP2).The Count Distribution 

algorithm is a straight-forward parallel strategy of 

Apriori. Each processor has portion of full dataset and 

generates the partial sum (support) of all candidate 

itemsets from its portion of database partition. At the 

end global support is calculated by collecting all 

partial support from each processor. The Data 

Distribution algorithm partitions the candidates into 

disjoint sets, which are forwarded to each processor.  

To calculate the global support, each processor must 

scan the entire database from its local partition as well 

as from all other partition in all iterations. Thus it 

suffers from huge communication overhead. The 

Candidate Distribution algorithm follow the same 

strategy applied in Data Distribution, but it 

selectively replicates the dataset, the reason behind   

that each processor proceeds independently. The local 

portion of dataset is still scanned in every iteration. 

Count Distribution was shown to have superior 

performance among these three algorithms. Many 

algorithms can utilize one of above strategy to 

parallelize it.  Like AprioriDP [10] was dynamic and 

triangle base method to find frequent 2-itemset.   

Next section describe the brief summary of parallel 

algorithms implemented in NVIDIA architecture with 

the use of CUDA. Section 3 employ the detail 

comparison of CUDA base Apriori algorithms.   

 

II. Related Work 

Wenbin Fang and Mian Lu. [4] 

These group of authors proposed Apriori[2] and it was 

first time addressed parallel version of FIM[4]. They 

have described two different approach, pure bitmap 

and trie-based bitmap. Transactions and items are 

coded in bitmap and then transfer in GPU memory. 

These may degrade the performance, because that 

bitmap size are larger then compare to[8]  

Figure (a) shows traditional database representation. 

In figure (b) tidset is vertical database representation 

that used in many FIM algorithms and demonstrate 

speed factor is higher than traditional one. But in GPU 

tidset is not coalesced access and unpredictable 

memory read so it lead to poor performance. In 

contrast bitset is complete coalesced access. Below 

figure shows the coalesced access. 

 

Figure 1 Data set 

Fan Zhang, Yan Zhang, Jason D. Bakos[5] 

They proposed GPU accelerated traditional Apriori 

implementation and named as GPApriori. It follows 

same methods of functionality, like Candidates 

Generation, Support Counting and Candidate Pruning. 

Other state of art of frequent itemset mining 

algorithms use either horizontal representation or 

vertical representation but in GPApriori, They 

introduced new Bitset representation of complete 

database.    
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For support counting process and to ensure that 

coalesced memory access it aligned vertical list into 

64 Byte. As bitset representation is used it need to 

count number of 1. The in-built cuda function is used 

popc (Population Count) as these way they calculate 

the support count and store it into vector, that vector 

forwarded to CPU to generate candidate from that 

vector. 

The same Group of author proposed “Frontier 

Expansion”[6] derived from Éclat. GPApriori is 

accelerated version of Apriori but Frontier Expansion 

accelerate more advance apriori such as Éclat and 

FPGrowth. It utilize Frontier stack for Candidate 

Generations with the help of Equivalent Class 

method. This method generates candidate of size K if 

candidates size of K-1 have same prefix else they 

arenot in same class. They have also proposed 

Producerconsumer model for support counting on 

multiple GPUs. The idea behind is that producer 

thread 

Separate each equivalent class from Frontier stack and 

store it into its buffer, and consumer thread load 

equivalent classes at time from producer buffer than 

process it and store classes into producer buffer. 

George Teodoro Nathan Mariano Wagner Meira 

Jr. Renato Ferreira[7] 

They have proposed Tree Projection base frequent 

itemset mining algorithm. Tree Projection is made up 

from core tree data structure. Its nodes contain 

lexicographic ordered item from database and levels 

represent the size of itemset. They demonstrate the 

implementation in two different architecture and those 

are multi core CPU with sheared memory and GPUs. 

In multi core CPU they also discuss about various 

locking techniques like tree level, node level and call 

level, to avoid race conditions. They have mention 

two parallel strategies to carry out the FIM, those are 

(i) transaction wise and (ii) node level wise. 

According to their discussion if we apply node level 

parallelism then we cannot fully utilize the massive 

power of gpu because the load on processors are 

imbalance. In contrast they implement transaction 

wise parallelism, so tree nodes are shared among 

processors and synchronized accesses.       

They have also introduce the novel and compact 

vector base database representation. Each transaction 

length is stored followed by its item. Additionally 

another vector used to map the starting index of the 

transactions. They addressed the issue of using bitset, 

which is complete matrix of transactions m v/s items 

n, require m x n, which is large amount of memory in 

sparse databases compare to proposed vector base 

dataset required. 

Claudio Silvestri, Salvatore Orlando Universit`a 

Ca’ Foscari Venezia[8] 

In this article authors proposed gpuDIC, parallel 

version of Dynamic Itemset Counting on GPU [8, 9]. 

DIC is state-of-the-art FIM algorithm, article 

demonstrate the DIC outperform apriori [1] and FP-

Growth [10] too. These group of author also examine 

the two parallel strategies (i) transaction wise and (ii) 

candidate wise parallelism. Transaction wise 

parallelism was carried out by increasing stride with 

 PBI & TBI 

[4] 

GPApriori[5] Tree 

Projection[7] 

gpuDIC[8] Frontier 

Expansion[6] 

Parallelization 

strategy 

Transaction  Transaction  Transaction and 

candidate 

Transaction 

and candidate 

Transaction 

Candidate 

generation 

techniques 

Bitwise 

(AND) 

&Prefix tree 

Bitwise 

(AND) 

lexicographic 

tree 

Not mention  equivalent 

class(tree) 

Kind of 

database 

Bitmap Bitmap Vectors  Bitmaps Bitmap 

Scalability on 

GPUs 

No Yes Yes No  Yes  

Base 

Algorithm 

Apriori  Apriori FPGrowth DIC Éclat and 

FPGrowth 

Table 1: Comparison between various Techniques 
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block id and thread id where in candidate parallelism 

stride with only thread id. Another novel approach is 

two level reductions, local reduction performed by 

each multiprocessor, data fetched from sheared 

memory which is already exist in it. Global reduction 

may cause more penalty because data must be fetch 

from counters which is reside in global memory. As a 

part of experiment they have used five different 

dataset and three different parameters was itemset 

length, transaction size and number of 

multiprocessors. 

III. Comparison 

We have taken five parameters and five 

algorithm to identify the overall functionality and 

strategy used behind individual. First parameter 

shows in table is parallelization strategy. There are 

two main strategies to be applied by various 

researcher. Tree projection and gpuDIC utilize both 

the strategies and discuss that transaction wise 

parallelism is more suitable if we have enough 

resources. Whereas candidate wise parallelism gives 

unexpected outcome and also that it’s not always 

outperform the transaction wise parallelism.  

Second parameter tell us that from which techniques 

they generate the candidate. Bitwise AND operation 

performed on GPU and tree base operation performed 

on CPU. Because tree has unpredictable memory 

access and such in situation GPU is not applicable. So 

tree structure has to be handle by CPU, in other word 

candidate generation by tree like techniques that has 

to be performed on CPU, than generated candidate 

move to the GPU memory. 

Most important parameter we have consider is that 

type of database used during their experiment. 

Because in such heterogeneous environment we have 

to utilize the maximum power of massively parallel 

computing hardware.  Here all GPU versions used 

bitmap representation because of complete coalesced 

memory access and with the use of bitmap they gain 

the speed up in higher order of magnitude. GpuDIC 

use bitmaps according to processor type (x86 or x64). 

But tree projection based method introduce another 

way of representation is vectors. If we compare with 

vector and bitmap, bitmap need more memory space 

compare to vector. Because bitmap is complete matrix 

of M x N where M is number of items present in 

database and N is total number of transaction in 

database. Now vector is AlterNet way to represent the 

database in GPU kernel function. Actually theyrequire 

two vectors one for transaction index and second for 

items present in database.  

Next parameter shows whether proposed authors 

algorithm can utilize more than one GPU.  The first 

GP-GPU FIM and gpuDIC not utilize the more than 

one GPU. Whereas for Frontier Expansion apply old 

concept to parallelize, that is producer and consumer 

model. But still it improves all over result in their 

experiments. 

Last parameter show that from which algorithm they 

proposed the improvement in their article, here 

GPApriori traditional apriori version. And frontier 

expansion and tree projection base proposed methods 

improve mainly Éclat and FPGrowth. But here 

specific to DIC (dynamic itemset counting) they 

proposed parallel version gpuDIC. 

IV. Conclusions 
In this survey, we have discuss that frequent 

itemset mining problem can be solved in many ways. 

The most widely used approach in current FIM is 

bitmap dataset. However, the work presented in this 

survey show the thriving efforts to improve over 

apriori since as it was demonstrated. All the algorithm 

present in this survey share the same idea with apriori 

that candidate generation, support counting and 

candidate pruning. Moreover their aims to 

demonstrate that GPUs can compute very large 

dataset in least time compare to CPU.    
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