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ABSTRACT 
Flood maps are a crucial tool to support emergency management, disaster recovery and risk reduction planning. 

Traditional flood mapping methods are time-consuming, labor intensive, and costly. Our goal in this paper is to 

introduce a novel technique to aggregate knowledge and information to map coastal flooded areas. We proposed 

a Difference of Normalized Difference Water Indices (DNDWI) derived from two LANDSAT-5/TM surface 

reflectance product acquired before and after the passage of Hurricane Ike, for Upper Texas in September of 

2008. The reference flooded area was delineated interpolating the maximum surge in each location using a spline 
with barriers method with high tension and a 30 meter Digital Elevation Model (DEM). It was noticed that 

NDWI values decreased after the hurricane landfall on average from 0.226 to 0.122 for flooded area. However 

for the non-flooded areas it increased from 0.292 to 0.300. Results from the Monte Carlo simulation showed that 

mapping flooded areas with DNDWI got an accuracy of 85.68% while the non-flooded areas got an accuracy of 

92.13%. Thus, DNDWI is promising tool for mapping flooded areas since it is a cheaper and simple technique 

which can be applied rapidly for several areas of the planet.  
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I. INTRODUCTION 
Hurricanes are one of the most costly natural 

disasters in the United States [1] and recent storms 

such as Hurricane Sandy (2012), Ike (2008) and 

Katrina (2005) have caused major infrastructure 

damage and losses of lives along the East and Gulf 

Coasts [2]. Tropical cyclones are also a major cause of 

flooding and damage in several regions worldwide 

including recent events in the Bay of Bengal, Typhoon 

Phailin (2013), and historically deadly storms such as 

Tropical cyclone Thelma (1991), in the North Pacific 

Ocean, and Cyclone Zoe (2002), in the South Pacific 

Ocean, among others. Coastal flooding is one of the 
major hazards to accompany a tropical cyclone 

landfall [3] and can be aggravated by the combination 

of the storm tidal surge and rainfall-runoff from the 

heavy precipitations.   

Traditionally, coastal flooding due to tropical 

cyclones has been estimated by measured water levels 

on buoys and coastal gages (e.g., [4-5]). Although 

these monitoring networks provide good historical 

data for coastal flooding, it lacks spatial information 

due to the limited number of stations over large areas. 

Recent developments of physics based numerical 

models using High Performance Computing (HPC) 
(e.g., [6]) in addition to an increasingly large volume 

of high resolution data (e.g., topo/bathymetry, land 

use, wind fields) has led to an unprecedented 

improvement in accuracy of tropical cyclones flood 

prediction and mapping. A combination of numerical 

modeling and measured data for model validation and 

calibration is currently the state of the art in predicting 

coastal flooding [7]. Recently the United States 

Geological Survey (USGS) launched the Inland 

Storm-Tide Monitoring Program [8] that provides 

unprecedented detail in coastal flooding monitoring 

during hurricane events on the United States coastal 

areas. Although recent advances in technology and 
methods, the forecasting and mapping of coastal 

flooding spatial extent is still a challenge especially in 

large areas without extensive instrumentation.  

In this way, remote sensing data can provide 

useful information to mapping coastal flooding over 

large area. The main advantages in the use of remote 

sensing data are the synoptic view of large areas, 

spatial variability of data and repetitive acquisition. 

Moreover, the cost of data acquired by sensors 

onboard orbital platforms can be lower than the data 

acquired by conventional methods (discounting the 
cost of the satellites) [9]. Recently, remote sensing 

data have been applied to identify flood areas using 

the Environmental Satellite (ENVISAT) advanced 

synthetic aperture radar (ASAR) and Landsat 

Thematic Mapper (TM) optical imagery to document 

the flooded extent of Hurricane Ike (2008) by [10]. 

Subsequently, [11] presented a summary of the 

limitations and potentials of satellite imagery to 

monitor and map coastal flooding for Hurricanes 

Gustav and Ike (2008) demonstrating that the 

correspondence between ground data and ASAR-

based flood mapping ranged from 86 to 96% for water 
levels higher than 0.8 m.  

Although the good correspondence between 

ground data and RADAR-based flood mapping, such 

as demonstrated by [11], RADAR (Radio Detection 

and Ranging) sensors (e.g., ASAR, TerraSAR, 

RADARSAT) are not always imaging freely and 

generally their products have high costs. Moreover, 
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the data acquisition is sparse and over small areas. 

Therefore, it is necessary to develop new techniques 

based only on optical remote sensing data, which 

generally is available freely, have more options of 

spatial and temporal resolutions and has a historical 

time series with more than 10 years records (e.g., 
MODIS and TM sensors), which allows mapping the 

flooding extent of past events. 

The objective of this study is to introduce a 

novel technique based on optical remote sensing 

techniques in order to aggregate knowledge and 

information to map coastal flood areas. We present a 

case study for the coastal flooding caused by 

Hurricane Ike on the Texas coast and develop our 

method using the Normalized Difference Water Index 

(NDWI) which was derived from two the medium 

resolution LANDSAT-5/TM surface reflectance 

product from the LANDSAT Climate Data Record 
(CDR).  

 

II. STUDY AREA AND EVENT 
The study area is the upper Texas coast, 

USA, which was directly impacted by Hurricane Ike 

in 2008 more specifically between the coordinates 

30°46'23"N 95°41'48"W and 29°19'53"N 94°1'57"W 

(Fig. 1). According to [12], the frequency of 

hurricanes in this region is one about every six years 
and the annual probability of hurricanes occurrence is 

around 31%. However, more than 40 events were 

registered in the past century (1 at each three year), 

which indicates an increase in the frequency of events.  

 Hurricane Ike was a Category 2 hurricane 

when it made landfall on the Texas coast [2] causing 

severe damage to the State of Texas, Bahamas and 

Cuba as well. The storm winds reached 230 km h-1 

with the lowest central pressure at 935 mbar leaving 

an estimated death toll of 103 people and around 40 

billion dollars in damages. 

 
Figure 1. Study area in the Upper Texas, near Hilton 

and reference flooded area. LANDSAT-5/TM image 

acquired on 4 September true color composition. 

III. DATASET 
The dataset used in this study include in situ 

measurements and remote sensing images. The in situ 

data were collected by the USGS mobile storm surge 
network [8], which provide atmospheric pressure and 

water level data at each 6 minutes. The data were 

measured using a pressure transducer (HOBO 

Onset®) and stored in the USGS database [8]. 

Topography was obtained from a Digital Elevation 

Model (DEM) dataset extracted from the National 

Elevation Dataset (NED) [13] representing the entire 

region topography at a resolution of 1 arc-second. 

The remote sensing data comprise images 

collected by the TM sensor, onboard LANDSAT-5 

satellite. This images are provided with 7 spectral 
bands (from the visible to thermal spectral regions), 

quantized in 8 bits and with 30 meters spatial 

resolution, except the thermal band which has 120 m 

spatial resolution. The images are acquired at each 16 

days. In this study we used the surface reflectance 

product from the LANDSAT CDR. This product is 

generated from specialized software called Landsat 

Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) which provide images converted for 

reflectance values and corrected for the atmospheric 

effects. More information about this product is 

available at [14] 
 

IV. METHODS 
4.1.  REFERENCE FLOODED AREA 

The reference flooded area was determined 

based on the methodology proposed by [15] and 

consists of spatially interpolating the maximum flood 

height at each monitoring station and calculating the 

water depths based on the DEM. For this study we 

considered 59 recording stations along the study area. 
The maximum water heights were extracted from the 

recorded time series to represent the maximum flood 

level at each location. A spatial interpolation using a 

spline with higher tension (weight of 20 as suggested 

by [15] was used to develop the maximum water level 

coverage for the region. The water depths were 

calculated by subtracting the maximum flood surface 

from the DEM using the vertical NAVD88 Datum for 

the region.  The resulting coverage was re-classified to 

remove the dry areas defining the estimated flood 

extent. 

 

4.2.  NORMALIZED DIFFERENCE WATER INDEX  

As vegetation is one of the most affected 

targets by flood in coastal areas, changes in its water 

content could be used to identify the affected areas. 

The NDWI, which is also called the leaf area water-

absent index, could be an alternative for optical 

remote sensing to map flooded areas. It is possible 

since this index (1) estimates the water content within 

vegetation [16]: 
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where, mis the reflectance at 0.86 m and 

mis the reflectance at 1.24 m. 
According to [16], it measures the liquid 

water molecules in vegetation that interact with solar 

radiation. The NDWI has been widely used because it 

is less sensitive to atmospheric scattering effects 

compared with the NDVI. However, similar to the 

NDVI, the NDWI did not completely remove the soil 

background reflectance effects. Using Landsat-5/TM 
bands, the NDWI was estimated as follows (2): 

   54

)5()4(
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where, is the reflectance at LANDSAT-5/TM 

band 4 and is the reflectance at LANDSAT-

5/TM band 5.  We used band 5 (1.65 μm) as an 

approximation of 1.24 μm [16]. This procedure was 

previously described in several studies [17-19]. 

4.3.  METHOD DEVELOPMENT  

The use of NDWI to classify flooded areas 

from a hurricane event consists in analyzing NDWI 

values from two different dates (before and after the 

hurricane). The difference among the NDWI values 

from the two dates is here called Difference of NDWI 

(DNDWI). Two thousand values of DNDWI were 

used to classify flooded and non-flooded areas 

according to the established limits for each of these 

two classes. These limits were computed from the 

univariate statistics of DNDWI values from each of 
the reference class. Average and standard deviations 

for each class was used to determine the lower and 

upper limit to categorize the DNDWI values. The 

DNDWI threshold for each class was chosen as 

plus/minus one standard deviation from the mean 

value plus a constant (see Table 1 in the results and 

discussion section). 

 

4.4.  VALIDATION  

It was used to validate the NDNWI 

classification a Monte Carlo Method (MCM). The 
MCM, also known as statistical simulation, is defined 

as any method that uses sequences of random numbers 

to perform a simulation. This process was based on 

the outcome of many simulations using random 

numbers to obtain a probable solution. This technique 

provides an approximate, quick answer and a high 

level of accuracy; however, it is possible that accuracy 

is increased with additional simulations [20]. We 

collected 2000 stratified points of the DNDWI image, 

each class (flooded and non-flooded) got 1000 random 

values each. From these values an average from 20 of 

them were calculated 10,000 times. These 10,000 
average values were used to evaluate the proposed 

classification using the thresholds analysis. The 

analysis were conducted by fitting all 10,000 values in 

the thresholds and them analyzing the number that got 

in the correct class. 

V. RESULTS AND DISCUSSIONS 
5.1.  DNDWI CLASSIFICATION 

For the DNDWI classification we collected 

1000 points for each class based on the reference and 
calculate their univariate statistics and a histogram 

(Fig. 2).  For the 1000 points from the flooded area, 

the average value was 0.107 while for the non-flooded 

are the average was -0.011.The median for the flooded 

area was 0.140 and the non-flooded got a median 

value of 0.003. It showed that the DNDWI is higher 

for flood areas and lower for non-flooded ones. It 

happened due to the fact that in both areas there were 

precipitation, however, as the NDWI measures the 

water content in the vegetation, at flooded areas the 

index was saturated while in non-flooded area it 
worked well.  

 
Figure 2. Histograms of DNDWI from the two classes 

according to the reference classification. 

  

The values of DNDWI can be explained by 

the mean values of NDWI before and after the 

Hurricane Ike. The mean value of the NDWI before 

the hurricane was 0.292 for the non-flooded areas and 

0.2264 for the flooded areas. They changed to 0.300 in 
the non-flooded areas and to 0.122 for flooded areas. 

It showed an increase of 2.74% in the NDWI values 

for the non-flooded area and a decrease of 45.82% of 

NDWI values for the flooded areas. Thus as the index 

values increases from the first to the second image in 
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the non-flooded areas, the DNDWI tends to decrease 

while the opposite is also true, in the flooded areas 

DNDWI values tend to increase due to the decrease of 

NDWI in the second image. Due to these 

characteristics the thresholds were calculated from the 

average plus/minus one standard deviation from the 
mean value plus a constant (Table 1). 

Table 1. Thresholds for the DNDWI classification. 

Classes Threshold 

Non-flooded <0.05 

Flooded >0.05 

 

5.2.  VALIDATION USING MCM 

To validate the choice of thresholds the 

10,000 values from the simulated average of DNDWI 

values were analyzed. For flooded areas the values 

ranged from -0.099 to 0.285, while the values for non-

flooded areas ranged from -0.193 to 0.143. The mean 

values of these two series were 0.106 and -0.010 for 

the flooded and non-flooded areas respectively. A 

histogram of all 10,000 DNDWI values and the 

threshold limit are shown on Fig. 3. 

 
Figure 3. Histogram of DNDWI simulated average by 

MCM. 

 

MCM results also showed that for flooded 

areas 8568 values were classified as flooded by the 

threshold analysis. For non-flooded the number of 

values in the range proposed in the threshold was 

9213. It showed that DNDWI got an accuracy of 
85.68% for mapping flooded areas, showing that it is a 

potential tool to help managers and policy makers to 

analyze the impacted areas.  

We also calculate the results of the Wilcoxon 

signed rank test for the 10,000 values of DNDWI 

through the MCM. It showed that the null hypothesis 

was refuted with 5% significance (p-value < 0.001); 

thus, there was undoubtedly a difference in the 

DNDWI values from flooded and non-flooded areas. 

 

VI. CONCLUSION 
A methodology for mapping spatial 

variations of flood inundation caused by hurricanes 

events using optical remotely sensed image series was 

developed in this study. Since flood prevention, 

management and emergency response is an important 

issue for policy makers, flood detection using remote 

sensing can improve the number of monitored areas in 

remotely accessed places or in places without any 

monitoring program. As optical orbital sensors, like 

Landsat TM, ETM+ and OLI family, are collecting 

non-stop data from the entire planet, the use of an 
optical sensor could enhance the knowledge of 

flooding spatial mapping in areas with lack of data. 

Our results showed that the DNDWI and a threshold 

analysis method for distinguish flooded areas could be 

a potential tool to enhance the knowledge of tropical 

cyclones flooding mapping. It was observed, from a 

MCM technique, that 85.68% of 10000 mean values 

from an interaction of 20 to 1000 DNDWI values were 

accurately classified as flooded areas. For the non-

flooded area an accuracy of 92.13% was found.  

However, these results were based on only 

one event (Hurricane Ike) and should be extended to 
other study areas. We also observed that additional 

spectral behavior studies are needed to explain the 

relationship between water content and vegetation 

spectral response in flooded areas. Nevertheless, we 

proposed a methodology which could be an useful tool 

for countries without any flooding monitoring 

program and RADAR imagery cover, since the 

mapping of flooded areas is an important issue for the 

economy and the rebuilding of the affected region. 

Although the use of Synthetic Aperture Radar has 

been previously applied, the cost for buying the 
images is high as well as it is labor intensity. Using 

optical remote sensing is not only cheaper but also 

much easier to manage the data. Through the advance 

of orbital hyperspectral sensors like the Hyperspectral 

Imager for the Coastal Ocean (HICO), it will be 

possible to identify the key spectral ranges to identify 

the elevated degree of water content in vegetation. 

Thus the hyperspectral studies will enhance the use of 

optical remote sensing to map flooded areas. 
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