
M.Veera Gopi Kishore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.479-483

www.ijera.com 479 | P a g e

Optimal Implementation of UART-SPI Interface in System On

Chip

M.Veera Gopi Kishore
1
, B.Srinivas

2
, Dr M.J.C. Prasad

3

1(PG Scholar, Department of ECE, Malla Reddy Engineering College, Hyderabad)
2(Asst.Professor, Department of ECE, Malla Reddy Engineering College, Hyderabad)
3(Professor, Department of ECE, Malla Reddy Engineering College, Hyderabad)

ABSTRACT
This paper details the Optimal Implementation of UART-SPI Interface in System On Chip. This paper details the
design and implementation of System on chip's UART- SPI Interface. The UART- SPI Interface provides

utilization for the universal asynchronous receiver/transmitter (UART) to Serial Peripheral Interface (SPI). This

interface can be used to connect to SPI slave devices from a PC with UART port. The interface consists of three

blocks: the UART interface, the UART -to-SPI interfacing block and the SPI Master interface.

Keywords - SOC, UART, SPI, power optimization

I. INTRODUCTION
An UART is a device enabling the

transmission and reception of information, in a

sequential and asynchronous way. Universal

Asynchronous Receiver and Transmitter are used

asynchronous sequential data communication between

remote embedded systems. The UART can be used to

control the process of breaking parallel data from the

PC down into sequential data that can be transmitted.

It consists of one receiver module and transmitter

module. UART has been an important input/output

tool for decades and is still widely used. UARTs are

used for communication between two devices [1]. SPI
stands for Serial Peripheral Interface. It is a

synchronous protocol that allows a master device to

initiate communication with slave devices.

SPI is a complete duplex, serial bus widely

used because of its easy hardware interface

specifications and protocol flexibility. SPI consists of

two blocks. The SPI master and the SPI slave, the SPI

Master which is being used in this design implements

the master functionality of the SPI protocol. SPI

protocol specifies four signal wires MOSI - master out

slave in (output from master), MISO - expert in slave
out (output from slave), SCLK – serial clock (clock

outcome from master) and SS -slave select (active

low, output from master) [2]. The SPI Master block

produces the control signals to interface to external

slave devices using the serial data out port (MOSI),

serial data in port (MISO), outcome clock (SCLK) and

slave select (SS) [10].The SS signal must be used if

more than one slave exists in the system. This signal is

most often active low, so a low on this range will

indicate the SPI is effective, while a high will signal

inactivity. UART-to-SPI interfacing block that is the

middle block joins the UART and SPI master. It
allows the interconnection between these two

interfaces.

The main benefit is, the UART- SPI interface [9] can

fit in any application where an SPI program has to be

used. As the UART-SPI interface can be used to

connect to SPI slave devices from a PC with UART

port it can be used for typical applications like

interfacing of EEPROM, flash memories and sensors

[8].

II. SYSTEM-ON-CHIP
The empirical law of Moore does not only

explain the improving density of transistors allowed

by technical developments. It also enforces new

specifications and difficulties, Systems complexity

improves at the same speed. Now-a-days systems

could never be developed using the same techniques

used 20 years ago. New architectures are and must be

continuously conceived. It is obvious now that

Moore's law for the last two decades has allowed three

primary revolutions. The first revolution in the mid-

eighties was the way to embed more and more

electronic devices in the same silicon die; it was the
era of System on Chip [8]. One primary task was the

way to interconnect all these devices effectively. For

this purpose, the Bus interconnect structure was used

for the VLSI subsystem. A process usually has an

embedded user interface as a form of software and

encompasses many elements within, not only the

hardware but also the software that comprises the

system. Such a complicated entity can be managed

only with computer-aided design resources, automatic

synthesis of the physical layouts, and sound software

engineering knowledge. Moreover, it features to
accomplish a particular objective, as a whole, are

usually described in methods that should fulfill

customer requirements in time.

RESEARCH ARTICLE OPEN ACCESS

M.Veera Gopi Kishore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.479-483

www.ijera.com 480 | P a g e

III. UART DESIGN
An UART (Universal Asynchronous

Receiver/Transmitter) is the micro-chip with

programming that manages a pc's interface to its
attached sequential devices. UART is an integrated

circuit designed for implementing the interface for

serial communications. It provides the computer with

the RS-232C Data Terminal Equipment (DTE)

interface so that it can "talk" to and exchange data

with modems and other serial devices [1].

As part of this interface, the UART also:

 Converts the bytes it gets from the program along

parallel circuits into only one single serial bit

stream for outbound transmission.

 On inbound transmission, converts the sequential
bit stream into the bytes that the program handles.

 Adds a parity bit (if it's been selected) on

outbound transmissions and assessments the

parity of incoming bytes (if selected) and discards

the parity bit.

 Adds start and stop delineators on outbound and

strips them from inbound transmissions.

 May manage other types of interrupt and device

management that need coordinating the on-chip

communication of operation with high-speed

devices.

Figure1. UART Block diagram

 The UART contains both transmitter and receiver.

The transmitter is a unique shift register that loads

data in parallel and then changes it out bit-by-bit.

The receiver shifts in information bit-by-bit and

reassembles the information byte.

 Wait until the incoming signal becomes ' 0 ' (the

begin bit) and then begin the sampling tick center.
When the center reaches 7, the incoming signal

gets to the middle position of the begin bit.

Obvious the center and restart.

 When the center reaches to 15, we are at the

center of the first data bit. Retrieve it and move

into a register. Restart the center. Do it again the

above step N-1 times to retrieve the remaining

data bits. If optional parity bit is used, repeat this

Process once more. Do it again this step M more

times to acquire the stop bits.

IV. SPI DESIGN
SPI means Serial Peripheral Interface. SPI is

a synchronous method that allows a master device to

initiate communication with a slave device. Data is
exchanged between these devices. SPI is implemented

by a hardware module known as the Synchronous

Serial Port or the Master Synchronous Serial Port.

This module is built into many different micro

devices. It allows serial communication between two

or more devices at a high speed and is reasonably

simple to implement.

SPI is a Synchronous protocol. The clock

signal is provided by the master to provide

synchronization. The clock signal controls when data

can modify and when it is valid for reading [5]. Since
SPI is synchronous, it has a clock pulse along with the

data. RS-232 and other asynchronous protocols do not

use a clock pulse, but the data must be timed very

perfectly. Since SPI has a clock signal, the clock can

vary without interfering the data. The data rate will

simply modify along with the changes in the clock

rate. This creates SPI ideal when the microcontroller is

being clocked imprecisely, such as by a RC oscillator.

SPI is a Master-Slave method. Only the

master device can manage the clock line, SCLK. No

data will be transferred unless clock is manipulated.

All slaves are managed by clock which is manipulated
by the master device. The slaves may not manipulate

the clock. The SSP configuration registers will control

how a device will reply to the clock input. SPI is a

Data Exchange protocol [2]. As information is being

clocked out, new information is also being clocked in.

When one "transmits" data, the incoming information

must be read before attempting to transmit again. If

the incoming information is not read, then the

information will be lost and the SPI module may

become disabled as a result. Always read the data after

a transfer has taken place, even if the data has no use
in your application. Data is always "exchanged"

between devices. No device can just be a "transmitter"

or just a "receiver" in SPI. However, each device has

two data lines, one for feedback and one for outcome.

These data exchanges are managed by clock line,

SCLK, which is controlled by the master device.

Often a slave select signal will control when

a device is utilized. This signal must be used for when

more than one slave exists in a system, but can be

optional when only one slave exists in the circuit. As a

general concept, it should be used. This signal is

known as the SS signal and it means for "Slave
Select." It indicates to a slave that the master wishes to

begin an SPI data exchange between that slave device

and itself. The signal is most often effective low, so a

low on this line will indicate the SPI is effective, while

a higher will signal inactivity. It is often used to

improve noise immunity of the system. Its function is

to reset the SPI slave so that it is ready to get the next

byte.

M.Veera Gopi Kishore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.479-483

www.ijera.com 481 | P a g e

Figure2. SPI Block Diagram

In the master SPI, the bits are sent out of the

MOSI pin and obtained in the MISO pin. The bits to

be shifted out are stored in the SPI data register,

SP0DR, and are sent out most significant bit (bit 7)

first. When bit 7 of the master is shifted out through

MOSI pin, a bit from bit 7 of the servant is being

moved into bit 0 of the master via the MISO pin. After

8 clock pulses or shifts, this bit will gradually end up

in bit 7 of the master. The least significant bit can be

sent out first by establishing the LSBF bit to 1 in the
SPI Control Register. The clock, which control show

fast the bits are out and into SP0DR, is the signal

SCLK at PS6. The frequency of this clock can be

managed by the SPI baud amount register SP0BR. The

SS pin must be low to decide a slave. This signal can

come from any pin on the master, including its SS pin

when it is configured as an outcome.

In the master SPI, the bits are sent out of the

MOSI pin and obtained in the MISO pin. The bits to

be shifted out are stored in the SPI data register,

SP0DR, and are sent out most significant bit (bit 7)
first. When bit 7 of the master is shifted out through

MOSI pin, a bit from bit 7 of the servant is being

moved into bit 0 of the master via the MISO pin. After

8 clock pulses or shifts, this bit will gradually end up

in bit 7 of the master. The least significant bit can be

sent out first by establishing the LSBF bit to 1 in the

SPI Control Register. The clock, which control show

fast the bits are out and into SP0DR is the signal

SCLK at PS6. The frequency of this clock can be

managed by the SPI baud amount register SP0BR. The

SS pin must be low to decide a slave. This signal can

come from any pin on the master, including its SS pin
when it is configured as an outcome.

The SPI Control Register1, SP0CR1, is the

two bits CPOL and CPHA control the polarity and

phase of the clock. If CPOL=0(1), the clock idles low

(high) and data are moved in and out on the increasing

(falling) edge of the clock if CPHA=0 and on the

dropping (rising) advantage of the clock if

CPHA=1(0). If CPHA=1, the SS slave select line can

stay low during successive exchanges. If CPHA=0,

the SS line must be de-asserted and reasserted

between each subsequent byte of data transferred.
SPI is a Serial Interface and uses the

following Signals to serially exchange data with

another device:

SS - This signal is known as Slave Select.

When it goes low, the slave device will listen for SPI

clock and data signals.

SCLK - This is the serial clock signal. It is generated

by the master device and controls when data is sent

and when it is read.

MOSI - The signal is generated by Master, recipient is

the Slave.

MISO -The signals are generated by Slaves, recipient

is the master.

SI - Serial Data Input (used to transfer data into the

SPI device).

SO - Serial Data Output (used to transfer data out of

the SPI device).

CS - Chip Select Input (for enabling device operation).

W- Write Protect Input (used to guard against

Program/erase instructions).

HOLD - Hold Input (to pause SPI transaction).

V. INTERFACING
The UART-to-SPI interface can be used to

communicate to SPI slave devices from a PC with a

UART port. SPI is a full duplex, serial bus commonly
used in the embedded world because of its simple

hardware interface requirements and protocol

flexibility. SPI devices are normally smaller in size

(low 110 count) when in comparison to parallel

interface devices. The interfacing structure is shown

below.

Figure3. UART-SPI Interface Block Diagram

It consists of three blocks, the UART

interface, the UART-to-SPI control block and the SPI

master Interface. The internal UART-to-SPI control
blocks Stitches the Core UART and SPI master. The

SPI master block generates the control signals to

interface to external slave devices. This interface

M.Veera Gopi Kishore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.479-483

www.ijera.com 482 | P a g e

communicates with the slave devices using the serial

data out port(MOSI), serial data in port (MISO),

output clock (SCLK), and slave select ports(SS_N

[7:0]). There are three internal registers in the design:

control register, transmit register, and receive register.

The control register sets the different control bits, the
transmit register sends the TX data to the SPI bus, and

the receive register collects the Rx data from the SPI

bus [6]. After every reset, data Collected from the

external UART go to the control Register. The control

bit positions are given in table l which is shown

below.

TABLE 1. CONTROL BIT POSITIONS

7

SS

6 5 4

CPOL

3

CPHA

2

CLKDIV

1 0

When the UART-to-SPI communicates to
any of the slave devices, it enables only the

corresponding slave select signal. Only one slave

device should be transmitting data during a particular

data transfer. Slave devices that are not selected do not

interfere with SPI bus activities during that period [7].

Other slave devices ignore the clock signal

and keep the MISO output pin in a high impedance

state, unless the slave select pin is enabled. The

SPI_OR_MEM hard coded value sets the operation

mode: when SPI_OR_MEM is set to 1, the slave

select signal SS_Nx will be asserted Low for a 1-byte
(8 bit) transaction only; when SPI_OR_MEM is set to

0, the SPI slave device will be treated as a SPI

memory, and the SS_Nx signal can be asserted low for

multiple bytes of data [3]. This mode is required when

performing the page/sector mode of operations with

memories.

The slave select will be low for the command

byte, address bytes, and data bytes [10]. When

SPI_OR_MEM is set to 1, the command byte 0x01 is

used for read operation and the command byte 0x02 is

used for write operation shown in table2.

TABLE 2. COMMANDS

Operation

Description

Read 0x01 command byte is sent over UART

Tx,

Enabling data read from the UART Rx

line.

Write 0x02 command byte is sent over UART

Tx,
followed by the data to be written.

VI. SIMUATION RESULTS
The Interface of UART - SPI in SOC has

been synthesized using the Xilinx 10.2. The

simulation results are shown in figure 4. The optimal

frequency is 239 MHz

Figure4. Simulation Results

The utilization of chip area in FPGA is shown in table

3.

TABLE3. CHIP UTILIZATION

VII. CONCLUSION AND FUTURE

SCOPE
The Interface of UART - SPI in System On

Chip will become very efficient method in most of the
applications. The communication in the System on

chip architecture makes very simple as they are in

connection with a bus. In future most of the

applications will add into the subsystem the routing

architecture plays a vital role in the system and it may

be implemented in SOC.

REFERENCES

[I] Design and simulation of UART serial

communication module based on VHDL -

Fang Yi-Yuan, Chen Xue, IEEE Explore,
may 2011.

[2] Design and test of general purpose SPI

master/slave IPs on OPB Bus- systems

M.Veera Gopi Kishore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.479-483

www.ijera.com 483 | P a g e

signals and devices, 7fu international multi

conference, 2010.

[3] A.K Oudjida et ai, Master-Slave wrapper

communication protocol: A case-study,

Proceedings of the 1'1 IEEE International

Computer Systems and Information
Technology Conference ICSIT'05, PP 461-

467, 19-21 July 2006.

[4] F. Leens, "An Introduction to SPI Protocols,"

IEEE Instrumentation & Measurement

Magazine, pp. 8-13, February 2009.

[5] A.K. Oudjida et ai, FPGA Implementation of

I2C & SPI protocols A Comparative Study".

Proceedings of the 16fu edition of the IEEE

International Conference on Electronics

Circuits and Systems ICECS, pp.507 -510,

Dec 13-16 2009.

[6] REN Yu-fei, ZHANG Xiang, CHENG Nai-
ping (Department of Optical and Electrical,

Academy of Equipment Command &Tech,

Beijing 101416, China); Design and

Realization of Two-way Transmission SPI

Interface; Tele communication Engineering;

2009.

[7] Zhang Rui;A Method to Realize DSP

Communicating with Other Device by SPI

Interface Protocol [J]; International

Electronic Elements; 2003-08.

[8] A micro- FT- UART for safety critical SOC
based Applications,

www.doi.ieeecomputersociety.org.

[9] www.xilinx.com/support/documentation/ipd

ocumentationlxpspi.pdf

[10] www.actel.com/documents/UART_to_SPCA

N.pdf.

[11] www.nxp.com/documents/datasheet! SCI6IS

752SCI6IS762.pdf.

[12] www.xilinx.com/support/anembeddedproces

speripheral other.html

