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ABSTRACT 
FastICA is a statistical method for transforming an observed multidimensional random vector into components 

that are statistically as independent from each other as possible. Acoustic signals recorded simultaneously in 

a reverberant environment can be described as sum of differently convolved sources. The task of source 

separation is to identify the multiple channels and possibly to invert those in order to obtain estimates of the 

underlying sources. We tackle the problem by explicitly exploiting the non-stationary components of the 

acoustic sources. Using maximum entropy approximations of differential entropy, we introduce a family of 

new contrast (objective) functions for ICA. Here we propose an algorithm for blind source separation in 

which frequency domain ICA and time domain ICA are used for successful separation of signals  

Keywords - Blind source separation, Entropy, Independent Component Analysis, Non-guassianity.

I. INTRODUCTION. 
Blind source separation (BSS) has been 

proposed for various fields in recent years [1]. It is 

used to extract individual signals from observed mixed 

signals. It can be potentially used in communication 

systems, biomedical signal processing, image 

restoration and the classical cocktail party problem. In 

the communication field, it is a promising tool for the 

design of multi-input multi-output (MIMO) equalizers 

for suppression of intersymbol interference, co-

channel and adjacent channel interference and multi-

access interference. In biomedical signal processing, 

BSS can be used to process electrocardiography 

(ECG), electroencephalography (EEG), 

electromyography (EMG) and magneto 

encephalograph (MEG) signals. In the image signal 

processing field, it can be used for image restoration 

and understanding. The cocktail party problem is our 

focus, where the target is to mimic in a machine the 

ability of a human to separate one speaker from a 

mixture of sounds. We focus on audio signal 

processing in a room environment, which can for 

example be used for teleconferencing. 

During the past decades, there has been 

considerable research performed in the field of 

convolutive  blind source separation (CBSS). Initially, 

research was aimed at solutions based in the time 

domain. In real room recording, however, where the 

impulse response is on the order of thousands of 

samples in length, the time domain algorithm would be 

computationally very expensive to separate the 

sources. To overcome this problem, a solution in the 

frequency domain was proposed. As convolution in the 

time domain corresponds to multiplication in the 

frequency domain, the transformation into the 

frequency domain converts the convolutive mixing 

problem to that of independent complex instantaneous 

mixing operations at each frequency bin provided the 

block length is not too large.  In realization, 

moreover, care is necessary to overcome circular 

convolution effects. 

In this paper, we present the implementation 

of blind source separation using FastICA (independent 

component analysis). The aspiration of this paper is 

to recover two independent source signals composed 

of unknown linear combinations [2]. Through BSS, we 

have successfully separated the two signals apart with 

and without background noise. 

 

II. Entropy 
A central problem in BSS is cocktail party, as 

well as in statistics and signal processing, is finding a 

suitable representation or transformation of the data. 

For computational  and conceptual simplicity, the 

representation is often sought as a linear 

transformation of the original data. Let us denote by x 

= (x1,x2, ..., xm)T a zero-mean m-dimensional random 

variable that can be observed, and by s = (s1, s2, ..., 

sn)T its n-dimensional transform. Then the problem is 

to determine a constant (weight) matrix W so that the 

linear transformation of the observed variables has 

some suitable properties. 

S= Wx                                                                        (1) 

Several principles and methods have been 

developed to find such a linear representation, 

including principal component analysis, factor 

analysis, projection pursuit, independent component 

analysis etc. The transformation may be defined using 

such criteria as optimal dimension reduction, statistical 

’interestingness’ of the resulting components ‘s’ 
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simplicity of the transformation, or other criteria, 

including application-oriented ones. 

We treat in this paper the problem of 

estimating the transformation given by (linear) 

independent component analysis (ICA). Thus this 

method is a special case of redundancy reduction. One 

popular way of formulating the ICA problem is to 

consider the estimation of the following generative 

model for the data. 

x = As                                                                    (2) 

 where x is an observed m-dimensional vector, s is an 

n-dimensional (latent) random vector whose 

components are assumed mutually independent, and A 

is a constant m × n matrix to be estimated . It is 

usually further assumed that the dimensions of x and s 

are equal, i.e., m = n; we make this assumption in the 

rest of the paper. 

A noise vector may also be present. The 

matrix W defining the transformation as in (1) is then 

obtained as the (pseudo)inverse of the estimate of the 

matrix A. Non-Gaussianity of the independent 

components is necessary for the identity ability of the 

model. General formulation for ICA that does not 

need to assume an underlying data model. This 

definition is based on the concept of mutual 

information. First, we define the differential entropy 

H of a random vector y = (y1,... yn)T with density f 

(.): 

H(y) = - ∫f (y) log f (y) dy                                       (3)  

Differential entropy can be normalized to 

give rise to the determination of negentropy, which 

has the appealing property of being invariant for 

linear transformations. The definition of negentropy  

J is given by: 

J(y)= H(ygauss) - H(y )                                          (4) 

where y gauss is a Gaussian random vector of the 

same covariance matrix as y. Negentropy can also be 

interpreted as a measure of nongaussianity. Using the 

concept of differential entropy, one can define the 

mutual information I between the n (scalar) random 

variables yi, i = 1...n [8, 7]. Mutual information is a 

natural measure of the dependence between random 

variables. It is particularly interesting to express 

mutual information using negentropy, constraining the 

variables to be uncorrelated. In this case, we have [7] 

I(y1, y2, ..., yn ) = J(y) -∑ J(yi).                              (5) 

Since mutual information is the information-theoretic 

measure of the independence of random variables, it 

is natural to use it as the criterion for finding the ICA 

transform. The ICA of a random vector x as an 

invertible transformation s = Wx where the matrix W 

is determined so that the mutual information of the 

transformed components si is minimized. 

Two promising applications of ICA are blind 

source separation and feature extraction. In blind 

source separation, the observed values of x correspond 

to a realization of an m-dimensional discrete-time 

signal x(t), t = 1, 2, .... Then the components s(t) are 

called source signals, which are usually original, 

uncorrupted signals or noise sources. Often such 

sources are statistically independent from each other, 

and thus the signals can be recovered from linear 

mixtures x by n finding a transformation in which the 

transformed signals are as independent as possible as 

in ICA. 

 

III. Functions for ICA 

3.1 ICA data model, minimization of   mutual 

information. 
One popular way of formulating the ICA 

problem is to consider the estimation of the 

following generative model for the data [1, 3, 5, 6] 

From (2) x is an observed m-dimensional vector, s is 

an n-dimensional (latent) random vector whose 

components are assumed mutually independent, and 

A is a constant m × n matrix to be estimated. It is 

usually further assumed that the dimensions of x and 

s are equal, i.e., m = n; we make this assumption in 

the rest of the paper. A noise vector may also be 

present. The matrix W defining the transformation as 

in (1) is then obtained as the (pseudo)inverse of the 

estimate of the matrix A. Non-Gaussianity of the 

independent components is necessary for the 

identibility of the model (2), see [7]. 

Comon [7] showed how to obtain a more 

general formulation for ICA that does not need to 

assume an underlying data model. This definition is 

based on the concept of mutual information. First, 

we define the differential entropy H of a random 

vector y = (y1 , yn)T with density f (.) as follows: 

H(y) = -∫f (y) log f (y) dy                                        (6) 

Differential entropy can be normalized to give rise to 

the definition of negentropy, which has the appealing 

property of being invariant for linear 

transformations. The definition of negentropy J is 

given by 

J(y)=H(ygauss) - H(y)                                           (7) 

where ygauss is a Gaussian random vector of the 

same covariance matrix as y. Negentropy can also 

be interpreted as a measure of nongaussianity [7]. 

Using the concept of differential entropy, one can 

define the mutual information I between the n 

(scalar) random variables yi, i = 1...n [8, 7].  

 Mutual information is a natural measure of the 

dependence between random variables. It is particu- 

larly interesting to express mutual information using 

negentropy, constraining the variables to be 

uncorrelated. In this case, we have [7] 

I(y1, y2, ..., yn ) = J(y) - ∑J(yi).                             (8) 

Since mutual information is the information-theoretic 

measure of the independence of random variables, it 

is natural to use it as the criterion for  finding the 

ICA transform. Thus we define in this paper, 

following [7], the ICA of a random vector x as an 

invertible transformation as in (1) where the matrix 

W is determined so that the mutual information of 

the transformed components si is minimized. This 

constraint is not strictly necessary, but simplifies the 

computations considerably. Because negentropy is 

invariant for invertible linear transformations is now 
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obvious from (8) that finding an invertible 

transformation W that minimizes the mutual 

information is roughly equivalent to directions in 

which the negentropy is maximized. 

 

3.2   Approximations of Negentropy 
To use the definition of ICA given above, a 

simple estimate of the negentropy (or of differential 

entropy) is needed. We use here the new 

approximations developed based on the maximum 

entropy principle. In the simplest case, these new 

approximations are of the form: 

J(yi)≈c[E{G(yi)}−E{G(v)}]
2                                                    

 (9)                                           

where G is practically any non-quadratic function, c 

is an irrelevant constant, and   is a Gaussian 

variable of zero mean and unit variance (i.e., 

standardized). The random variable yi is assumed to 

be of zero mean and unit variance. For symmetric 

variables, this is a generalization of the cumulant-

based approximation in [7], which is obtained by 

taking G(yi) = y
4
i 

i . The choice of the function. 

The approximation of negentropy given 

above in (9) gives readily a new objective function 

for estimating the ICA transform in our framework. 

First, to find one independent component, or 

projection pursuit direction as yi=w
T
x, we maximize 

the function JG given by 

JG(w)= [E{G(w
T
x)} − E{G(v)}]

2
                        (10) 

where w is an m-dimensional (weight) vector 

constrained so that E{(w
T
x)

2
} = 1 (we can fix the 

scale arbitrarily). Several independent components 

can then be estimated one-by-one using a scheme, 

see Section 4. Second, using the approach of 

minimizing mutual information, the above on e-unit 

contrast function can be simply extended to comp -

ute the whole matrix W in (1). To do this, recall from 

(8) that mutual information is minimized (under the 

constraint of decorrelation) when the sum of the 

negentropies of the components in maximized.  

 

IV. FIXED POINT ALGORITHM 
To begin with, we shall derive the fixed-

point algorithm with sphered data. First note that the 

maxima of JG(w) are obtained at certain optima of 

E{G(w
T
x)}. According to the Kuhn-Tucker cond- 

itions[18], the optima of E{G(w
T
x)} under the 

constraint E{(w
T
x)

2
}=kwk

2
=1 are obtained at points 

where       

E{xg(w
T
 x)} − βw = 0                                           (11) 

where ß is a constant that can be easily evaluated to 

give β = E{w
T

0 xg(w
T

0 x)}, where w0 is the value of 

w at the optimum. Let us try to solve this equation by 

Newton’s method. Denoting the function on the left-

hand side of (11) by F, we obtain its Jacobian  matrix 

JF (w) as 

JF (w) = E{xx
T
 g

'
(w

T
 x)} − βI                              (12) 

To simplify the inversion of this matrix, we decide to 

approximate the first term in (12). Since the data is 

sphered, a reasonable approximation seems to be 

E{xx
T
 g

'
(w

T
 x)} ≈ E{xx

T
 }E{g

'
(w

T
 x)} = E{g

'
(w

T
 x)}I. 

Thus the jacobian matrix becomes diagonal and can 

easily inverted. We also approximate ß using the 

current value of w instead of w0. Thus we obtain the 

following approximative  newton iteration: 

     w
+
= w−[E{xg(w

T
 x)} − βw]/[E{g

'
(w

T
 x)} − β] 

w∗ = w
+
 /kw

+
k                                                    (13) 

where w*denote the value of w β = E{w
T
 xg(w

T
x)} 

and the normalization has been added to improve the 

stability. This algorithm can be further simplified by 

multiplying both sides of the equation in (16) by β − 

E{g
'
(w

T
 x)}. This gives the following fixed point 

algorithm:  

w
+
 = E{xg(w

T
 x)} − E{g

'
(w

T
 x)}w                       (14) 

                     w∗ = w
+
 /kw

+
k 

which was introduced in [17] using a more heuristic 

derivation. It is well-known that the convergence of 

the Newton method may be rather uncertain. To 

ameliorate this, one may add a step size in (16), 

obtaining the stabilized fixed-point algorithm  

w
+
=w −µ [E{xg(w

T
 x)} −βw]/[E{g

'
(w

T
 x)} − β] 

w∗ = w
+
 /kw

+
k                                                        (15) 

where  β = E{w
T
 xg(w

T
 x)} as above, and µ is a step 

size parameter that may change with the iteration 

count. Taking a µ that is much smaller than unity 

(say, 0.1 or 0.01), the algorithm (15) converges with 

much more certainty. In particular, it is often a good 

strategy to start with µ = 1, in which case the 

algorithm is equivalent to the original fixed-point 

algorithm in (17). If convergence seems problematic, 

µ may then be decreased gradually until convergence 

is satisfactory.  

The fixed-point algorithms may also be simply used 

for the original, that is, not sphered data. 

Transforming the data back to the non-sphered 

variables, one sees easily that the following 

modification of the algorithm (14) works for non-

sphered data: 

          w
+
 = C

−1
E{xg(w

T
 x)} − E{g

'
(w

T
 x)}w                                                  

w∗ = w
+
 /   (w

+
 )

T
 Cw

+
                                        (16) 

where C = E{xx
T
 }is the covariance matrix of the 

data. The stabilized version, algorithm (15), can also 

be modified as follows to work with no n-sphered 

data: 

w
+
= w − µ [C

−1
E{xg(w

T
x)} − βw]/[E{g

'
(w

T
x)}− β]                                      

w∗ = w
+
 /   (w

+
 )

T
 Cw

+
                                        (17) 

Using this algorithm, one obtains directly an 

independent component as the linear combination 

w
T
x, where x need not be sphered (pre-whitened). 

These modifications presuppose, of course, that the 

covariance matrix is not singular. If it is singular or 

near-singular, the dimension of the data must be 

reduced, for example with PCA [7]. 
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V. Experimental results 
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          Fig.1: Mixed audio signals of a bird and horn. 
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Fig.2 calculation of entropy. 
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Fig.3: Calculation of gradient entropy. 
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Fig.4: separated source audio of horn. 
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Fig.5: separated source audio of bird. 

 

VI. Conclusion 
The problem of linear independent 

component analysis (ICA), which is a form of 

redundancy reduction, was addressed. The main 

advantage of the fixed-point algorithms is that their 

convergence can be shown to be very fast (cubic or 

at least quadratic). Combining the good statistical 

properties (e.g. robustness) of the new contrast 

functions, and the good algorithmic properties of the 

fixed-point algorithm, a very appealing method for 

ICA was obtained. Simulations as well as 

applications on real-life data have validated the novel 

contrast functions and algorithms introduced. Some 

extensions of the methods introduced in this paper 

are present in which the problem of noisy data is 

addressed which deals with the situation where there 

are more independent components than observed 

variables.. 
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