
Dharmesh Bhalodia et al.Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.159-163

 www.ijera.com 159|P a g e

Comparative Study of Frequent Itemset Mining Techniques on

Graphics Processor

Dharmesh Bhalodiya
1
, Prof. Chhaya Patel

2

Computer Engineering Department, SOE, R K University, Gujarat, India

Abstract:

Frequent itemset mining (FIM) is a core area for many data mining applications as association rules

computation, clustering and correlations, which has been comprehensively studied over the last decades.

Furthermore, databases are becoming gradually larger, thus requiring a higher computing power to mine them in

reasonable time. At the same time, the improvements in high performance computing platforms are

transforming them into massively parallel environments equipped with multi-core processors, such as GPUs.

Hence, fully operating these systems to perform itemset mining poses as a challenging and critical problems that

addressed by various researcher. We present survey of multi-core and GPU accelerated parallelization of the

FIM algorithms

I. Introduction
Data mining also called as Knowledge

Discovery in Databases (KDD) [1]. Now a day many

of the organization collect sales data. This data is

stored in form of transaction, so each transaction

represent sale order. In such database each record

represent transaction and attribute represent item

parches by customer. Now a day many of the

organization collect sales data. This data is stored in

form of transaction, so each transaction represent sale

order. In such database each record represent

transaction and attribute represent item parches by

customer.

Take an example of super market. In that, each

transaction is collected and after getting large amount

of data. They apply market basket analysis and find

out the pattern. The discovered patterns are set of

items that are most frequent in database. Like 60

percent of people who buy bread also buy the butter.

Decision making person use this detail for identify the

customer buying habits.

Association rule mining is help in finding relationship

among the set of items in all transactions. Apriory

algorithm used for discovering association rules

between items in market-basket data [2]. Association

rule mining require two predefined values, those

values are minimum confidence and minimum

support. This mining process is divide into two sub

process. First one for finding those items which

occurrences in database across the minimum threshold

or minimum support count. That is call frequent items

set or large items set. And second one for generating

of rules from frequent items set with condition is that

it satisfy the minimum confidence.

Apriori Introduction

Let D be the market-basket database, where

each row contains T Transactions. Transactions

tagged with unique identifier Tid. Now let I be the

item set { I1, I2, I3} If an item set contain k-item then

it called k-itemset, and all subset of k-itemset satisfy

the minimum support count then it’s called Lk

frequent itemset or large itemset. This algorithm need

two basic steps are (a) Join, self-join with previous

frequent k-itemset and create new candidate Ck+1

itemset. (b) Prune, filter from the current candidate

itemset whose subset is not frequent in previous

step.Below step explain the working of Apriory

algorithm.

1. Assume that minimum support count and

minimum confidence are given as min-sup and

min-conf respectively

2. Scan the entire database and find out candidate 1-

itemset C1 along with occurrence count. That is

number of times each item appeared in database.

3. From C1 eliminate those items which count is not

satisfy minsup threshold. Remaining 1-items in

C1 which called L1.

4. L1 join L1, and create new C2, again scan the

database and calculate number of times candidate

2-itemset appeared in database.

5. Apply the pruning in C2 and we get the L2.

6. As this way iteratively step 2 to 5 is carried out

until the CK is null

RESEARCH ARTICLE OPEN ACCESS

Dharmesh Bhalodia et al.Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.159-163

 www.ijera.com 160|P a g e

CUDA Programing

At the start of multicore CPUs and GPUs the

processor chips have become parallel systems. But

speed of the program will be increased if software

exploits parallelism provided by the underlying

multiprocessor architecture [3]. Hence there is a big

need to design and develop the software so that it uses

multithreading, each thread running concurrently on a

processor, potentially increasing the speed of the

program dramatically. To develop such a scalable

parallel applications, a parallel programming model is

required that supports parallel multicore programming

environment. NVIDIA’s graphics processing units

(GPUs) are very powerful and highly parallel. GPUs

have hundreds of processor cores and thousands of

threads running concurrently on these cores, thus

because of intensive computing power they are much

faster than the CPU.

CUDA stands for Compute Unified Device

Architecture. It is a parallel programming paradigm

released in 2007 by NVIDIA. It is used to develop

software for graphics processors and is used to

develop a variety of general purpose applications for

GPUs that are highly parallel in nature and run on

hundreds of GPU’s processor cores.

CUDA uses a language that is very similar to C

language and has a high learning curve. It has some

extensions to that language to use the GPU-specific

features that include new API calls, and some new

type qualifiers that apply to functions and variables.

CUDA has some specific functions, called kernels. A

kernel can be a function or a full program invoked by

the CPU. It is executed N number of times in parallel

on GPU by using N number of threads. CUDA also

provides shared memory and synchronization among

threads.

Parallel Algorithms

Agrawal & Shafer [9] was presented first

parallel version of Apriori. They implemented three

different parallelization of Apriori on a distributed-

memory machine (IBM SP2).The Count Distribution

algorithm is a straight-forward parallel strategy of

Apriori. Each processor has portion of full dataset and

generates the partial sum (support) of all candidate

itemsets from its portion of database partition. At the

end global support is calculated by collecting all

partial support from each processor. The Data

Distribution algorithm partitions the candidates into

disjoint sets, which are forwarded to each processor.

To calculate the global support, each processor must

scan the entire database from its local partition as well

as from all other partition in all iterations. Thus it

suffers from huge communication overhead. The

Candidate Distribution algorithm follow the same

strategy applied in Data Distribution, but it

selectively replicates the dataset, the reason behind

that each processor proceeds independently. The local

portion of dataset is still scanned in every iteration.

Count Distribution was shown to have superior

performance among these three algorithms. Many

algorithms can utilize one of above strategy to

parallelize it. Like AprioriDP [10] was dynamic and

triangle base method to find frequent 2-itemset.

Next section describe the brief summary of parallel

algorithms implemented in NVIDIA architecture with

the use of CUDA. Section 3 employ the detail

comparison of CUDA base Apriori algorithms.

II. Related Work

Wenbin Fang and Mian Lu. [4]

These group of authors proposed Apriori[2] and it was

first time addressed parallel version of FIM[4]. They

have described two different approach, pure bitmap

and trie-based bitmap. Transactions and items are

coded in bitmap and then transfer in GPU memory.

These may degrade the performance, because that

bitmap size are larger then compare to[8]

Figure (a) shows traditional database representation.

In figure (b) tidset is vertical database representation

that used in many FIM algorithms and demonstrate

speed factor is higher than traditional one. But in GPU

tidset is not coalesced access and unpredictable

memory read so it lead to poor performance. In

contrast bitset is complete coalesced access. Below

figure shows the coalesced access.

Figure 1 Data set

Fan Zhang, Yan Zhang, Jason D. Bakos[5]

They proposed GPU accelerated traditional Apriori

implementation and named as GPApriori. It follows

same methods of functionality, like Candidates

Generation, Support Counting and Candidate Pruning.

Other state of art of frequent itemset mining

algorithms use either horizontal representation or

vertical representation but in GPApriori, They

introduced new Bitset representation of complete

database.

Dharmesh Bhalodia et al.Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.159-163

 www.ijera.com 161|P a g e

For support counting process and to ensure that

coalesced memory access it aligned vertical list into

64 Byte. As bitset representation is used it need to

count number of 1. The in-built cuda function is used

popc (Population Count) as these way they calculate

the support count and store it into vector, that vector

forwarded to CPU to generate candidate from that

vector.

The same Group of author proposed “Frontier

Expansion”[6] derived from Éclat. GPApriori is

accelerated version of Apriori but Frontier Expansion

accelerate more advance apriori such as Éclat and

FPGrowth. It utilize Frontier stack for Candidate

Generations with the help of Equivalent Class

method. This method generates candidate of size K if

candidates size of K-1 have same prefix else they

arenot in same class. They have also proposed

Producerconsumer model for support counting on

multiple GPUs. The idea behind is that producer

thread

Separate each equivalent class from Frontier stack and

store it into its buffer, and consumer thread load

equivalent classes at time from producer buffer than

process it and store classes into producer buffer.

George Teodoro Nathan Mariano Wagner Meira

Jr. Renato Ferreira[7]

They have proposed Tree Projection base frequent

itemset mining algorithm. Tree Projection is made up

from core tree data structure. Its nodes contain

lexicographic ordered item from database and levels

represent the size of itemset. They demonstrate the

implementation in two different architecture and those

are multi core CPU with sheared memory and GPUs.

In multi core CPU they also discuss about various

locking techniques like tree level, node level and call

level, to avoid race conditions. They have mention

two parallel strategies to carry out the FIM, those are

(i) transaction wise and (ii) node level wise.

According to their discussion if we apply node level

parallelism then we cannot fully utilize the massive

power of gpu because the load on processors are

imbalance. In contrast they implement transaction

wise parallelism, so tree nodes are shared among

processors and synchronized accesses.

They have also introduce the novel and compact

vector base database representation. Each transaction

length is stored followed by its item. Additionally

another vector used to map the starting index of the

transactions. They addressed the issue of using bitset,

which is complete matrix of transactions m v/s items

n, require m x n, which is large amount of memory in

sparse databases compare to proposed vector base

dataset required.

Claudio Silvestri, Salvatore Orlando Universit`a

Ca’ Foscari Venezia[8]

In this article authors proposed gpuDIC, parallel

version of Dynamic Itemset Counting on GPU [8, 9].

DIC is state-of-the-art FIM algorithm, article

demonstrate the DIC outperform apriori [1] and FP-

Growth [10] too. These group of author also examine

the two parallel strategies (i) transaction wise and (ii)

candidate wise parallelism. Transaction wise

parallelism was carried out by increasing stride with

 PBI & TBI

[4]

GPApriori[5] Tree

Projection[7]

gpuDIC[8] Frontier

Expansion[6]

Parallelization

strategy

Transaction Transaction Transaction and

candidate

Transaction

and candidate

Transaction

Candidate

generation

techniques

Bitwise

(AND)

&Prefix tree

Bitwise

(AND)

lexicographic

tree

Not mention equivalent

class(tree)

Kind of

database

Bitmap Bitmap Vectors Bitmaps Bitmap

Scalability on

GPUs

No Yes Yes No Yes

Base

Algorithm

Apriori Apriori FPGrowth DIC Éclat and

FPGrowth

Table 1: Comparison between various Techniques

Dharmesh Bhalodia et al.Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.159-163

 www.ijera.com 162|P a g e

block id and thread id where in candidate parallelism

stride with only thread id. Another novel approach is

two level reductions, local reduction performed by

each multiprocessor, data fetched from sheared

memory which is already exist in it. Global reduction

may cause more penalty because data must be fetch

from counters which is reside in global memory. As a

part of experiment they have used five different

dataset and three different parameters was itemset

length, transaction size and number of

multiprocessors.

III. Comparison

We have taken five parameters and five

algorithm to identify the overall functionality and

strategy used behind individual. First parameter

shows in table is parallelization strategy. There are

two main strategies to be applied by various

researcher. Tree projection and gpuDIC utilize both

the strategies and discuss that transaction wise

parallelism is more suitable if we have enough

resources. Whereas candidate wise parallelism gives

unexpected outcome and also that it’s not always

outperform the transaction wise parallelism.

Second parameter tell us that from which techniques

they generate the candidate. Bitwise AND operation

performed on GPU and tree base operation performed

on CPU. Because tree has unpredictable memory

access and such in situation GPU is not applicable. So

tree structure has to be handle by CPU, in other word

candidate generation by tree like techniques that has

to be performed on CPU, than generated candidate

move to the GPU memory.

Most important parameter we have consider is that

type of database used during their experiment.

Because in such heterogeneous environment we have

to utilize the maximum power of massively parallel

computing hardware. Here all GPU versions used

bitmap representation because of complete coalesced

memory access and with the use of bitmap they gain

the speed up in higher order of magnitude. GpuDIC

use bitmaps according to processor type (x86 or x64).

But tree projection based method introduce another

way of representation is vectors. If we compare with

vector and bitmap, bitmap need more memory space

compare to vector. Because bitmap is complete matrix

of M x N where M is number of items present in

database and N is total number of transaction in

database. Now vector is AlterNet way to represent the

database in GPU kernel function. Actually theyrequire

two vectors one for transaction index and second for

items present in database.

Next parameter shows whether proposed authors

algorithm can utilize more than one GPU. The first

GP-GPU FIM and gpuDIC not utilize the more than

one GPU. Whereas for Frontier Expansion apply old

concept to parallelize, that is producer and consumer

model. But still it improves all over result in their

experiments.

Last parameter show that from which algorithm they

proposed the improvement in their article, here

GPApriori traditional apriori version. And frontier

expansion and tree projection base proposed methods

improve mainly Éclat and FPGrowth. But here

specific to DIC (dynamic itemset counting) they

proposed parallel version gpuDIC.

IV. Conclusions
In this survey, we have discuss that frequent

itemset mining problem can be solved in many ways.

The most widely used approach in current FIM is

bitmap dataset. However, the work presented in this

survey show the thriving efforts to improve over

apriori since as it was demonstrated. All the algorithm

present in this survey share the same idea with apriori

that candidate generation, support counting and

candidate pruning. Moreover their aims to

demonstrate that GPUs can compute very large

dataset in least time compare to CPU.

References
[1.] Jiawei Han and Micheline Kamber. Data

mining concepts and techniques. Second

Edition, morgan Kaufmann Publications,

2006.

[2.] NVIDIA CORPORATION, CUDA

Programming Guide,

http://developer.nvidia.com/cuda

[3.] R. Agrawal, T. Imielinski, and A. Swami.

Mining association rules between set of

items in large databases. In Proceeding of the

1993 ACM SIGMOD International

conference on management of data, pages

207–216, May 1993.

[4.] Mian Lu Xiangye Xiao Chi Kit Lam Philip

Yang Bingsheng He Qiong Luo Pedro V.

Sander Wenbin Fang, Ka Keung Lau and Ke

Yang.Parallel data mining on graphics

processors. Technical Report HKUST-CS08-

07, October 2008.

[5.] Fan Zhang, Yan Zhang, and J. Bakos.

Gpapriori: Gpu-accelerated frequent itemset

mining. In 2011 IEEE International

Conference on Cluster Computing

(CLUSTER), pages 590–594, 2011. doi:

10.1109 /CLUSTER. 2011.61.

[6.] Yan Zhang Fan Zhang and Jason D. Bakos.

Accelerating frequent itemset mining on

graphics processing units. J Supercomput,

pages 94–117, NOVEMBER 2013. doi:

10.1007/s11227-013-0887- x.

Dharmesh Bhalodia et al.Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.159-163

 www.ijera.com 163|P a g e

[7.] George Teodoro Nathan Mariano Wagner

Meira Jr. Renato Ferreira. Tree

projectionbased frequent itemset mining on

multi-core cpus and gpus. 22nd International

Symposium on Computer Architecture and

High Performance Computing, pages 47 –

54, NOVEMBER 2010. doi:

DOI10.1109/SBAC-PAD.2010.15.

[8.] Salvatore Orlando Universit a Ca Foscari

Venezia Claudio Silvestri. Exploiting gpus in

frequent itemset mining. 20th Euromicro

International Conference on Parallel,

Distributed and Network-based Processing,

pages 416–425, 2012. doi: DOI10.1109/

PDP.2012.94.

[9.] Agrawal, R., and Shafer, J. 1996. Parallel

mining of association rules. In IEEE Trans.

on Knowledge and Data Engg., 8(6):962–

969.

[10.] Dharmesh Bhalodia, K. M. Patel ,Chhaya

Patel, An Efficient way to Find Frequent

Pattern with Dynamic Programming

Approach ,NIRMA UNIVERSITY

INTERNATIONAL CONFERENCE ON

ENGINEERING, NUiCONE-2013, 28-30

NOVEMBER, 2013

[11.] Claudio Lucchese, Salvatore Orlando, and

Raffaele Perego. kdci: a multi-strategy

algorithm for mining frequent sets. In FIMI

Workshop, 2003.

[12.] Salvatore Orlando, Paolo Palmerini, Raffaele

Perego, and Fabrizio Silvestri. Adaptive and

resource-aware mining of frequent sets. In

IEEE ICDM, pages 338– 345, 2002.

[13.] Jiawei Han, Jian Pei, Yiwen Yin, and

Runying Mao. Mining frequent patterns

without candidate genera- tion: A frequent-

pattern tree approach. Data Min. Knowl.

Discov., 8(1), 2004.

