
Toqeer Ehsan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.675-677

www.ijera.com 675 | P a g e

Behavior Analysis of Memorized Sort on Randomly Colonized

Data Sets

Toqeer Ehsan*, M. Usman Ali**, Meer Qaisar Javed**
*(Department of Computer Science, University of Gujrat, Pakistan)

**(Department of Information Technology, University of Gujrat, Pakistan)

ABSTRACT
Memorized sort performs sorting by computing sorted sub-sequences of different sizes in a random data set.

Each sub-sequence can be considered as a data colony populated with random numbers. These colonies have

different population of elements due to their random nature. Increased population of colonies can give better

performance of memorized sort algorithm. The running time of memorized sort may vary as the entropy of the

colonized list is changed. This paper shows the behavior of memorized sort on colonized random data sets with

increased population.

Keywords – Colonization, Complexity, Hybrid Search, Memsort, Sub-sequence

I. INTRODUCTION
Divide and conquer is an efficient technique

to sort the given set of elements because it divides the

problems into smaller sub-problems [2][10]. These

algorithms can be designed in top-down as well as

bottom-up fashion [5]. Memorized sort is a sorting

algorithm that solves the sorting problem in a bottom-

up mechanism [5]. It is a divide and conquer

algorithm based on dynamic programming [5].

Dynamic programming is used to solve optimization

problems by memorizing the solutions of overlapping

sub-problems [2][10]. Memorized sort computes the

pre-sorted sub-sequences and combines them by

using the memorizations [5]. Memorized sort

performs well on randomized data sets [5]. Random

data set can be further divided in the form of

independent data sets on the basis of their random

nature. We call these divisions as data colonies [4].

Data colonies are autonomous data sets that

could be treated independently [4]. We can apply any

sorting or searching technique to any data colony [4].

Memorized search is a searching technique that finds

elements from a list when data is colonized randomly

[4]. Colonies are computed only once and a method

of memorizations is introduced which is based on

dynamic programming [4]. It performs efficient

searching on random data. Memorized search can be

implemented in different fashions like sequential

memorized search, binary memorized search and

hybrid memorized search [4]. Same colonization

technique is used in memorized sort and it performs

better then merge sort [5]. Memorized sort is an

efficient sorting algorithm which performs sorting

efficiently on random data just like quick sort [5].

Unlike quick sort, worst case of memorized sort is

similar to merge sort algorithm [5]. The algorithm

may change its behavior when there is random data

with diverse density of colonies. This paper focuses

on the behavior analysis of memorized sort when data

is colonized randomly. Next section describes the

process of memorized sorting and memorized

searching in little more detail.

II. PREVIOUS WORK
Before implementation of memorized sort on

colonized data, let’s have a look on the process of

memorized sort [5], colonization of data [4] and

memorized search [4].

2.1 MEMORIZED SORT

Memorized sort also known as Memsort, is

an algorithm which is based on dynamic

programming and works in divide and conquer nature

[5]. The implementation of the algorithm is of

bottom-up nature [5]. Steps of the algorithms are:

Step1: Compute the sorted sub-sequences and

memorize them.

Step2: Combine the sub-sequences with bottom-up

approach.

Step3: Repeat step2 until there is only one sequence.

First step computes the sorted sub-sequences

be checking every element with next element in the

array. If next element is greater than previous then

both elements belong to the same sub-sequence and

vice versa. All the computed sub-sequences are

memorized in a table, typically an array. Sub-

sequences are not saved as a whole but the starting

and ending of the sequence. For example let’s

consider the follow array ‘A’ of elements.

After computing sorted sub-sequences we

have to memorize the indexes, so memorized sort

creates a new array ‘R’ for memorizations. After first

step, array ‘R’ would look like.

RESEARCH ARTICLE OPEN ACCESS

Toqeer Ehsan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.675-677

www.ijera.com 676 | P a g e

Starting value is ‘0’ which is obvious that

the first sequence starts with ‘0’ index. Ending of the

sequence is the next value of the array which is ‘2’ at

R[1]. It means there are three elements in first sub-

sequence. The last element of the array is -1 which

shows the end of array. The length of the array ‘R’

depends on the size of the input array. If size of input

array is ‘n’ then the length of ‘R’ must be at least

n/2+2. Once all the sub-arrays are memorized,

algorithm starts combining them. In our example

there are four sub-sequences, [6,8,13], [2,6], [1,7,9]

and [5,8]. Memorized sort combines first two

sequences then last two sequences. After first

iteration, we would have half number of sequences.

Algorithm repeats this step until there is only one sub-

sequence left which is actual array but sorted. Table.1

shows the values of ‘R’ after multiple iterations.

Table.1: Values of array ‘R’

Memorized sort is an efficient technique

which gives better performance on random data but

the complexity class remains similar as merge sort.

Upper bound to memorized sort is O(nlgn) but it

performs much less number of comparisons in

average case.

2.2 COLONIZATION OF DATA

The concept of colonization comes from the

sorted sub-sequences of a random array [4]. A sub-

sequence can be considered as an independent data

colony whose address is saved in array ‘R’. In the

above example there are four colonies (6,8,13), (2,6),

(1,7,9) and (5,8). If there are more data colonies then

memorized sort takes more number of comparisons to

sort the array. After performing some pre-processing

on the data to have less number of colonies, the

performance of the memorized sort can be increased.

2.3 MEMORIZED SEARCH

Memorized search is a fast searching

approach and could be implemented on colonized

random data [4]. As each colony is an autonomous

unit, different searching techniques can be applied on

different colonies on the basis of the population. If

some colony has more population then binary search

gives optimal results. This kind of search is called

binary memorized search. To search a large number

of elements, we can perform multiple searching

methods on different colonies which is called hybrid

memorized search. Hybrid memorized search

performs binary search on large colonies and

sequential search on smaller colonies. Upper bound to

memorized search is still O(n) for random data set but

it saves lot of comparisons due to the logarithmic

nature of binary search.

III. PERFORMANCE OF MEMORIZED SORT

ON COLONIZED DATA
This section shows the performance of

memorized search when running on random data sets

with various numbers of colonies. The behavior of

random data set is totally unpredictable. Now we

study the performance behavior of memorized sort on

colonized data be decreasing the colonization density.

We start with the maximum number of colonies. Let’s

say there are 40% colonies in an array, it means most

of the elements are not sorted and are of minimum

size which is 2. When all the elements of the array are

sorted in reverse order, there are 50% colonies each

of size 2. But we are focused on randomized data we

will start the performance analysis with 40% colonies

in an array. Fig.1 shows the running time of Memsort,

Merge Sort and Quick Sort after running on random

data with different number of colonies.

Figure.1: Comparison of running times

Merge sort and quick sort are also efficient

sorting algorithms but they do not identify the sorted

sub-sequences of already sorted element but Memsort

does. Fig.1 is very self explanatory. As we decrease

the density of colonies, Memsort starts to take less

time to sort same random data set.

IV. RESULTS
Results are computed after running three

sorting algorithms on an array of one hundred

thousands of elements. In first run, there are 40%

colonies of all number of elements. In next run we run

an iteration of colonization procedure and the number

of colonies decreased to be half. Fig.2 and fig.3 show

the behavior of Memsort, Merge sort and Quick sort

based on running times. It is very clear that Merge

sort and Quick sort algorithms show similar and

consistent behavior in running times even the

numbers of colonies are decreasing gradually. But

Memsort starts sorting the same random array in less

time.

Toqeer Ehsan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.675-677

www.ijera.com 677 | P a g e

Figure.2: Behavior comparison of Memsort with

Merge sort.

Figure.3: Behavior comparison of Memsort with

Quick sort.

V. CONCLUSION
As the degree of colonization is decreased,

Memsort starts showing more linear like behavior

which makes it a very efficient sorting algorithm for

random data. Worst case of Memsort is similar as the

worst case of Merge sort algorithm. Memsort does not

change the time complexity class from logarithmic to

linear. So the time complexity of the algorithm is still

O(nlgn). Running time of Merge sort and Quick sort

is directly proportional to the number of elements in

an array whereas the running time of Memsort is

directly proportional to the entropy of data.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The

Design and Analysis of Computer

Algorithms, Addison-Wesley, 1974.

[2] T. Cormen, C. Leiserson, R. Rivest, C. Stein,

Intoduction to Algorithms, 3
rd

 ed, MIT Press,

2011.

[3] Frederic H. Murphy, Edward A. Stohr, A

Dynamic Programming Algorithm for Check

Sorting, Management Science, 24(1),

September 1977, 59-70.

[4] T. Ehsan, M. Usman, Q. Javed, An Efficient

Searching Technique by Colonization of

Random Data Set based on Dynamic

Programming, International Journal of

Engineering Research and Applications

(IJERA), 3(5), 2015-2020.

[5] T. Ehsan, M. Usman, Q. Javed, An Efficient

Sorting Algorithm by Computing

Randomized Sorted Sub-sequences Based on

Dynamic Programming, International

Journal of Computer Science and Network

Security (IJCSNS), 13(9), September 2013,

51-57.

[6] C. A. R. Hoare, Quicksort, Computer

Journal 5(1), 1962, 10-15.

[7] Deepak Abhyankar, Maya Ingle, Elements of

Dynamic Programming in Sorting,

International Journal of Engineering

Research and Applications (IJERA), 1(3),

446-448.

[8] D. E. Knuth, The Art of Computer

Programming, Vol. 3, Pearson Education,

1998.

[9] S. Baase and A. Gelder, Computer

Algorithms:Introduction to Design and

Analysis, Addison-Wesley, 2000.

[10] Anany Levitin, Introduction to the Design

and Analysis of Algorithms, 2
nd

 ed, Pearson

Education, 2007.

[11] D. Abhyankar, M. Ingle, A Performance

Study of Some Sophisticated Partitioning

Algorithms, International Journal of

Advanced Computer Science and

Applications (IJACSA), 2(5), 2011, 135-137.

