
Toqeer Ehsan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.2015-2020

www.ijera.com 2015 | P a g e

An Efficient Searching Technique by Colonization of Random

Data Set Based On Dynamic Programming

Toqeer Ehsan
1,

 M. Usman Ali
2,

Meer Qaisar Javed
3

Faculty of Computing and Information Technology, University of Gujrat, Pakistan

ABSTRACT
The logarithmic behavior of Binary Search to find elements requires data set to be arranged in ascending or

descending order. This paper introduces the concept of data colonization which means naturally ordered sub-

sequences are grouped together to become a data colony so that any type of searching technique could be

applied to any ordered sub-sequence independently. Addresses of the colonies i.e. starting and ending of
colonies are remembered by using the concept of memorizations from dynamic programming. We have run

different searching techniques in different colonies on the basis of the size of the colony and results are

satisfactory after comparing with sequential search. As we keep on increasing the size of the colonies by

decreasing the colonizational density of data set, the hybrid memorized technique starts showing more

logarithmic behavior rather linear even the list is not arranged.

Keywords - Colonization, Complexity, Dynamic programming, Memorization, Hybrid approach

I. INTRODUCTION
Under the study of computational methods,

the problem of searching a specific data object from a

large number of elements is always has an intellectual

significance. Searching plays important role in lot of
computational areas like database management

systems, spreadsheets, text editors, natural language

processors, lists and arrays, internet searching etc. A

lot of techniques have been proposed to solve afore

mentioned problem of searching with some

limitations. These techniques belong to different

problem solving techniques, some belong to divide

and conquer family like binary search. Binary search

exists in a lot of variations and is very efficient

technique that could find an element in logarithmic

(Θ(lgn)) time complexity. On the other hand, very
famous algorithm called sequential search belongs to

brute force methods. Sequential search also called

linear search performs the searching in linear time

complexity(O(n)). So the running time of linear

search is higher as compared to binary search

apparently. Linear search algorithm is equally

applicable on ordered and random data but binary

search only runs on already ordered data. Both

techniques work on different data sets, so if we have

the random data set then we are bound to use

sequential search to search the specific data objects.

By comparing the logarithmic time
complexity with linear we find that the binary search

is much more efficient as compared to linear search.

But before using the binary search algorithm we first

need to sort the list. Sorting of elements which would

again cost time because the lower bound to a

comparison based sorting algorithm is Ω(nlgn). In the

applications in which we are dealing with the real

time random data, we need an efficient searching

technique that could search the desired data set

without sorting. In this paper an efficient search

algorithm is introduced that performs searching on a

pre-processed trained but real time random data set.

The results are encouraging when compared with the

brute force sequential search. A colonization

technique is being used to group the random data in a

list which memorizes the addresses of the colonies
and algorithm is designed on the bases of dynamic

programming. Dynamic programming is a problem

solving technique which is used to solve the

optimization problems. In our case the optimal

solution is the optimal number of comparisons.

Memorization technique helps to save some number

of comparisons due to the colonization process. The

process of colonization is completed before

application of the algorithm. Once the data is trained

we can apply any searching algorithm including our

own algorithm to compute the results, these multiple
runs would not affect the original trained data. Our

main focus is to improve the average case running

time of the algorithm on any type of random inputs.

II. DATA PRE-PROCESSING
As we discussed in the section 1, we are

going to perform some operations on the data set to

train the data so that our algorithm can perform an

efficient searching by saving the number of

comparisons. One method is to simply sort the list
and then perform searching that would be efficient

but the cost of sorting is even higher than brute-force

searching. So we are not going to sort the array, all

we need is to move the elements into colonies and

note the addresses of these groupings.

2.1 COLONIZATION OF DATA

In real world it is very hard to keep the track

of house addresses if there are only numbers in big

RESEARCH ARTICLE OPEN ACCESS

Toqeer Ehsan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.2015-2020

www.ijera.com 2016 | P a g e

cities and towns so the towns are divided in the form

of blocks and sectors to make it easier to locate any

house. After doing that we just limit the scope of the

data that would take less time to find any location.

Similar technique is being used in this paper which

we are calling the colonization of data. We divide the
huge data into small portions let us call each portion

as a colony; colonies are identified by their registered

names and boundaries. Set of colonies could further

be divided into sectors or blocks but in this paper we

are just using colonies for searching by computing the

optimal number of comparisons. Example of

colonization can be elaborated by the Fig.1 given

below:

Figure.1: Colonization of random data.

Fig.1 shows the process of colonization by

grouping that integer data from a segment of an array

into four different colonies. To group the data into

portions different approaches could be used, for

example to set a threshold on data on the bases of
average or minimum number to some maximum

number. But here we have exploited the fact that in an

array of random numbers, some sequences are already

sorted so we don’t need that elements to put in order

or sort them. Our pre-processing technique computes

the pre-sorted sub-sequences and puts each sub-

sequence in one colony so that we could perform

efficient search on data. After colonization of data or

sometimes we call it training of data, some changes

could occur in our original data set. If we examine the

list first sorted sub-sequence starts from 1 and ends at

14, second sequence starts from 7 and end at 20, now
both sub-sequences moved to colony1 and colony2

respectively. Colony 3 in the Fig.1 shows that there

are three elements in it which are 9, 13 and 18. But

the sequence in the list is 13, 9 and 18 which is not

sorted. In the colonization process we are also taking

care of unsorted pairs. If two numbers are not sorted,

it means they are sorted in reverse order so in the pre-

processing algorithm swaps two elements if next

element is smaller than previous if it is first

comparison for next colony. Computing the element

for colony 3, algorithms swaps the elements 13 and 9
before moving them to colony. While pre-processing

the data, we don’t need to sort the array, so the

process of colonization must be completed in linear

time complexity.

After colonization process the list, in Fig.1

would be changed a little as given below:

Figure.2: Data segment after colonization process.

2.2 MEMORIZATIONS

After the colonization process, we need to

keep track of the boundary of each colony. Dynamic

programming uses a method of memorization to save

the start and end of a colony so that algorithm can

search within a colony efficiently; otherwise we have
to compute the addresses of colonies every time we

run a searching algorithm. A new memory or list is

created to keep the addresses of the sub-sequences.

The length of new list would be almost half of the

original list that caters even worst input so the length

of the memorized list would be n/2+2 if the length of

input list is ‘n’. Let we create new list R with length

6+2 as the length of list in above example is 11. Fig.3

shows the value of list R after colonization process.

Let us consider the list just as standard array of

elements. First element contains starting element of

first colony and second element contains end of first
colony. Third element contains the end of second

colony as the starting of second colony is the end of

first colony plus one. After colonization process the

array R would look like:

Figure.3: Values of ‘R’ after colonization process.

As the size of array ‘R’ is eight so the

indexes of the array start from ‘0’ and end at ‘7’.
Values of ‘R’ are the index values of input array in

the Fig.2. -1 is placed at the end to ensure the end of

the array values. Index integer very before to -1

indicates the total number of colonies; here it is four

so there are four data colonies in our example.

III. COLONIZATION ALGORITHM
Pre-processing algorithm is an iterative and

very intuitive in nature. The steps of the algorithm are
as follows:

Step1. Compute the next sorted sub-sequence from

input list.

Step2. Populate list ‘R’ with the indexes of computed

sequence.

Step3. To Step1 up to the last sequence.

3.1 PSEUDO CODE

Colonization (array, start, end)

Rsize = (end + 1)/2 + 2
Create a new array R of size Rsize

i=start, R[0]=start, flag = 0, j = 1

Col_count=0

while(i < end)

 while(array[i]<=array[i+1])

 flag = 1

 i=i+1

 if(!flag)

 swap array[i] and array[i+1]

 i=i+1

Toqeer Ehsan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.2015-2020

www.ijera.com 2017 | P a g e

 flag = 1

 else

 R[j] = i

 i=i+1, j=j+1

 Col_count=Col_count+1

 flag = 0
endwhile

if (i =end)

 R[j]=i

 j=j+1

 Col_count=Col_count+1

R[j]=-1

3.2 ANALYSIS

The algorithm given in the previous section

creates a new array ‘R’ which is used for

memorizations of the addresses of the colonies. The

term address is referring to the start and end of a
colony. In the algorithm outer while loop executes ‘n’

times if the length of the array is ‘n’ and indexes are

‘0’ to ‘n’. Inner while loop decides the data members

that are going to belong to that colony. In the

algorithm no element would belong to more than one

colony at the same time unless there is some

duplication. So the total number of comparisons of

the elements to compute the sorted sub-sequences

would be equal to ‘n’ for a list of ‘n’ numbers. Time

complexity of the algorithm could be defined as Θ(n)

asymptotically.

IV. SEARCHING MECHANISM
After the colonization process each colony

can be treated as an independent data set so different

searching techniques could also be applied to

different colonies to achieve more efficiency. First of

all we have to check the start and end index of each

sub-sequence which would decide whether to enter

some specific colony or not. For example if our key is
23, in the colony one the largest element is less than

23, it means key would never be found in colony 1. If

in some cases the key element is smaller than last

element then we also have to check the lower element

as well. Before applying any searching technique to

any colony, we ensure whether that colony has the

potential to have the key, then we proceed further. In

this section we are going to discuss different

scenarios to search when we have data in the form of

colonies already.

Figure.4: Different searching techniques on different

colonies.

4.1 BINARY SEARCH

As the data members in each colony are

already sorts so we must use binary search for each

colony to search the key element. Doing this we could

save some number of comparisons in each colony and

when there is a huge data these saved comparisons
will result in a better running time. There are some

limitations in this approach, if there are more colonies

for example 40-50 percent number of colonies then

there must be very small grouping of data then binary

search will work just like sequential search. It means

binary search could be used for searching if there is

less number of colonies with greater length. Let’s call

this technique as Binary memorized search.

 4.2 SEQUENTIAL SEARCH

Sequential search could also be used for

searching within any colony. Sequential search would
work fine as compared to binary search if there are

more colonies with less number of elements. In this

case our technique would be almost equal to straight

forward brute force sequential search with Θ(n) time

complexity. We are calling that technique as

Sequential memorized search.

4.3 HYBRID SEARCH

The performance of the searching techniques

is dependent on the size and number of colonies. If

we use a hybrid approach to search the independent
colonies, we could achieve even more efficiency. If

some colony has less number of elements let say less

than 5 then apply sequential search otherwise binary

search. Doing this we could save a lot of comparisons

as compared to simple sequential search on random

data. To implement this hybrid technique, we need to

design such an algorithm that keeps the track of

number of colonies. If there are more colonies for

example 20-50 percent then use sequential search and

if there are less than 20 percent colonies then

implement binary search for data searching within a

colony. We are calling this technique as Hybrid
memorized search.

V. ALGORITHM
Step.0 Colonize the data by running

colonization procedure.

Step.1 Compute the total number of colonies.

Step.2 If the size of the colony is greater than five.

 Apply Binary search on sub-sequence

 Else
 Apply Sequential search on sub-sequence

5.1 PSEUDO CODE

Hybrid-Mem(array[], R[] , Count, Key)

int k=0,left=0,pos=0,right=0

right=R[1];

while(Count>1)

 if(array[left]<=key)

 if(array[right]>=key)

 if((right - left) == 1)

Toqeer Ehsan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.2015-2020

www.ijera.com 2018 | P a g e

 if (array[left]==key)

 return left;

 if(array[right]==key)

 return right;

 else if((right - left) <= 5)

 Sequential_Search(array,
Key,left,right)

 else

 Binary_search(array,Key,left,right)

 Count=Count-1

 K=k+1

 left=R[k]+1

 right=R[k+1]

endwhile

5.2 ANALYSIS

Algorithm presented in the section 5.1 takes

five parameters as input. First parameter ‘array’ is our
data set after pre-processing, ‘R’ is the array having

information of sub-sequences starting and ending

indexes, count is the total count of the sub-sequences

and Key is the element to find. Only hybrid

memorized search pseudo code is being discusses as

it contains both sequential and binary search for the

colonies. Our algorithm decides the appropriate inner

searching technique on the basis of the size of the

colony. We have set the lower size limit on five. If

there are more colonies with size greater than five

then hybrid memorized search saves some number of
comparisons in each colony which will result the

better performance. Whether we implement hybrid or

binary search it may not change the efficiency class of

the algorithm although average case analysis on

random inputs gives better results. So we still are

bound to claim that time complexity of the algorithm

belongs to O(n). But as we keep on decreasing the

count of colonies our algorithm start showing

logarithmic behavior rather linear because of divide

and conquer nature of binary search.

VI. RESULTS
We are going to compare four different

algorithms, one is standard sequential search and

others are sequential, binary and hybrid on the bases

of memorizations. We have run all the algorithms on

same random data with same key for searching but to

make sure of the comparison of average case, we

have counted the number of comparisons of one

hundred runs for each algorithm. We are going to

analyze the results on the bases of the number of
comparisons that each algorithm takes to find some

specific element in the array. We have run the

algorithms on the random data with different number

of colonies and they are showing different behaviors.

First we have taken the array having 40% sorted sub-

arrays or colonies.

Figure.5: Number of comparisons on 40% colonies

All the algorithms including sequential

search show the similar behavior when there are

approximately 40% number of sub-sequences. It

means most of the sub-sequences are of size two and

some may be of size greater than two. So in each case

hybrid memorized search and binary memorized

search take number of comparisons equal to

sequential search. Now we change the input array to

have less number of colonies. Let after merging the

pair of sub-sequences we will get 20% number of
colonies.

Figure.6: Number of comparisons on 20% colonies

After decreasing the number of colonies

binary memorized search computes less number of

comparisons as compared to other techniques. Let’s

further decrease the number of colonies by merging

the pairs of the sorted sub-sequences.

Figure.7: Number of comparisons on 10% colonies

After decreasing the number of colonies to

10% binary memorized search and hybrid memorized

search perform well with less number of comparisons

as compared to sequential search and sequential

Toqeer Ehsan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.2015-2020

www.ijera.com 2019 | P a g e

memorized search beacause at 10% colonies, most of

the sub-sequences have size greather than five. In

hybrid technique we have set the threshod on the size

of the sub-array which is five. To use binary search

on the sub-array the minimun size of the sub-array

must be five so that at least one comparison could be
saved. Sequential memorized search acts just like

sequential search as there are very less number of

comparisons which are saved when running on

random data. Now we further decrease the number of

colonies by increasing the size of sorted sub-

sequences to get the clear picture of the performance

behaviors.

Figure.8: Number of comparisons on 5% colonies

Figure.9: Number of comparisons on 2.5% colonies

Figure.10: Number of comparisons on 1.25% colonies

VII. CONCLUSION
Binary search based on the divide and

conquer technique is an efficient search algorithm and

searches the element from an array in logarithmic

(O(lgn)) time but it only works on sorted array. We

have to use sequential search when searching from a

random unsorted array. Colonization technique is

introduced to group the already sorted sub-sequences

so that we can perform different search algorithms on

different colonies on the basis of the size of the

colony to save the comparisons. We have calculated

the results by using sequential search on each colony,

binary search for each colonies and a hybrid
technique which selects the appropriate searching

algorithm according to the size of the colony. All the

algorithms give the same performance when there are

almost 40% colonies. But when we gradually

decreased the number of colonies by increasing the

size of the sorted sub-sequences after merging the

pairs of the colonies, hybrid memorized search and

binary memorized search start showing similar and

efficient behavior. Fig.11 shows the behaviors of the

algorithms with different number of sub-sequences. It

is concluded that sequential memorized search shows

linear behavior no matter what percentage of the data
is colonized whereas binary and hybrid memorized

search start showing logarithmic behaviors when

there are less number of colonies even the whole

array is still unsorted.

Figure.11: Behaviors of the algorithms on different

type of inputs

REFERENCES
[1] T. Ehsan, M. Usman, M. Qaisar, An

Efficient Sorting Algorithm by Computing

Randomized Sorted Sub-sequences Based on
Dynamic Programming, International

Journal of Computer Science and Network

Security (IJCSNS), 13(9), September 2013,

51-57.

[2] T. Cormen, C. Leiserson, R. Rivest, C. Stein,

Intoduction to Algorithms, 3rd ed, MIT Press,

2011.

[3] Deepak Abhyankar, Maya Ingle, Elements of

Dynamic Programming in Sorting,

International Journal of Engineering

Research and Applications (IJERA), 1(3),
446-448.

[4] S. Baase and A. Gelder, Computer

Algorithms:Introduction to Design and

Analysis, Addison-Wesley, 2000.

[5] Anany Levitin, Introduction to the Design

and Analysis of Algorithms, 2nd ed, Pearson

Education, 2007.

Toqeer Ehsan et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.2015-2020

www.ijera.com 2020 | P a g e

[6] D. E. Knuth, The Art of Computer

Programming, Vol. 3, Pearson Education,

1998.

[7] Frederic H. Murphy, Edward A. Stohr, A

Dynamic Programming Algorithm for Check

Sorting, Management Science, 24(1),
September 1977, 59-70.

[8] D. Abhyankar, M. Ingle, A Performance

Study of Some Sophisticated Partitioning

Algorithms, International Journal of

Advanced Computer Science and

Applications (IJACSA), 2(5), 2011, 135-137.

[9] Dr. Anupam Shukla and Rahul Kala,

Predictive Sort, International Journal of

Computer Science and Network Security

(IJCSNS), 8(6), June 2008, 314-320.

