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Abstract 
Grid computing is a new dimension in computing where computational resources are utilized in an optimum 

manner.Grid is a computer network organization where multiple CPUs are working together to solve complex 

and large computational problem.Now in these days interaction on the grid are increased considerably, thus 
number of requests per second is increased in the time variant manner.Software and hardware level conflicts are 

arising due to increasing load on host machines. In addition of that to manage these conflicts required to prepare 

a fault tolerance and management technique to handle these load problems.This paper provides the survey of 

predictive techniques which can be utilized to design an effective and efficient load forecasting technique to 

handle faults and manage them. 
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I. INTRODUCTION 
Grid computing can mean different things to 

different individuals.The impressive vision is 

repeatedly presented as an analogy to power grids 

where users or electrical appliances get access to 
electricity through wall sockets with no care or 

consideration for where or how the electricity is really 

generated.In similar ways grid computing, computing 

becomes general and individual users or client 

applications gain access to computing resources as 

needed with little or no knowledge of where those 

resources are located or what the underlying 

technologies. [1] 

One of the basic uses of grid computing is to run an 

existing application on a different device.The device 

on which the application is normally run might be 

unusually busy due to a peak in activity. There are at 
least two fundamentals for this situation.  

1. First, the application must be executable remotely 

and without undue overhead.  

2. Second, the remote machine must have any 

special type of software, hardware, or resource 

requirements executed by the application.  

If the amount of input and output are huge, 

more thinking and planning might be required to 

efficiently use the grid for such kind of task.  

The potential for massive parallel CPU capacity is one 

of the most common visions and features of a grid. In 
addition to scientific need, such as computing power is 

driving a new evolution in industries such as the bio-

medical field, financial modeling and many others. 

The common attribute among such uses is 

that the applications have been written to use 

algorithms that can be partitioned into independently 

running parts.A CPU-concentrated grid application 

can be thought of as many smaller suburbs, each 

executing on a different system in the grid. To the 

extent that subjobs do not need to communicate with 

each other, the more accessible the application 

becomes perfectly scalable application. 

In this section of the paper contains the 

overview of grid computing and provide the 

information about the concept behind the 

computational grid. In the next section we discuss 

various grid resources and load parameters. 
The design objectives and target applications for a 

Grid motivate the architecture of the RMS. According 

to [2] group's design objectives into three themes:  

(a) improving application performance,  

(b) data access, and  

(c) enhanced services. 

Using these methods, Grid systems are placed 

into the categories shown in Figure 1. 

 
Figure 1. shows the grid design 

The computational Grid category represents 
systems that have higher computational ability for 

single applications than the capacity of any 

fundamental machine in the system. Depending on 

how this capacity is employed, these systems can be 

further subdivided into distributed supercomputing 

and high throughput class. A distributed 

supercomputing Grid executes the application in 

parallel on multiple machines to reduce the completion 

time of a job. Typically, applications that require 

distributed supercomputer are grand challenge 

problems such as weather modeling and simulation. A 

high throughput Grid increases the rate of completion 
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of a stream of jobs and are well suited for „parameter 

sweep‟ type applications. 

The service Grid category is for systems that 

provide services that are not provided by any single 

device. This category is further subdivided as on-

demand, collaborative, and multimedia Grid systems. 
A cooperative Grid connects users and submissions 

into cooperative workgroups. These systems enable 

real time interaction between humans and applications 

via a virtual workspace. An on-demand Grid category 

dynamically combinations different resources to 

provide new services. Most ongoing research activities 

developing Grid systems fall into one of the above 

categories. The development of truly general-purpose 

Grid systems that can support multiple or all of these 

categories remains a hard problem. 

In this section we introduced overview of 

computational gird enviournment and the process of 
request and response of the gird and their aspects. 

 

II. BACKGROUND 
Infurther we present a brief introduction of 

the previously made efforts, tools and techniques that 

are promising to provide the highest accurate 

predictive accuracy most frequently used models and 

methods are provided here. 

 

NEURAL NETWORK 

The neural network is a supervised learning 

algorithm where the algorithmis learnt from examples 

or target values by calculating the weight values. To 

forecast host load an effort in [3] is observed where 

the capability to predict the host load of a system is 

significant for computational grids to make efficient 

use of shared resources. This paper [3] attempts to 

improve the accuracy of host load predictions by 

applying a neural network predictor to reach the goal 

of best performance and load balance. Author 
describes the feasibility of the proposed predictor in a 

dynamic environment, and performan experimental 

evaluation using collected load traces. The results 

show that the neural network achieves consistent 

performance improvement with surprisingly low 

overhead in most cases. Compared with the best 

previously proposed method, our typical 20:10:1 

network reduces the Mean of prediction errors by 

approximately up to 79%. The training and testing 

time is tremendously low, in order to make tens of 

thousands of accurate predictions within just a second. 

The implementation of neural network is defined in 
two phases‟ one training and prediction: training 

process consumes data and designs the data model. 

Using this data model in the next phase prediction of 

data is taking place. 

 

Training: 

1. Initialize two vectors one input and hidden unit and 

second output unit. 

2. Here first is a two dimensional array Wij is used and 

the output is a one dimensional array Yi. 

3. Initial weights are random values put inside the 

victors after that then we calculate the output as 

𝑥𝑗 =  𝑦𝑖𝑤𝑖𝑗

𝑖=0

 

Where yi is the activity level of the jth unit in the 

previous layer and Wij is the weight of the connection 

between the ith and the jth unit. 

4. Next, activity level of yi is calculated by some 

function of the total weighted input. 

𝑦𝑖 =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
  

When the activity of the all output units has been 
eveluated, the network computes the error E, 

𝐸 =
1

2
  𝑦𝑖 − 𝑑𝑖 

2

𝑖

 

Where yi is the activity level of the jth unit in the top 

layer and di is the desired output of the ji unit. 

 

Calculation of the errorin the Back propagation 

algorithm is as follows: 

 Compute Error Derivative (EA) is the difference 

between the actual and the desired activity: 

𝐸𝐴𝑗 =
𝜕𝐸

𝜕𝑦𝑗

= 𝑦𝑗 − 𝑑𝑗  

 Calculate the error changes as the total input 

received by an output changed 

𝐸𝐼𝑗 =
𝜕𝐸

𝜕𝑋𝑗

=
𝜕𝐸

𝜕𝑦𝑗

𝑋
𝑑𝑦𝑗

𝑑𝑥𝑗
= 𝐸𝐴𝑗𝑦𝑗 (1 − 𝑦𝑖) 

 Calculate the error changes as a weight on the 
connection into an output unit is changed: 

𝐸𝑊𝑖𝑗 =
𝜕𝐸

𝜕𝑊𝑖𝑗

=
𝜕𝐸

𝜕𝑋𝑗

=
𝜕𝑋𝑗

𝜕𝑊𝑖𝑗

= 𝐸𝐼𝑗𝑦𝑖 

 Calculate the overall effect on the error: 

𝐸𝐴𝑖 =
𝜕𝐸

𝜕𝑦𝑖

=  
𝜕𝐸

𝜕𝑥𝑗
𝑋

𝜕𝑥𝑗
𝜕𝑦𝑖

=  𝐸𝐼𝑗𝑊𝑖𝑗

𝑗𝑗

 

 

SVM 

According to [4]the problem of empirical 

data modeling is germane to many engineering 

applications. In empirical data modeling a process of 

induction is used to build up a model of the system, 

from which it is hoped to infer responses of the system 

that have yet to be observed. Ultimately the quantity 

and quality of the observations govern the 
performance of this empirical model. The term SVM 

is typically used to describe classification with support 

vector methods and support vector regression is used 

to describe regression with support vector methods. In 

this [4] the term SVM will refer to both classification 

and regression methods, and the terms Support Vector 

Classification (SVC) and Support Vector Regression 

(SVR) will be used for specification. 

In machine learning, SVM is supervised 

learning models with associated learning algorithms. 

SVMs belong to a family of generalized linear 

classifiers and can be interpreted as an extension of the 
perceptron. SVMs are a group of supervised learning 

methods that can be applied to classification or 
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regression. It is primarily a two class classifier. SVMs 

can efficiently perform non-linear classification using 

what is called the kernel function; indirectly map their 

inputs into high-dimensional feature spaces. It can also 

solve the multiclass problem with the help of kernel 

methods and kernel function.  It aims to maximize the 
width of the margin between classes, that is, the vacant 

area between the decision boundary and the nearest 

training pattern. The basic idea of SVM classifier is to 

choose the hyper plane that has maximum margin. The 

dashed lines drawn parallel to the separating line mark 

the distance between the dividing line and the closest 

vectors to the crease. The distance between the dashed 

lines is called the margin. The vectors (points) that 

constrain the width of the margin are the support 

vector. Suppose the two forms can be delivered by two 

hyper planes parallel to the optimal hyper plane. 

Wnxt + b ≥ 1         for yt = 1 , t = 1,2,3......,k 

wnxt + b ≤ -1       for yt = -1  

where w = {w1, w2, w3,............,wn} is a vector of n 

element Figure represents the small margin, large 

margin and support vectors during classification of a 

two class data set. 

 
The kernel method consists of two modules: 

First one is the choice of the kernel and the second one 

is the algorithm which takes kernel as input. The basic 

idea of kernel method is to map the data from the input 

space to feature space F using Ø [11], Ø: X  F where 

X = “inputs”, F = “feature space”, Ø = “feature map”. 

The space of the original data is called input space We 

say that k(x, y) is a kernel function if there is a feature 
map Ø such that for all x, y  K(x, y) = Ø(x) . Ø (y). In 

pattern recognition a feature space is an abstract space 

where each pattern sample is represented as a point in 

n-dimensional space. Its dimension is resolute by the 

number of features used to describe the patterns. The 

concept of a kernel mapping function is powerful. It 

allows SVM models to perform partings even with 

very complex boundaries. Figure  shows that how to 

map the data from low dimensional space to a higher 

dimensional space. 

 
The mapping function needs to be computed 

because of a tool called a kernel trick. The kernel trick 

is a mathematical tool which can be applied to any 

algorithm which only depends upon the dot product 

between two vectors. Every place a dot product is 

applied. It is substituted by a core function. When 

appropriately applied, those candidate linear 

algorithms are transformed into non-linear algorithms. 

Those non-linear algorithms correspond to their linear 

originals operating in the orbit space of a feature space 
Ø. However, because kernels are used, the Ø function 

does not need to be ever explicitly computed. Kernel 

functions must be continuous, symmetric, and most 

rather should have a positive (semi-definite) fixed 

Gram matrix. Kernels which are said to satisfy the 

Mercer‟s theorem are positive semi-definite, meaning 

their kernel matrices has no non-negative Eigen 

values. A positive definite kernel insures that the 

optimization problem will be convex and a solution 

will be unique. 

 

Types of kernel functions: 
Linear Kernel: The Linear kernel is the simplest 

kernel function. It is given by the inner product <x, 

y>plus an optional constant c. 

𝒌 𝒙, 𝒚 =   𝒙𝑻𝒚 + 𝒄  
Polynomial Kernel: The Polynomial kernel is a non-

stationary kernel. Polynomial kernels are well 

appropriate for   problems where all the training data is 

normalized. 

  𝒌 𝒙, 𝒚 =   𝜶𝒙𝑻𝒚 + 𝒄 𝒅 
Adaptable parameters are the slope alpha, the constant 

term c and the polynomial degree d. 

Gaussian kernel: The Gaussian kernel is an example 

of a radial basis function kernel. 

   𝒌 𝒙, 𝒚 =  𝒆
 −

 𝒙−𝒚 𝟐

𝟐𝝈𝟐  
 

 

BAYESIAN CLASSIFIER 

The Bayes Classifier [5] is a classic 

supervised learning classifier used in data mining. 

Bayesian classification consists of five main steps: (1) 

determine the set of target states (denoted as the vector 

W=(ω1,ω2,···,ωm)T, where m is the number of 

states), and the evidence vector with h mutually-

independent features (denoted as χ=(x1,x2,···,xh)T); 

(2) compute the prior probability distribution for the 
target states, P(ωi), based on the samples; (3) compute 

the joint probability distribution p(χ |ωi) for each state 

ωi; (4) compute the posterior probability based on 

some evidence, according to Formula (3); (5) make the 

decision based on a risk function λ(ωi‟, ωi), where ωi‟ 

and ωi indicate the true value and predicted value of 

the state, respectively. 

𝑃 𝑤𝑖 𝑥𝑖 =
𝑃(𝑥𝑗 |𝑤𝑖)𝑃(𝑤𝑖)

 𝑃(𝑥𝑗 |𝑤𝑖)𝑃(𝑤𝑖)
𝑚
𝑘=1

 

Based on risk functions, there are two ways of making 

decisions, Native Bayes Classifier and Minimized 

MSE (MMSE) based Bayes Classifier. 

λ 𝑤𝑖 , 𝑤𝑖
′ =  

0        𝑤𝑖 − 𝑤𝑖 ′ < 𝛿

1         𝑤𝑖 − 𝑤𝑖 ′ ≥ 𝛿
  

λ 𝑤𝑖 , 𝑤𝑖
′ = λ 𝑤𝑖 − 𝑤𝑖

′ 
2
 

According to the different risk functions, the predicted 

value of the state (𝑤𝑖 ′) is determined by Formula (6) 
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and Formula (7) respectively. It is easy to prove that 

the former leads to the minimal error rate and the latter 

results in the minimal MSE, where the error rate is 

defined as the number of wrong decisions over the 

total number of tries. 

𝑤𝑖
′ = arg max𝑃(𝑤𝑖|𝑥𝑗 ) 

𝑤𝑖
′ = 𝐸 𝑤𝑖 𝑥𝑗  =  𝑤𝑖𝑃 𝑤𝑖 𝑥𝑗 

𝑚

𝑖=1

 

Based on the above analysis, the target state 

vector and the evidence feature vector are the most 

critical for accurate prediction. 

 

HIDDEN MARKOV MODEL 

The Hidden Markov Model (HMM) is a 

variant of a finite state machine having a set of hidden 

states, Q, an output alphabet (observations), O, 

transition probabilities, A, output (emission) 
probabilities, B, and initial state probabilities, Π. The 

current state is not observable. Instead, each state 

produces an output with a certain probability (B). 

Usually the states, Q, and outputs, O, are understood, 

so an HMM is said to be a triple, ( A, B, Π ). [6] 

Hidden states Q = { qi }, i = 1, . . . , N . 

Transition probabilities 𝐴 = {𝑎𝑖𝑗 = 𝑃(𝑞𝑗  𝑎𝑡 𝑡 +

1 |𝑞𝑖  𝑎𝑡 𝑡)} , where P (a | b) is the conditional 

probability of a given b, t = 1. . . T is time, and qi in Q. 
Informally, A is the probability that the next state is qj 

given that the current state is qi. 

Observations (symbols) O = { ok }, k = 1, . . . , M . 

Emission probabilities B = { bik = bi(ok) = P(ok | qi) }, 

where ok in O. Informally, B is the probability that the 

output is ok given that the current state is qi. 

Initial state probabilities Π = {pi = P(qi at t = 1)}. 

Let αt(i) be the probability of the partial observation 

sequence Ot = {o(1), o(2), ... , o(t)} to be produced by 

all possible state sequences that end at the i-th state.  

αt(i) = P(o(1), o(2), ... , o(t) | q(t) = qi ). 

The Forward Algorithm is a recursive 
algorithm for calculating αt (I) for the observed 

sequence of increasing length t. First, the probabilities 

for the single-symbol sequence are calculated as a 

product of initial i-th state probability and emission 

probability of the given symbol o(1) in the i-th state. 

Then the recursive formula is applied. Assume we 

have calculated αt (I) for some t. To calculate αt+1(j), 

we multiply every αt(i) by the corresponding transition 

probability from the i-th state to the j-th state, sum the 

products over all states, and then multiply the result by 

the emission probability of the symbol o(t+1). 
Iterating the process, we can eventually calculate αT(i), 

and then summing them over all states, we can obtain 

the required probability. 

𝛼1 𝑖 = 𝑝𝑖𝑏𝑖 𝑜 𝑖  , 𝑖 = 1,… ,𝑁 

𝛼𝑡+1 𝑖 =   𝛼𝑡 𝑗 𝛼𝑗𝑖

𝑁

𝑗−1

 𝑏𝑖 𝑜 𝑡 + 1   

Here i =1, ... , N , t =1, ... , T – 1 

𝑃 𝑜 1 𝑜 2 … 𝑜 𝑇  =  𝛼𝑇 𝑗 

𝑁

𝑗−1

 

After training of the hidden Markov model it is able to 

predict the next state of the recommendation system. 

In addition of that in order to improve more search 

engine we implement additional parameters to user 

query with the help of query manipulation and 

suggestion for writing the nearest query keywords for 

search. That is implemented using Hidden Markov 

models. 

 

DECISION TREES 

The decision tree is also a supervised 

algorithm where data is organized in a tree data 

structure. Where the root node provides the initial 

condition and intermediate node provides the pathway 

by which the decisions are predictable. There are 

various algorithms are now in these days found and 

most frequently used for classification problems.Most 

frequently used decision tree is SLIQ, C4.5, ID3 and 

CART algorithm which are promised to provide 

accurate classification over large datasets.Here we 
provide the C 4. 5 algorithm steps that are widely used 

and accepted for classification and prediction using 

previous data analysis. 

INPUT: Experimental data set D which is shown by 

discrete value attributes. 

OUTPUT: A decision tree T which is created using 

data set. 

Process: 

1. Create the node N; 

2. If instance belongs to the same class 

3. Then return node N as the leaf node and 

marked with CLASS C; 

4. IF attribute List is null, THEN 

5. Return the node N as the leaf node and signed 
with the most common CLASS; 

6. Selecting the attribute with highest 

information gain in the attribute List, and signing   the 

test_attribute; 

7. Signing the node N as the test_attribute; 

8. FOR the known value of each test_attribute 

to divide the samples; 

9. Generating a new branch which is fit for the 

test_attribute= ai from node N; 

10. Suppose that Ci is the set of test_attribute=ai 

in the samples; 

11. IF Ci is null THEN 
12. Adding a leaf node and signed with the most 

common CLASS; 

13. Else, add a leaf node return by the 

Generate_decision_tree. 

 

III. ANALYSIS 
In search of predictive methods for CPU load 

prediction we evaluate various machine learning 

techniques and algorithms that are promising to 

provide the highest classification accuracy in different 

kinds of data given in input. In addition of that we 
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learnt about data sets where we found that the data is 

the main ingredient for algorithms to be trained.Here 

we provide our two key observations to evaluate the 

CPU load forecast using algorithms. 

 

1. Data to be evaluated:CPU load is directly 
proportional to the number of jobs are appearing for 

processing. In addition of that the number of request is 

also an important factor. During the study of network 

load and the number of  parameters we found that is 

we predict the number user request and number and 

length of jobs appeared at a time is predictable thus we 

can predict the CPU load for that accurately. 

Thus we can say there are no parameters are defined to 

predict the CPU load values accurate. That is much 

similar to the linear data analysis, thus hidden Markov 

model is much more adoptable for the proposed work. 

Which works on number of transections. 

 

2. Performance of the algorithm: In this section of 

the paper we provide the review of study algorithms. 

The evaluated algorithm and their description are 

given below using tables. 

Neural 

Network 

The neural network is an efficient 

classifier accuracy of classification is 

adaptable, but training time of neural 

network is increased as the number 

of instances in a data set is 

increasing. 

SVM Support vector classifier is another 

classifier which is working over 
geometric analysis concept. But the 

training time of the algorithm is quite 

high in addition of that the 

implementation of SVM based 

classifier is complex enough. 

Bayes 

classifier 

That is suitable classifier where data 

is distributed in binary classification 

objects. But to implement more than 

two classes the computational 

complexity is increasing as data 

instance are increasing and the 

number of class labels are increasing. 

Hidden 
Markov 

This algorithm works on previous 
data and its transitions. That is more 

suitable where data analysis is not 

dependent with more attributes. 

Decision tree The decision tree algorithm is a 

transparent model of prediction and 

classification, but the classification 

accuracy of the decision trees are not 

effective enough in addition of that 

accuracy is depends upon the 

attributes and their contribution.  

 

IV. CONCLUSION AND FUTURE 

WORK 
In this paper we provide a brief introduction 

about the study domain as review of predictive 

techniques that can be used for prediction of CPU load. 

In addition of that here we study data and their effect 

on classifier. The classification accuracy is depends 

upon the data supplied to be analysis and the selected 

data model algorithm computational nature.According 

to the nature of CPU load data that is not much 

dependent on other paramaters, thus a transactional 
basis model is appropriate for data analysis and next 

value prediction. in future we design and implement a 

Hidden markov based predictive technique which 

promises to provide high accurate classification of the 

CPU load parameters. 
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