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Abstract

Let r,s>1and k >0 be arbitrary integers and also D= r’s?+2sbea positive non- square integer.

In this paper, we consider the Pell equation X2 — D.y2 =2% and we get all positive integer solutions of this
equation for all kK >0 integers. Moreover, we derive recurrence relations on the solutions of the Pell equation

x?-D.y?=2% .
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I.  Introduction
The equation

x? —Dy? =F N (1)
with given integers D , N and unknowns X,y is
called Pell’s Equation. if D is negative, it can have
only a finite number of solutions. if D is a perfect
square, say D=t?, the equation reduces to
(x—ty )(x+ty )=F N andthere is only a finite
number of solutions. The most interesting case of
equation arises when D=1 be a positive non- square
integer.

For N =1, the Pell equation

x? —Dy? =F1 (2)

Is known as classical Pell equation and it has
infinitely many solutions (Xn , yn) for neN . There
are different methods for finding the first non- trivial
(X1 \ yl) solution called the fundamental solution
from which all other solutions are easily computed
(see [2]-[3]).

Also, there are many papers in which details
on Pell equations and different types of Pell’s equation

are considered ( see [1]-[4]-[5]-[6]).

In this paper, in the case of D=r?s*+2.5
where I,S>1, we consider the Pell equation
x?—D.y?=2" when Kk >Ointeger and by
constructing some criteria we get all positive solutions

of this equation. We consider the problem in three
cases:

(i)r=s=1

(ii)r>2,s=1

(iii)r,s>2

for k=0 and k >1 respectively. Moreover, we give
numerical examplesto all new constructed theorems

and also by using method of ([5]) we derive
recurrences relations on the solutions of this equation.

I1.  Preliminary Notes
We need the following theorems for the proof
of our theorems.

Theorem 2.1. If N is a quadratic non- residue
modulo D, then the Pell equation X>*—Dy? =N
has no integer solution . ( [5] )

Theorem 2.2. Let (Xl,yl) be a fundamental

solution to the equation X> —Dy? =+1. Then all
positive integer solutions of the equation

x> —Dy? =+1 are given by

X, +\/Byn:(xl+\/5y1)n (3)
with n>2.([3])

Theorem 2.3. Let D be a positive integer, that is
not a perfect square. Then the continued fraction

expansion of /D such that

+ D :[ao;al, ........ ,8, 4,28, ] where is
I(x/B)zl is the period length and the @ s are
given by the recursion formulas;
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a, =|+/D |,

1

at=LatJ and , 1=0,12,...

t+1:
o —d;

Recall that &, =2a,and a, =a,,, for t >1. The

n™ convergent of /D for n >0is given by

Pn [a01a1'a2' ’a]
d,
=a,+ 1
=9
a, + 1 1
a, + 1
. .
a, ,+—

By means of the n" convergent of \/E
we can give the fundamental solution of the
x> —Dy? =F1. Let p, =1, p,=a, and
g, =0, g, =1.In general
Pr=8,Pn1t Py (4)
0, =a,q,41 0,

for n >1. Then the fundamental solution of

—Dy? =+1s
(pH,q.,l) if 1is even
X, Y, )= ) - 5
( ' 1) {( p2|-1’Q2|—1) ~if 1 is odd ( )

([1],[2, p.154]).
Theorem 2.4. If (ul ,Vl) and (Xml \ ynfl) are

integer solutions of x> —Dy® =F N and

x? —Dy? =+1, respectively, then (U, ,V, ) is also

a positive solution of x> —Dy? =F N, where

u, +\/Bvn = (Xn—l +\/Bynfl)(ul+\/5vl) (6)

for n 22.([4])

n The Main Results on The Pell
Equation x?—D.y?=2"
By using recurrence on infinite sequence of
positive  solutions of the Pell equation

x?-D.y?=2* D=r?s*+2s with
r,s>1 integers and K >0Qis also an integer.First we
consider the case k =0, that is the classical Pell

where

equation X° —(rzs2 +2s )y2 =1. Then, we can
give following theorem.

Theorem 3.1. Let D=r?s®+2.s with r,s>1

integers . Then the following conditions satisfy:
(&) The continued fraction expansion of

\/E is;

[1;1,_2] (if r=s=1
JD= [rm] ‘if r>2, s=1
[rs;r,2rs] if r>2,s>2
(b) The  fundamental  solution  of
x> —Dy*=11is;
(2,1) jif r=s=1
(X, v,)= ( +1r) Jaf r>2,s=1
(r s+lr) Jf r>2,s>2
(c)For n>4,
(3(X,y 4%, )%, 5) if r=s=1

J=d (2241 )%,y +%, )~ 5)  sif r225=1
(@r2s+1)(x, 1 +X, )X, 5)  if 122,522

—

and

(3(Yos* Yoo )=Vas ) jif r=s=1
(y,)= ((Zr2 +1)(yn71 +Y,,)- ynfs) if r>2,s=1

(@r2s+1)(y, 1 4Y,o)-Yos)  if 122,522

Proof: (a) Assume that r =S=1,by Theorem 2.3.,
it is easily seen that the continued fraction \/E is

J3=1z].

Now, let r>2, s=1. Then
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Jrez= esl ez —r)

1 1
=r+

1 P22+
JrP+2 —r 2

1
=r+
r’+2-r
r+
2
=r+ ! =r+ !
- 1 B 1
r+ r+

=r+ L
B 1
[
NIP+2 +r
=r+ 1
B 1
r+

2r+(\/r27+2—r)
JD=yrf 2 =[rr2r|

Similarly, it can be shown that

JD=yr’s+2s =[rs;r,2rs | for r,s >2.

(b)since (x,,y;)=(21) isa
fundamental solution of x> —3y? =1, the case of
r=s=1isclear. Also, for r>2, S=1 by using
the method defined in Theorem 2.3., we get | =2,
a,=r a, =r. Hence,
(x.,y,)=(p,q) =(r2 +1r ) is the fundamental
solution since p_, =1 p,=a,=r , q,=0,

J— — 2
P,=a,Py+P,=r"+1 by(4)
0, =a,0p +Q,=Tr

g,=1 and

and (5) :

Finally, we assume that I',S>2 , by using
the method defined in Theorem 2.3., we get 1 =2,
a,=rs a, =I. Hence,

(x1 , y1)=( P10, ) =(r25+1,r) is the

fundamental solution since p_, =1 p,=a,=rs,

P, =8, P + p_l=l’23+1

0,=a,9, +Q,=r

gq,=0,9,=1 and

by (4)and (5) .

(¢) By Theorem 2.2., we can see easily that
all solutions (X, Y, ) of x> —Dy? =+1 can be

derived from the fundamental solution (Xl , yl) of
this equation. Assume that r=S=1 . In a similar
way in ([5]) it can be shown by induction on N that
X, =3(X, 4 +X, ,)—X 5,
Yo=3(Yas+¥n2)=Vns

for n>4 .Moreover, in a similar way, we get

X, =(2r% +1 ) X, 4 4%, 5 )Xo 5 1

Vo =(20 41 ) yo s+ Vo o)~ Vs

where D=r?+2 for n>4 and

X, =(2r2s+1 X,y +%,0 5)— X0 s+

Yo =(2r%+1 [ Yo s+ Yo o)~ Vos

where D=r?s*+2.s for n>4.

Now, we consider the general case for k>1
.Note that we denote the integer solutions of
2 2.2 2 k
X —(r S“+2s )y =2%by (u,,V, ) and denote
the integer solutionsof X2 —(rzs2 +2s )y2 =1 by
( X Yo ).Then we have following theorem.

Theorem 3.2. Let r=s=1 ,thatis D=3 ,and k>1
be a arbitrary integer. Define a sequence {( u,,v, )}
of positive integers by

no solution

(u,,v,)= (2';+1 ,22 J

;if kis odd
(if k is even

(7)

and ,since K is even, we get

Kt K
— 22 2
U,=2% X,4+3.22Y,4

” k (8)

k
2 i
Xn—l +2 yn—l

V. =2

n

where {( X Yn )}is the sequence of positive

solutions of X* —3.y* =1 .Then the following
conditions satisfy with K is even;
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(a) (un,vn) is a solution of
x? —3.y? =2 for any integer n>1.

(b) For n>2,
U, ,=2u,+3v, ,

(c)For n>4,
n :3(un—l+un—2 )_unfs '
:3( VitV )_ans

V. =Uu, +2v,

n

Proof : (a) Assume that K is odd. Since 2 isa
quadratic non- residue mod 3, then

3

Equation x* —3.y? =2 has no integer solution.

k
(zj :(—1)k =—1.By Theorem 2.1, the Pell

Now, let K is even.Then it easily seen that
k k

] s
(u,,v,)=| 22,22 | isasolution of

x? —3.y? =2 thatis

K L 2 K 2
uf—va=(22 J —3.(22J =222 3.2

=2k
Also, (u,,V, ) isasolution for n>2. We

can prove this as follows. Recall that ( X1 ynfl) is
a solution of X% —3.y? =1 that is,

Xr?—l _3-yr§—1 =1 (9 )
Further, we see (ul,vl) is a solution of

x? —3.y? =2 thatis,

uf —3v2=2" (10)
using (9 )and (10 ), we find that

» L
u§—3v§=(22 xn_1+3.22yn_1] —3.[22xn_1+22 yn_lj

= (27232 x 1y, 1327 32 ey (322 -32)
=2 Xf_l _2k3y§—1 =2 ( Xr?—l - 3y§—1) =2
Therefore, (U,,V, ) isa solution of X —3.y? =2

for even K integers

(b) By Theorem 2.2. and Tehorem 2.4., we get

U, +\/3Vn+l = (Xn +\/Byn )(Ul +\/BV1)
(x, +vBy, (1, +v,4D)

:(Xl +\/By1 )(un +\/an)
Since (X1 , yl):( 2,1)is a fundamental

solution of the Pell equation X* —3.y* =1, we get
that

U, ,=2u,+3v, ,
for n>2.

V. =Uu, +2v,

(¢) We see as above that
k k k k

—+1 — — —+1
u,=22 x,,+32%y, ., ,Vv,=22x,,+2%2 vy, ,

also u, ,=2u_+ 3v, . Inasimilar way in ([5])

by induction on N and combining these two results, it
can be shown that

u, :3( U, +tU,, )_un—S
for n>4 .

Similarly, combining (8) and
V.., =U, + 2v, results, we get

v,=3(Vv,,+V, ,)-V, ;forn>4 .

Example: Let r=s=1and k=4 .Then, by
Theorem 3.2., (U, V, )=(8,4) isasolution of

x? —3.y? =2" =16, and some other solutions are;
(u,,v,)=(2816),

(u,,v,)=(104,60) ,

(

Remark: Note that in Theorem 3.3. and Theorem 3.4.,
we will consider the case K is even . When we

consider the case K is odd, then we find that there is a
solution (U,,V, ) of X2 —(r2 +2 )y2 =2" and
NG —( r?s?+2s )y2 =2 respectively, for some
values of K , or there is no solution.

Forexample, r=4,5s=2and k=3, we can
not find solution of the Pell equation
x> —68y*=2°=8. But for k=5,we find that
(u,,v,)=(10,1) iss a solution of
x> —68y* =2°=32.

Moreover, for r=5,5=3 and for every odd

k there is no solution of X* —301.y*=2% .
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Also, we can see that Keith Mathews’ “ Some Bc
29 2
Math/ PHP Nunber Theory Programs” , 2013. u, = ( 2r2+1 X u_, +U,, )_ T

v, :(Zr2 +1Xvn_1 V)=V, .
Theorem 3.3. Let =1, r>2 and K be arbitrary
integers with Kk >1 is even. Define a sequence Proof : (a) Assume that K is even. Then , it easily

L k k
{( u,,v, )} of positive integers by seen that (U1’V1):[ 25_( r2 41 )’ 22y j isa

(ul,vl):(Zz.(rzﬂ), 2§rj (11)

and ,since K is even, we get

solution of Xx? —(r2 +2 )y2 =2" since

) ) K 2 )2
u,=22(r2+1 ), ,+22r(r?+2)y, , (12) Ulz—DVf{zz(rZJfl)j —(r2+2)[22rJ

k k
v,=22rx,, + 22 (r?+1)y, , —(r2+1f 2" —(r2+2)r22% =2¢

Also, (un,vn) isa solution for N>2. We
where {( Xh1 Yh )}is the sequence of positive can prove this as follows. Note that by definition,
solutions of X? —( r’+2 )y2 =1 .Thenthe (XH, yn,l) is a solution of X* —( r’+2 )yz =1
following conditions satisfy with K is even; jthat is,
| | xf_l—(r2+2)y§_1:1 (13)

(2) (un ’Vn) Is a solution of Further, we see above that (ul,vl) is a solution of
x? —(rz +2 )y2 =2% for any integer n>1. X2 _(rZ +2 )yZ —=2K that is,

(b) For n>2, uf—(r2+2)vf=2k (14)
U, = (r2+1)1n+ r(r2+2)/n OV, =TU (r2+1}/n applying (13 )and (14), we get

(c)For n>4,

k k k

2 2
u? —(r2 +2 )\/ﬁ :(2: (r2 +1)xn_1 +22 r(r2 +2 )yn_lj —(r2 +2 )(22 rx, ,+22 (r2 +1)yn_1J

— xf_l.(Zk (r2+1f —r2(r2 +2 2* )+ X 1Y 2200 (r? +1)r2 +2)(1-1)
—yz, (2 o r2 (e 2)s (r2 4 1))
Since (Xl , yl)=(r2 +1,r )is a fundamental solution

=2x5, —2" (rz +2 )yf—l of the Pell equation X? —(rz +2 )y2 =1, we find
:2“(x§_1—(r2+2)y§_1)=2k that

Therefore, (U_,V_ ) isa solution of

(u, ) U, = (I’2+1)Jn + r(r2+2)\/n , Vo, =TU + (r2+1)\/n
(b) By Theorem 2.2. and Tehorem 2.4., we get for n22.
Upa +\/5Vn+l = (Xn +\/Byn )(ul +\/BV1) (¢) Recall that

=EX1 +\/\/_Byl)2n-(uljl1\/)5) un=2;(r2+1)xn_1+ Zgr(r2+2)yn_1 : vnzzgrxn_1+2§(r2+1)yn_1
=\X, +vDy, )\u, ++vDv,

x? —(r"' +2 )y2 =2"for even K integers.
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by (12),as0 u, ., = (r?+1 ), + r(r?+2 ), .
In a similar way in ([5]), by induction on n and
combining these two results, it can be shown that
2

un:(2r +1Xun_1+un_2)—un_3
for n>4 .

Similarly, combining (12) and

V,,,=ru, + (r2 +1)\/n results, we get

2
Vi :(Zr +1xvn—l +Vo, )_Vn—3
forn>4 .

Example: Let r=3, s=1 andlet k=2 .Then, we

get D=11and x*—11y*=4 . By Theorem 3.3,,

(u,,v,)=(20,6) isasolution of x> —11y*=4,

and some other solutions are;
(u,,v,)=(398,120),

(u,,v,)=(7940,2394 ) ,

(u,,v,)=(158402,47760)
(us, v, )=(3160100,952806 )

Theorem 3.4. Let r,s>2 and K be arbitrary
integers with k >1 is even. Define a sequence
{( u,,v, )} of positive integers by

(ul,vl):£ 22.(r23+1),22rJ (15)

and ,since K is even, we get

u,= 22(r23+1)xn_1 + 22 r(rzs2 +25 )yn_1
k k

v, =221x,, + 22 (ris+l)y, .

(16)

where {( Xy Y )}is the sequence of positive

solutions of X? —( r?s®+2s )y2 =1 .Then the
following conditions hold;

(a) (un,vn) is a solution of

S _(r252+25 )y2 =2 for any integer N>1.
(b) For n>2,

un+1=(rzs+1)1n+ r(r232+25 )/n , V,,=ru, + (rzs+1)/n

(c)For n>4,

un:(2r23+1Xun_1+un_2)—un_3 :
v, :(2r23+1Xvn_1 V., )=V, .
Proof : (a) Assume that K is even. Then, it easily

k k
seen that (ul,vl):[ 25.(r25 +1), 22r J isa

solution of X? —(r252 +2s )y2 =2" since

k

2
u? —Dv; :(2: (r25+1)J —(rzs2 +2s )[22 r

:(rzs+1)22k —(rzs2 +2s )r22k =2k

Also, (u,,V, ) isasolution for N>2. We
can prove this as follows. Recall that (XH, ynfl) is
a solution of X° —( r’s®+2s )y2 =1 that is,

X2, —(r?s?+2s)y?, =1 (17)

Further, we see above that (u1 , vl) isa
solution of X? —( r’s®+2s )y2 =2" that is,

u? —(r2s? +2s)v? = 2" (18)
applying (17 )and (18 ) we get

Kk k

2 2
u? —(rzs2 +25 )\/n2 =(2Ig (rzs+1)xn_1 +2g r(rzs2 +25 )yn_lJ —(rzs2 +25 )(22 rx, , +22 (rzs +1)yn_1J

= Xﬁ_l.(Zk (I‘ZS +l)2 —rz(rzs2 +2s )zk )+ xn_lyn_l.(zk*lr(rzs+1szs2 + Zs)Xl—l)
- y,ffl(rzs2 +2s )Zk.(— rz(rzs2 +23)+ (rzs+1)2)

—2"x2, —2%(r?s?+2s )y?,
—2¢(x2, —(r?s2+2s Jy?,)=2"

Hence, ( u,,v, ) is a solution of

X2 —(I’ZS2 +2$)y2 =2"for even k integers.
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(b)) By Theorem 2.2. and Tehorem 2.4., we get

U, +\/3Vn+l= (Xn +\/Byn )(Ul +\/BV1)

since (X, ,Y, )= (r s+1,r )IS a fundamental
solution of the Pell equation

X’ —(rzs2 +2s )y2 =1, we find that

(5, +vBy, ] (1, +%,)
(xl+\/5yl)(un +\/5vn)

U, ,= (r25,+1).1n + r(r"’s2 +2s )/n

for n>2.

| =

k

2
Vo =ru, + (r s+1)\/n

(c¢) Recall that

k k

u,=22(r2s+1)x,, +22r(r2s?+2sy,, , v,=22rx,, +22(r’s+1)y,,

by (16 ), also

U,y = (r23+1)Jn + r(rz’s2 +2s )/n

Combining these results as ([5]) we find by
induction on N that

un:(2r23+1Xun_1+un_2)—un_3 ,
v, :(2r23+1Xvn_1 V)=V, .
forn>4 .

Example: Let r=3, s=2 andlet k=6 .Then, we
get D=40and x* —40y* =64 . By Theorem 3.4.,
(ul,vl):(152, 24 ) isa solution of

x*> —40y?* =64, and some other solutions are;
(u,,v,)=(5768,912) ,
(us,v,)=(219032,34632) ,
(u,,v,)=(8317448,1315104 ) |

(us, v, )=(315843992, 49939320 )
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2
Voa=ru, + (r s+1)\/n
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