
Shweta jaiswal Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1430-1434

www.ijera.com 1430 | P a g e

A Survey Host Load Prediction In Computational Grid

Environment

Shweta Jaiswal
Department of computer science Patel college of science and technology Indore,India

Abstract
Grid computing is a new dimension in computing where computational resources are utilized in an optimum

manner.Grid is a computer network organization where multiple CPUs are working together to solve complex

and large computational problem.Now in these days interaction on the grid are increased considerably, thus
number of requests per second is increased in the time variant manner.Software and hardware level conflicts are

arising due to increasing load on host machines. In addition of that to manage these conflicts required to prepare

a fault tolerance and management technique to handle these load problems.This paper provides the survey of

predictive techniques which can be utilized to design an effective and efficient load forecasting technique to

handle faults and manage them.

Keywords-grid computing, host load, fault, predictive techniques.

I. INTRODUCTION
Grid computing can mean different things to

different individuals.The impressive vision is

repeatedly presented as an analogy to power grids

where users or electrical appliances get access to
electricity through wall sockets with no care or

consideration for where or how the electricity is really

generated.In similar ways grid computing, computing

becomes general and individual users or client

applications gain access to computing resources as

needed with little or no knowledge of where those

resources are located or what the underlying

technologies. [1]

One of the basic uses of grid computing is to run an

existing application on a different device.The device

on which the application is normally run might be

unusually busy due to a peak in activity. There are at
least two fundamentals for this situation.

1. First, the application must be executable remotely

and without undue overhead.

2. Second, the remote machine must have any

special type of software, hardware, or resource

requirements executed by the application.

If the amount of input and output are huge,

more thinking and planning might be required to

efficiently use the grid for such kind of task.

The potential for massive parallel CPU capacity is one

of the most common visions and features of a grid. In
addition to scientific need, such as computing power is

driving a new evolution in industries such as the bio-

medical field, financial modeling and many others.

The common attribute among such uses is

that the applications have been written to use

algorithms that can be partitioned into independently

running parts.A CPU-concentrated grid application

can be thought of as many smaller suburbs, each

executing on a different system in the grid. To the

extent that subjobs do not need to communicate with

each other, the more accessible the application

becomes perfectly scalable application.

In this section of the paper contains the

overview of grid computing and provide the

information about the concept behind the

computational grid. In the next section we discuss

various grid resources and load parameters.
The design objectives and target applications for a

Grid motivate the architecture of the RMS. According

to [2] group's design objectives into three themes:

(a) improving application performance,

(b) data access, and

(c) enhanced services.

Using these methods, Grid systems are placed

into the categories shown in Figure 1.

Figure 1. shows the grid design

The computational Grid category represents
systems that have higher computational ability for

single applications than the capacity of any

fundamental machine in the system. Depending on

how this capacity is employed, these systems can be

further subdivided into distributed supercomputing

and high throughput class. A distributed

supercomputing Grid executes the application in

parallel on multiple machines to reduce the completion

time of a job. Typically, applications that require

distributed supercomputer are grand challenge

problems such as weather modeling and simulation. A

high throughput Grid increases the rate of completion

RESEARCH ARTICLE OPEN ACCESS

Shweta jaiswal Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1430-1434

www.ijera.com 1431 | P a g e

of a stream of jobs and are well suited for „parameter

sweep‟ type applications.

The service Grid category is for systems that

provide services that are not provided by any single

device. This category is further subdivided as on-

demand, collaborative, and multimedia Grid systems.
A cooperative Grid connects users and submissions

into cooperative workgroups. These systems enable

real time interaction between humans and applications

via a virtual workspace. An on-demand Grid category

dynamically combinations different resources to

provide new services. Most ongoing research activities

developing Grid systems fall into one of the above

categories. The development of truly general-purpose

Grid systems that can support multiple or all of these

categories remains a hard problem.

In this section we introduced overview of

computational gird enviournment and the process of
request and response of the gird and their aspects.

II. BACKGROUND
Infurther we present a brief introduction of

the previously made efforts, tools and techniques that

are promising to provide the highest accurate

predictive accuracy most frequently used models and

methods are provided here.

NEURAL NETWORK

The neural network is a supervised learning

algorithm where the algorithmis learnt from examples

or target values by calculating the weight values. To

forecast host load an effort in [3] is observed where

the capability to predict the host load of a system is

significant for computational grids to make efficient

use of shared resources. This paper [3] attempts to

improve the accuracy of host load predictions by

applying a neural network predictor to reach the goal

of best performance and load balance. Author
describes the feasibility of the proposed predictor in a

dynamic environment, and performan experimental

evaluation using collected load traces. The results

show that the neural network achieves consistent

performance improvement with surprisingly low

overhead in most cases. Compared with the best

previously proposed method, our typical 20:10:1

network reduces the Mean of prediction errors by

approximately up to 79%. The training and testing

time is tremendously low, in order to make tens of

thousands of accurate predictions within just a second.

The implementation of neural network is defined in
two phases‟ one training and prediction: training

process consumes data and designs the data model.

Using this data model in the next phase prediction of

data is taking place.

Training:

1. Initialize two vectors one input and hidden unit and

second output unit.

2. Here first is a two dimensional array Wij is used and

the output is a one dimensional array Yi.

3. Initial weights are random values put inside the

victors after that then we calculate the output as

𝑥𝑗 = 𝑦𝑖𝑤𝑖𝑗

𝑖=0

Where yi is the activity level of the jth unit in the

previous layer and Wij is the weight of the connection

between the ith and the jth unit.

4. Next, activity level of yi is calculated by some

function of the total weighted input.

𝑦𝑖 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

When the activity of the all output units has been
eveluated, the network computes the error E,

𝐸 =
1

2
 𝑦𝑖 − 𝑑𝑖

2

𝑖

Where yi is the activity level of the jth unit in the top

layer and di is the desired output of the ji unit.

Calculation of the errorin the Back propagation

algorithm is as follows:

 Compute Error Derivative (EA) is the difference

between the actual and the desired activity:

𝐸𝐴𝑗 =
𝜕𝐸

𝜕𝑦𝑗

= 𝑦𝑗 − 𝑑𝑗

 Calculate the error changes as the total input

received by an output changed

𝐸𝐼𝑗 =
𝜕𝐸

𝜕𝑋𝑗

=
𝜕𝐸

𝜕𝑦𝑗

𝑋
𝑑𝑦𝑗

𝑑𝑥𝑗
= 𝐸𝐴𝑗𝑦𝑗 (1 − 𝑦𝑖)

 Calculate the error changes as a weight on the
connection into an output unit is changed:

𝐸𝑊𝑖𝑗 =
𝜕𝐸

𝜕𝑊𝑖𝑗

=
𝜕𝐸

𝜕𝑋𝑗

=
𝜕𝑋𝑗

𝜕𝑊𝑖𝑗

= 𝐸𝐼𝑗𝑦𝑖

 Calculate the overall effect on the error:

𝐸𝐴𝑖 =
𝜕𝐸

𝜕𝑦𝑖

=
𝜕𝐸

𝜕𝑥𝑗
𝑋

𝜕𝑥𝑗
𝜕𝑦𝑖

= 𝐸𝐼𝑗𝑊𝑖𝑗

𝑗𝑗

SVM

According to [4]the problem of empirical

data modeling is germane to many engineering

applications. In empirical data modeling a process of

induction is used to build up a model of the system,

from which it is hoped to infer responses of the system

that have yet to be observed. Ultimately the quantity

and quality of the observations govern the
performance of this empirical model. The term SVM

is typically used to describe classification with support

vector methods and support vector regression is used

to describe regression with support vector methods. In

this [4] the term SVM will refer to both classification

and regression methods, and the terms Support Vector

Classification (SVC) and Support Vector Regression

(SVR) will be used for specification.

In machine learning, SVM is supervised

learning models with associated learning algorithms.

SVMs belong to a family of generalized linear

classifiers and can be interpreted as an extension of the
perceptron. SVMs are a group of supervised learning

methods that can be applied to classification or

Shweta jaiswal Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1430-1434

www.ijera.com 1432 | P a g e

regression. It is primarily a two class classifier. SVMs

can efficiently perform non-linear classification using

what is called the kernel function; indirectly map their

inputs into high-dimensional feature spaces. It can also

solve the multiclass problem with the help of kernel

methods and kernel function. It aims to maximize the
width of the margin between classes, that is, the vacant

area between the decision boundary and the nearest

training pattern. The basic idea of SVM classifier is to

choose the hyper plane that has maximum margin. The

dashed lines drawn parallel to the separating line mark

the distance between the dividing line and the closest

vectors to the crease. The distance between the dashed

lines is called the margin. The vectors (points) that

constrain the width of the margin are the support

vector. Suppose the two forms can be delivered by two

hyper planes parallel to the optimal hyper plane.

Wnxt + b ≥ 1 for yt = 1 , t = 1,2,3......,k

wnxt + b ≤ -1 for yt = -1

where w = {w1, w2, w3,............,wn} is a vector of n

element Figure represents the small margin, large

margin and support vectors during classification of a

two class data set.

The kernel method consists of two modules:

First one is the choice of the kernel and the second one

is the algorithm which takes kernel as input. The basic

idea of kernel method is to map the data from the input

space to feature space F using Ø [11], Ø: X  F where

X = “inputs”, F = “feature space”, Ø = “feature map”.

The space of the original data is called input space We

say that k(x, y) is a kernel function if there is a feature
map Ø such that for all x, y K(x, y) = Ø(x) . Ø (y). In

pattern recognition a feature space is an abstract space

where each pattern sample is represented as a point in

n-dimensional space. Its dimension is resolute by the

number of features used to describe the patterns. The

concept of a kernel mapping function is powerful. It

allows SVM models to perform partings even with

very complex boundaries. Figure shows that how to

map the data from low dimensional space to a higher

dimensional space.

The mapping function needs to be computed

because of a tool called a kernel trick. The kernel trick

is a mathematical tool which can be applied to any

algorithm which only depends upon the dot product

between two vectors. Every place a dot product is

applied. It is substituted by a core function. When

appropriately applied, those candidate linear

algorithms are transformed into non-linear algorithms.

Those non-linear algorithms correspond to their linear

originals operating in the orbit space of a feature space
Ø. However, because kernels are used, the Ø function

does not need to be ever explicitly computed. Kernel

functions must be continuous, symmetric, and most

rather should have a positive (semi-definite) fixed

Gram matrix. Kernels which are said to satisfy the

Mercer‟s theorem are positive semi-definite, meaning

their kernel matrices has no non-negative Eigen

values. A positive definite kernel insures that the

optimization problem will be convex and a solution

will be unique.

Types of kernel functions:
Linear Kernel: The Linear kernel is the simplest

kernel function. It is given by the inner product <x,

y>plus an optional constant c.

𝒌 𝒙, 𝒚 = 𝒙𝑻𝒚 + 𝒄
Polynomial Kernel: The Polynomial kernel is a non-

stationary kernel. Polynomial kernels are well

appropriate for problems where all the training data is

normalized.

 𝒌 𝒙, 𝒚 = 𝜶𝒙𝑻𝒚 + 𝒄 𝒅
Adaptable parameters are the slope alpha, the constant

term c and the polynomial degree d.

Gaussian kernel: The Gaussian kernel is an example

of a radial basis function kernel.

 𝒌 𝒙, 𝒚 = 𝒆
 −

 𝒙−𝒚 𝟐

𝟐𝝈𝟐

BAYESIAN CLASSIFIER

The Bayes Classifier [5] is a classic

supervised learning classifier used in data mining.

Bayesian classification consists of five main steps: (1)

determine the set of target states (denoted as the vector

W=(ω1,ω2,···,ωm)T, where m is the number of

states), and the evidence vector with h mutually-

independent features (denoted as χ=(x1,x2,···,xh)T);

(2) compute the prior probability distribution for the
target states, P(ωi), based on the samples; (3) compute

the joint probability distribution p(χ |ωi) for each state

ωi; (4) compute the posterior probability based on

some evidence, according to Formula (3); (5) make the

decision based on a risk function λ(ωi‟, ωi), where ωi‟

and ωi indicate the true value and predicted value of

the state, respectively.

𝑃 𝑤𝑖 𝑥𝑖 =
𝑃(𝑥𝑗 |𝑤𝑖)𝑃(𝑤𝑖)

 𝑃(𝑥𝑗 |𝑤𝑖)𝑃(𝑤𝑖)
𝑚
𝑘=1

Based on risk functions, there are two ways of making

decisions, Native Bayes Classifier and Minimized

MSE (MMSE) based Bayes Classifier.

λ 𝑤𝑖 , 𝑤𝑖
′ =

0 𝑤𝑖 − 𝑤𝑖 ′ < 𝛿

1 𝑤𝑖 − 𝑤𝑖 ′ ≥ 𝛿

λ 𝑤𝑖 , 𝑤𝑖
′ = λ 𝑤𝑖 − 𝑤𝑖

′
2

According to the different risk functions, the predicted

value of the state (𝑤𝑖 ′) is determined by Formula (6)

Shweta jaiswal Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1430-1434

www.ijera.com 1433 | P a g e

and Formula (7) respectively. It is easy to prove that

the former leads to the minimal error rate and the latter

results in the minimal MSE, where the error rate is

defined as the number of wrong decisions over the

total number of tries.

𝑤𝑖
′ = arg max𝑃(𝑤𝑖|𝑥𝑗)

𝑤𝑖
′ = 𝐸 𝑤𝑖 𝑥𝑗 = 𝑤𝑖𝑃 𝑤𝑖 𝑥𝑗

𝑚

𝑖=1

Based on the above analysis, the target state

vector and the evidence feature vector are the most

critical for accurate prediction.

HIDDEN MARKOV MODEL

The Hidden Markov Model (HMM) is a

variant of a finite state machine having a set of hidden

states, Q, an output alphabet (observations), O,

transition probabilities, A, output (emission)
probabilities, B, and initial state probabilities, Π. The

current state is not observable. Instead, each state

produces an output with a certain probability (B).

Usually the states, Q, and outputs, O, are understood,

so an HMM is said to be a triple, (A, B, Π). [6]

Hidden states Q = { qi }, i = 1, . . . , N .

Transition probabilities 𝐴 = {𝑎𝑖𝑗 = 𝑃(𝑞𝑗 𝑎𝑡 𝑡 +

1 |𝑞𝑖 𝑎𝑡 𝑡)} , where P (a | b) is the conditional

probability of a given b, t = 1. . . T is time, and qi in Q.
Informally, A is the probability that the next state is qj

given that the current state is qi.

Observations (symbols) O = { ok }, k = 1, . . . , M .

Emission probabilities B = { bik = bi(ok) = P(ok | qi) },

where ok in O. Informally, B is the probability that the

output is ok given that the current state is qi.

Initial state probabilities Π = {pi = P(qi at t = 1)}.

Let αt(i) be the probability of the partial observation

sequence Ot = {o(1), o(2), ... , o(t)} to be produced by

all possible state sequences that end at the i-th state.

αt(i) = P(o(1), o(2), ... , o(t) | q(t) = qi).

The Forward Algorithm is a recursive
algorithm for calculating αt (I) for the observed

sequence of increasing length t. First, the probabilities

for the single-symbol sequence are calculated as a

product of initial i-th state probability and emission

probability of the given symbol o(1) in the i-th state.

Then the recursive formula is applied. Assume we

have calculated αt (I) for some t. To calculate αt+1(j),

we multiply every αt(i) by the corresponding transition

probability from the i-th state to the j-th state, sum the

products over all states, and then multiply the result by

the emission probability of the symbol o(t+1).
Iterating the process, we can eventually calculate αT(i),

and then summing them over all states, we can obtain

the required probability.

𝛼1 𝑖 = 𝑝𝑖𝑏𝑖 𝑜 𝑖 , 𝑖 = 1,… ,𝑁

𝛼𝑡+1 𝑖 = 𝛼𝑡 𝑗 𝛼𝑗𝑖

𝑁

𝑗−1

 𝑏𝑖 𝑜 𝑡 + 1

Here i =1, ... , N , t =1, ... , T – 1

𝑃 𝑜 1 𝑜 2 … 𝑜 𝑇 = 𝛼𝑇 𝑗

𝑁

𝑗−1

After training of the hidden Markov model it is able to

predict the next state of the recommendation system.

In addition of that in order to improve more search

engine we implement additional parameters to user

query with the help of query manipulation and

suggestion for writing the nearest query keywords for

search. That is implemented using Hidden Markov

models.

DECISION TREES

The decision tree is also a supervised

algorithm where data is organized in a tree data

structure. Where the root node provides the initial

condition and intermediate node provides the pathway

by which the decisions are predictable. There are

various algorithms are now in these days found and

most frequently used for classification problems.Most

frequently used decision tree is SLIQ, C4.5, ID3 and

CART algorithm which are promised to provide

accurate classification over large datasets.Here we
provide the C 4. 5 algorithm steps that are widely used

and accepted for classification and prediction using

previous data analysis.

INPUT: Experimental data set D which is shown by

discrete value attributes.

OUTPUT: A decision tree T which is created using

data set.

Process:

1. Create the node N;

2. If instance belongs to the same class

3. Then return node N as the leaf node and

marked with CLASS C;

4. IF attribute List is null, THEN

5. Return the node N as the leaf node and signed
with the most common CLASS;

6. Selecting the attribute with highest

information gain in the attribute List, and signing the

test_attribute;

7. Signing the node N as the test_attribute;

8. FOR the known value of each test_attribute

to divide the samples;

9. Generating a new branch which is fit for the

test_attribute= ai from node N;

10. Suppose that Ci is the set of test_attribute=ai

in the samples;

11. IF Ci is null THEN
12. Adding a leaf node and signed with the most

common CLASS;

13. Else, add a leaf node return by the

Generate_decision_tree.

III. ANALYSIS
In search of predictive methods for CPU load

prediction we evaluate various machine learning

techniques and algorithms that are promising to

provide the highest classification accuracy in different

kinds of data given in input. In addition of that we

Shweta jaiswal Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1430-1434

www.ijera.com 1434 | P a g e

learnt about data sets where we found that the data is

the main ingredient for algorithms to be trained.Here

we provide our two key observations to evaluate the

CPU load forecast using algorithms.

1. Data to be evaluated:CPU load is directly
proportional to the number of jobs are appearing for

processing. In addition of that the number of request is

also an important factor. During the study of network

load and the number of parameters we found that is

we predict the number user request and number and

length of jobs appeared at a time is predictable thus we

can predict the CPU load for that accurately.

Thus we can say there are no parameters are defined to

predict the CPU load values accurate. That is much

similar to the linear data analysis, thus hidden Markov

model is much more adoptable for the proposed work.

Which works on number of transections.

2. Performance of the algorithm: In this section of

the paper we provide the review of study algorithms.

The evaluated algorithm and their description are

given below using tables.

Neural

Network

The neural network is an efficient

classifier accuracy of classification is

adaptable, but training time of neural

network is increased as the number

of instances in a data set is

increasing.

SVM Support vector classifier is another

classifier which is working over
geometric analysis concept. But the

training time of the algorithm is quite

high in addition of that the

implementation of SVM based

classifier is complex enough.

Bayes

classifier

That is suitable classifier where data

is distributed in binary classification

objects. But to implement more than

two classes the computational

complexity is increasing as data

instance are increasing and the

number of class labels are increasing.

Hidden
Markov

This algorithm works on previous
data and its transitions. That is more

suitable where data analysis is not

dependent with more attributes.

Decision tree The decision tree algorithm is a

transparent model of prediction and

classification, but the classification

accuracy of the decision trees are not

effective enough in addition of that

accuracy is depends upon the

attributes and their contribution.

IV. CONCLUSION AND FUTURE

WORK
In this paper we provide a brief introduction

about the study domain as review of predictive

techniques that can be used for prediction of CPU load.

In addition of that here we study data and their effect

on classifier. The classification accuracy is depends

upon the data supplied to be analysis and the selected

data model algorithm computational nature.According

to the nature of CPU load data that is not much

dependent on other paramaters, thus a transactional
basis model is appropriate for data analysis and next

value prediction. in future we design and implement a

Hidden markov based predictive technique which

promises to provide high accurate classification of the

CPU load parameters.

REFERENCES
[1] Introduction to Grid Computing,Bart Jacob,

Michael Brown, Kentaro Fukui, Nihar
Trivedi,ibm.com/redbooks.

[2] A taxonomy and survey of grid resource

management systems for distributed

computing,Klaus Krauter, Rajkumar Buyya

and Muthucumaru Maheswaran,Softw. Pract.

Exper. 2002; 32:135–164 (DOI:

10.1002/spe.432).

[3] Improving Accuracy of Host Load

Predictions on Computational Grids by

Artificial Neural Networks,Truong Vinh

Truong Duy, Yukinori Sato, Yasushi

Inoguchi,Received 20 July 2009; final
version received 20 February 2010.

[4] Support Vector Machines for Classification

and Regression,by Steve R. Gunn, Technical

ReportFaculty of Engineering, Science and

MathematicsSchool of Electronics and

Computer Science, 10 May 1998.

[5] Host Load Predictionin a Google Compute

Cloud with a BayesianModel, Sheng Di,

Derrick Kondo, Walfredo Cirne,978-1-4673-

0806-9/12/$31.00, 2012 IEEE.

