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Abstract 

Let 1, sr and 0k  be arbitrary integers and also ssrD .222  be a positive non- square integer.  

In this paper, we consider the Pell equation 
kyDx 2. 22  and we get all positive integer solutions of this 

equation for all 0k  integers. Moreover, we derive recurrence relations on the solutions of the Pell equation 

kyDx 2. 22  . 
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I. Introduction 
The equation  

NDyx  22
                                                  1  

with given integers D  , N  and unknowns yx ,  is 

called Pell’s Equation. if D  is negative, it can have 

only a finite number of solutions. if D  is a perfect 

square, say 
2tD , the equation reduces to 

   Ntyxtyx  . andthere is only a finite 

number of solutions. The most interesting case of 

equation arises when 1D  be a positive non- square 

integer.  

For 1N , the Pell equation 

122 Dyx                                                   2  

İs known as classical Pell equation and it has 

infinitely many solutions  nn yx ,  for Nn  . There 

are different methods for finding the first non- trivial 

 11 , yx  solution called the fundamental solution 

from which all other solutions are easily computed 

    32 see . 

Also, there are many papers in which details 

on Pell equations and different types of Pell’s equation 

are considered         6541 see . 

 In this paper, in the case of ssrD .222   

where  1, sr , we consider the Pell equation  

kyDx 2. 22  when 0k integer and by 

constructing some criteria we get all positive solutions 

of this equation. We consider the problem in three 

cases:  

 

  1 sri
 

  1,2  srii  

  2, sriii  

for 0k  and 1k  respectively. Moreover, we give 

nümerical examplesto all new constructed theorems 

and also by using method of   5 , we derive 

recurrences relations on the solutions of this equation. 

 

II. Preliminary Notes 
We need the following theorems for the proof 

of our theorems. 

Theorem 2.1.  If N  is a quadratic non- residue 

modulo D , then the Pell equation NDyx  22
 

has no integer solution .   5  

Theorem  2.2.  Let   11 , yx  be a fundamental 

solution to the equation 122 Dyx . Then all 

positive integer solutions of the equation 

122 Dyx  are given by  

nn yDx  =  n

yDx 11                                3  

with   2n .   3   

Theorem  2.3.  Let D   be a positive integer, that is 

not a perfect square. Then the continued fraction 

expansion of D such that 

 0110 2,,........,; aaaaD l  where  is  

  lDl   is the period length and the ja ’s are 

given by the recursion formulas; 
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Recall that 02aal  and 
tlt aa   for 1t . The 

thn  convergent of D  for 0n is given by  
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By means of the 
thn  convergent of D , 

we can give the fundamental solution of the 

122 Dyx .  Let 11 p , 00 ap   and 

01 q , 10 q .In general 

21

21









nnnn

nnnn

qqaq

ppap
                                           4  

for  1n . Then the fundamental solution of  

122 Dyx  is 

            

 
 

 








oddislifqp

evenislifqp
yx

ll

ll

;,

;,
,

1212

11

11     5  

 

    154.,2,1 p . 

Theorem  2.4.  If  11 ,vu and  11 ,  nn yx are 

integer solutions of NDyx  22
 and 

122 Dyx , respectively, then  nn vu , is also 

a positive solution of NDyx  22
, where 

 nn vDu   1111 . vDuyDx nn     6  

for 2n .   4  

 

 

III. The Main Results on The Pell 

Equation 
kyDx 2. 22 

 
By using recurrence on infinite sequence of 

positive solutions of the Pell equation 
kyDx 2. 22 

 
where ssrD .222 

 
with 

1, sr
 
integers and  0k is also an integer.First we 

consider the case 0k , that is the classical Pell 

equation   1.2 2222  yssrx . Then, we can 

give following theorem. 

 

Theorem 3.1. Let ssrD .222 
 

with 1, sr
 

integers . Then the following conditions satisfy: 

(a) The continued fraction expansion of 

D  is; 

 

 
 
 

















2,2;2,;

1,2;2,;

1;2,1;1

srifrsrrs

srifrrr

srif

D

 
(b) The fundamental solution of 

122 Dyx  is; 

 

 

 

 
 









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
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,

2

2
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srifrsr

srifrr
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yx

 

( c ) For 4n ,  

 
 

 

  

   
   
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             and 

 

  

   
   
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2
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2
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y
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nnn

n

 

Proof:  ( a ) Assume that 1 sr ,by Theorem 2.3.,  

it is easily seen that the continued fraction 3  is 

 2,1;13   . 

 

Now, let 1,2  sr . Then  
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 rrrrD 2,;22   

 

Similarly, it can be shown that  

 rsrrsssrD 2,;22   for 2, sr . 

 

( b ) Since    1,2, 11 yx  is a 

fundamental solution of 13 22  yx , the case of

1 sr is clear. Also, for    1,2  sr by using 

the method defined in Theorem 2.3., we get 2l , 

ra 0 ra 1 . Hence, 

     rrqpyx ,1,, 2

1111   is the fundamental 

solution since 11 p rap  00  ,  01 q , 

10 q   and   
rqqaq

rppap









1001

2

1001 1
  by  4  

and  5  . 

Finally, we assume that  2, sr , by using 

the method defined in Theorem 2.3., we get 2l , 

rsa 0 ra 1 . Hence, 

     rsrqpyx ,1,, 2

1111   is the 

fundamental solution since 11 p srap  00  ,  

01 q , 10 q   and   
rqqaq

srppap









1001

2

1001 1
  

by  4  and  5  . 

 

( c ) By Theorem 2.2., we can see easily that 

all solutions  nn yx ,  of 122 Dyx  can be 

derived from the fundamental solution  11 , yx   of 

this equation. Assume that 1 sr . In a similar 

way in   5  it can be shown by induction on n   that 

  3213   nnnn xxxx  ,  

  3213   nnnn yyyy  

for 4n  .Moreover, in a similar way, we get 

   321

2 12   nnnn xxxrx  ,  

   321

2 12   nnnn yyyry  

where 22 rD  for 4n  and 

   321

2 12   nnnn xxxsrx  ,  

   321

2 12   nnnn yyysry  

where ssrD .222   for 4n . 

 

Now, we consider the general case for 1k  

.Note that we denote the integer solutions of 

  kyssrx 2.2 2222  by  nn vu ,  and denote 

the integer solutionsof   1.2 2222  yssrx  by 

 nn yx , .Then we have following theorem. 

 

 

Theorem 3.2. Let 1 sr ,that is 3D ,and 1k
 

be a arbitrary integer. Define a sequence   nn vu ,

of positive integers by  

 



















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eveniskif

oddiskifsolutionno

vu kk

;2,2

;

,
2

1
211

                                                                               7  

and ,since k is even, we get 

   

1

1
2

1
2

1
2

1

1
2

22

2.32















n

k

n

k

n

n

k

n

k

n

yxv

yxu

                              

 8  

 

 where   nn yx , is the sequence of positive 

solutions of 1.3 22  yx   .Then the following 

conditions satisfy with k is even; 
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( a )  nn vu , is a solution of 

kyx 2.3 22 
 
for any integer 1n . 

( b )  For  2n ,

nnnnnn vuvvuu 2,32 11    

( c ) For  4n , 

  3213   nnnn uuuu  ,         

  3213   nnnn vvvv  

 

 Proof : ( a ) Assume that k  is odd. Since 2 is a 

quadratic non- residue  3mod , then  

  11
3

2








 k

k

.By Theorem 2.1., the Pell 

Equation 
kyx 2.3 22   has no integer solution. 

Now, let k  is even.Then it easily seen that  

 
















2

1
2

11 2,2,

kk

vu is a solution of 

kyx 2.3 22  ,that is 

2

2

2

1
22

1

2

1 2.32




























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
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Dvu kk 2.3222 
  

                  
k2  

Also,
 
 nn vu ,  is a solution for 2n . We 

can prove this as follows. Recall that  11,  nn yx  is 

a solution of  1.3 22  yx ,that is, 

1.3 2

1

2

1   nn yx                                                   9  

Further, we see  11,vu is a solution of 

kyx 2.3 22  ,that is, 

kvu 2.3 2

1

2

1                                                      10                                                                                                        

using   9 and   10 , we find that 

2

1

1
2

1
2

2

1
2

1

1
222 22.32.323
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
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
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k
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k

n
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n

k
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     222

1

22
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1 2.32.3.2.32.3.2.32. 









  kk

n
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nn
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n yyxx  

 
2

1

2

1 322   n

k

n

k yx  2

1

2

1 32   nn

k yx
k2  

Therefore,  nn vu ,  is a solution of  
kyx 2.3 22 

for even k  integers 

 

( b ) By Theorem 2.2. and Tehorem 2.4., we get  

  11 nn vDu   11. vDuyDx nn   

              
   DvuyDx

n

1111 .   

                              

   nn vDuyDx  .11  

Since    1,2, 11 yx is a fundamental 

solution of the Pell equation 1.3 22  yx , we get 

that  

 nnnnnn vuvvuu 2,32 11    

for  2n .  

 

( c ) We see as above that  

1

1
2

1
2

1
2

1

1
2 22,2.32 







 n

k

n

k

nn

k

n

k

n yxvyxu

 

also nnn vuu 321   . In a similar way in   5 , 

by induction on n  and combining these two results, it 

can be shown that 

 
  3213   nnnn uuuu  

for 4n  . 

Similarly, combining  8  and 

nnn vuv 21   
results, we get 

  3213   nnnn vvvv for 4n  . 

 

Example: Let 1 sr and  4k .Then, by 

Theorem 3.2.,
 
   4,8, 11 vu  is a solution of  

162.3 422  yx , and some other solutions are;

   16,28, 22 vu ,  

   60,104, 33 vu  ,   

   224,388, 44 vu    

    836,1448, 55 vu   ,   

   3120,5404, 66 vu  

 

Remark: Note that in Theorem 3.3. and Theorem 3.4., 

we will consider the case k is even . When we 

consider the case k is odd, then we find that there is a 

solution  11,vu of   kyrx 2.2 222   and  

  kyssrx 2.2 2222  respectively, for some 

values of k , or there is no solution.  

Forexample, 2,4  sr and 3k , we can 

not find solution of the Pell equation 

8268 322  yx . But for 5k ,we find that 

   1,10, 11 vu is a solution of

32268 522  yx . 

Moreover, for 3,5  sr  and for every odd 

k  ,there is no solution of 
kyx 2.301 22   . 
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Also, we can see that Keith Mathews’ “ Some Bc 

Math/ PHP  Nunber Theory Programs” , 2013. 

 

 

Theorem 3.3. Let 1s , 2r  and k
 
be arbitrary 

integers with 1k
 
is even. Define a sequence 

  nn vu , of positive integers by  

   













 rrvu

kk

222
11 2,1.2,                         11  

and ,since k is even, we get 

   

   

  1

22
1

2

1

22
1

22

122

2212









n

k

n

k

n

n

k

n

k

n

yrrxv

yrrxru

   

 12

 

 

 where   nn yx , is the sequence of positive 

solutions of   1.2 222  yrx   .Then the 

following conditions satisfy with k is even; 

 

( a )  nn vu , is a solution of 

  kyrx 2.2 222 
 
for any integer 1n . 

( b )  For  2n , 

                               

      nnnnnn vrurvvrruru 1.,21 2

1

22

1  

 

( c ) For  4n , 

    

   321

2 12   nnnn uuuru  ,  

   321

2 12   nnnn vvvrv  

 

 Proof : ( a ) Assume that k  is even. Then , it easily 

seen that     













 rrvu

kk

222
11 2,1.2, is a 

solution of   kyrx 2.2 222   since  

                        

   
2

22

2

222

1

2

1 2.212




























 rrrDvu

kk

    kk rrr 2221 2222  k2  

Also,
 
 nn vu ,  is a solution for 2n . We 

can prove this as follows. Note that by definition, 

 11,  nn yx  is a solution of    1.2 222  yrx

,that is, 

  12 2

1

22

1   nn yrx                                  13  

Further, we see above that  11,vu is a solution of 

  kyrx 2.2 222  ,that is, 

  kvru 2.2 2

1

22

1                           14  

applying  13 and   14 , we get 

         
2

1

22
1

22

2

1

22
1

22222 122.222122




























  n

k

n

k

n

k

n

k

nn yrrxryrrxrvru

                       

         

      222222

1

221

11

22222

1

12.22

11212.2212.











rrrry

rrryxrrrx

k

n

k

nn

kk

n

 

               2

1

22

1 222   n

k

n

k yrx

  2

1

22

1 22   nn

k yrx
k2  

Therefore,  nn vu ,  is a solution of  

  kyrx 2.2 222  for even k  integers. 

 

( b ) By Theorem 2.2. and Tehorem 2.4., we get 

  11 nn vDu   11. vDuyDx nn    

                            
   DvuyDx

n

1111 .   

                            
  nn vDuyDx  .11  

Since    rryx ,1, 2

11  is a fundamental solution 

of the Pell equation   1.2 222  yrx  , we find 

that  

 

      nnnnnn vrurvvrruru 1.,21 2

1

22

1  

 

for  2n .  

 
( c ) Recall that  

      1

22
1

2
1

22
1

22 122,2212   n

k

n

k

nn

k

n

k

n yrrxvyrrxru
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by  12 , also     nnn vrruru 21 22

1 
 . 

In a similar way in   5 , by induction on n  and 

combining these two results, it can be shown that  

   321

2 12   nnnn uuuru  

for 4n  . 

Similarly, combining  12  and 

  nnn vrurv 1. 2

1   
results, we get 

   321

2 12   nnnn vvvrv  

for 4n  . 

 

Example: Let 3r , 1s   and let 2k .Then, we 

get  11D and 411 22  yx  . By Theorem 3.3.,
 

   6,20, 11 vu  is a solution of  411 22  yx , 

and some other solutions are; 

   120,398, 22 vu ,   

   2394,7940, 33 vu  , 

     47760,158402, 44 vu   ,   

   952806,3160100, 55 vu     

 

Theorem 3.4. Let  2, sr  and k
 
be arbitrary 

integers with 1k
 
is even. Define a sequence 

  nn vu , of positive integers by  

   













 rsrvu

kk

222
11 2,1.2,                   15  

and ,since k is even, we get 

   

  1

22
1

2

1

222
1

22

122

2212









n

k

n

k

n

n

k

n

k

n

ysrrxv

yssrrxsru

                                                                

                                                                            

 16

  

 where   nn yx , is the sequence of positive 

solutions of   1.2 2222  yssrx   .Then the 

following conditions hold; 

 

( a )  nn vu , is a solution of 

  kyssrx 2.2 2222 
 
for any integer 1n . 

( b )  For  2n , 

                               

      nnnnnn vsrurvvssrrusru 1.,21 2

1

222

1  

 

( c ) For  4n , 

    

   321

2 12   nnnn uuusru  ,  

   321

2 12   nnnn vvvsrv  

 Proof : ( a ) Assume that k  is even. Then , it easily 

seen that     













 rsrvu

kk

222
11 2,1.2, is a 

solution of   kyssrx 2.2 2222   since  

   
2

222

2

222

1

2

1 2.212




























 rssrsrDvu

kk

  

    kk rssrsr 2221 22222  k2  

Also,
 
 nn vu ,  is a solution for 2n . We 

can prove this as follows. Recall that  11,  nn yx  is 

a solution of    1.2 2222  yssrx ,that is, 

  12 2

1

222

1   nn yssrx                              17  

Further, we see above that  11,vu is a 

solution of   kyssrx 2.2 2222  ,that is, 

  kvssru 2.2 2

1

222

1                                   18  

applying  17 and   18 , we get 

         
2

1

22
1

222

2

1

222
1

222222 122.222122




























  n

k

n

k

n

k

n

k

nn ysrrxssryssrrxsrvssru

 

          

         

      22222222

1

2221

11

222222

1

12.22

11212.2212.











srssrrssry

ssrsrryxssrrsrx

k

n

k

nn

kk

n

 

           2

1

222

1 222   n

k

n

k yssrx

  2

1

222

1 22   nn

k yssrx
k2  

Hence,  nn vu ,  is a solution of  

  kyssrx 2.2 2222  for even k  integers. 
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( b ) By Theorem 2.2. and Tehorem 2.4., we get 

  11 nn vDu   11. vDuyDx nn    

              
   DvuyDx

n

1111 .   

                                     

                              nn vDuyDx  .11  

Since    rsryx ,1, 2

11  is a fundamental 

solution of the Pell equation 

  1.2 2222  yssrx  , we find that  

  

      nnnnnn vsrurvvssrrusru 1.,21 2

1

222

1  

 

for  2n .  

 

 

 

 ( c ) Recall that  

      1

22
1

2
1

222
1

22 122,2212   n

k

n

k

nn

k

n

k

n ysrrxvyssrrxsru

by  16 , also   

      nnnnnn vsrurvvssrrusru 1.,21 2

1

222

1  

. 

Combining these results  as   5 ,  we find by 

induction on n   that 

   321

2 12   nnnn uuusru  ,  

   321

2 12   nnnn vvvsrv   
 
 

for 4n  . 

 

Example: Let 3r , 2s   and let 6k .Then, we 

get  40D and 6440 22  yx  . By Theorem 3.4.,
 

   24,152, 11 vu  is a solution of  

6440 22  yx , and some other solutions are;

   912,5768, 22 vu ,   

   34632,219032, 33 vu  ,  

   1315104,8317448, 44 vu   ,   

   49939320,315843992, 55 vu   
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