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ABSTRACT 
These studies present a general perspective of the field with most known examples from common literature, 

emphasizing a practical point of view in this technologically oriented topic. Conventional wastewater treatment 

plants as major contributors to greenhouse gases. Duckweed, Algae and Fish culture based wastewater treatment 

also releases CO2 but the algae consume more CO2 while growing than that is being released by the plant, this 

makes the entire system carbon negative .Algae-based wastewater treatment technology is suited for tropical 

countries where the temperature is warmer and sunlight is optimum. Environmental factors play a major role in 
algae cultivation. Maintenance of optimum temperature and lighting in algae ponds are difficult. Apart from 

these environmental factors, there are a number of biological problems and operational problems can arise in the 

mass cultivation of microalgae using wastewater. These include contamination and grazing. Control measures 

for avoiding contamination by bacteria and other algal species are sterilization and ultra-filtration of the culture 

medium. 
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I. INTRODUCTION 
The practical use of wastewaters of various 

types of aquaculture is a subject of increasing interest. 

Wastewater aquaculture has the multiple benefit of 

producing potentially valuable materials while re-using 
resources and treating wastes, resulting in overall 

greater protection of the environment at lower cost. 

Proper design of an aquaculture farm is required for 

efficient use of the resources available in the sewage 

water. By the proper design only, we can use more 

effectively and more efficiently the available water 

resources and the land area. In India a lot of fish farms 

are running by using sewage water but there is no 

proper designed sewage-fed aquaculture farm, in the 

laterite soil zone, is available. This study was 

formulated to make a proper design of an aquaculture 
farm by using sewage water in laterite soil zone.  There 

is a tremendous need to develop reliable technologies 

for the treatment of domestic wastewater in developing 

countries. Such treatment systems must fulfill many 

requirements, such as simple design, use of non-

sophisticated equipment, high treatment efficiency, and 

low operating and capital costs. In addition, consonant 

with population growth and increase in urbanization, 

the cost and availability of land is becoming a limiting 

factor, and ‘‘footprint size’’ is increasingly becoming 

important in the choice of a treatment system (Ghosh 

et al., 1995).  

 

Health issues and waste-fed aquaculture  
Based on recommendations by WHO (1989) 

and bacterial quality standards and threshold 

concentrations for fish muscle, Pullin et al., (1992) 

published guidelines for domestic wastewater reuse in 

aquaculture:  

 

 a minimum retention time of 8-10 days for raw 

sewage;  

 a tentative maximum critical density of 105 total 

bacteria/ml in wastewater-fed fish pond water;  

 absence of viable trematode eggs in fish ponds;  

 suspension of wastewater loading for 2 weeks 

prior to fish harvest;  

 holding fish for a few hours to facilitate 

evacuation of gut contents;   

 < 50 total bacteria /g of fish muscle and no 

Salmonella;  

 good hygiene in handling and processing, 

including evisceration, washing and cooking well; 

and  

 use as high-protein animal feed if direct 

consumption of fish is socially unacceptable.  

Anecdotal evidence does not indicate 

significantly increased risk to public health from 
consumption of fish raised in most reuse systems but 

scientifically based data are almost entirely lacking to 

support such a contention. It was recognized at the 

outset (WHO, 1989) that public health standards 

should be based on epidemiological rather than 

microbiological guidelines i.e., on actual rather than on 

potential risk, and this has been detailed by Strauss 

(1996). There is evidence from India (Pal and Das 

Gupta, 1992) and Egypt (Easa et al., 1995) that the 

microbiological quality of fish cultured in wastewater-

fed ponds is better than that of freshwater fish from 
many other water bodies and surface waters which 

have been polluted unintentionally. It can be argued 

that it is safer to consume fish cultured in a well 

managed and monitored, wastewater-fed system than 
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to rely on wild fish caught from increasingly polluted 

and unregulated surface waters.  

 

II. MATERIAL AND METHODOLOGY 
Wastewater treatment using ponds can be an 

economical way of treatment which produces effluent 

that is highly purified. The number and the type of 

ponds used are the determining factors as to the degree 

of treatment that is provided. Another name for 

wastewater treatment ponds is waste stabilization 

pond.Stabilization ponds because these ponds help to 

stabilize the wastewater before it is passed on to 

receiving water. They can also be referred to as 

oxidation ponds or sewage lagoons. The waste 

stabilization pond is a biological treatment process, 
where bacteria use organic matter in the wastewater as 

food. The three types of bacteria at work in most ponds 

are the aerobic, anaerobic, and the facultative bacteria. 

Because of unpleasant conditions associated with the 

anaerobic decomposition, plant operators must make 

sure that there is enough dissolved oxygen (D.O.) in 

the pond to make sure that it will be the aerobic and 

facultative bacteria that will be predominant, rather 

than having anaerobic decomposition take place.The 

biological treatment is made by means of solar energy 

and thus cost savings are achieved compared to 

systems that use more costly energy sources. 
Serious interests in natural methods for wastewater 

treatment have reemerged. The using of aquaculture 

systems as engineered systems in wastewater 

(domestic and industrial) treatment and recycling has 

increased enormously over the past few years, they are 

designed to achieve specific wastewater treatment and 

can simultaneously solve the environmental and 

sanitary problems and may also be economically 

efficient (Bastian and Reed, 1979; O’Brien, 1981; 

Oron et al., 1985; Hussein et al., 2004; Deng et al., 

2006). Wastewater has been also used in a variety of 
aquaculture operations around the world for the 

production of fish or other biomass. Usually the 

production of biomass was a primary goal with 

marginal concern for wastewater renovation (Reed, 

1987). The intensive growth and consequent harvesting 

of the algal biomass as a method for removing 

wastewater borne nutrients was first suggested and 

studied by Bogan et al. (1960). It was further 

investigated by Oswald and Golueke (1966) who 

proposed the removal of algae growth potential from 

wastewater by high-rate algal treatment.  concerning 

the removal of industrial nitrogenous wastes with high-
rate algal ponds concluded that a multi-stage algal 

system is required for exerting the full removal 

potential of nitrogen by algal biomass incorporation 

followed by algal harvesting.Aquatic treatment 

systems consist of one or more shallow ponds in which 

one or more species of water tolerant vascular plants 

such as water hyacinths or duckweed are grown 

(Tchobanoglous, 1987). Water hyacinth systems are 

capable of removing high levels of BOD, suspended 

solids (SS), nitrogen and refractory trace organic 

matter (Orth and Sapkota, 1988) while phosphorus 

removal seldom exceeds 50–70% in wastewater, as it 

is mainly limited to the plant uptake (Dinges, 1976; 

Bastian and Reed, 1979). A system consisting of a 

pond covered with duckweed mat seems to be able to 

purify the wastewater jointly with bacteria. The 
bacterial decomposition causes anaerobiosis in the 

water. It is maintained by the duckweed mat as it 

prevents reaeration. It has been shown that duckweed 

species such as Spirodela and Lemna even reduce the 

oxygen content of water (Culley and Epps, 1973) but 

this anaerobiosis dose not seem to affect the plants. 

The main minerals C, N and P in turn will be 

converted into protein by duckweed, also, it has the 

ability to remove the organic materials because of their 

ability to use simple organic compounds directly and 

assimilate them as carbohydrates and various amino 

acids (Hillman, 1976). In aquatic systems used for 
municipal wastewater the carbonaceous biochemical 

oxygen demand (BOD) and the suspended solids (SS) 

are removed principally by bacterial metabolism and 

physical sedimentation. In systems used to treat BOD 

and SS, the aquatic plants themselves bring about very 

little actual treatments of wastewater (Tchobanoglous, 

1987). Many investigations have been conducted and 

concern the distribution and species composition of 

fresh water algal communities in different water 

supplies in Egypt in response to the impact of some 

environmental stresses (Abdel-Raouf et al., 2003). The 
polluted rivers, lakes and seas, were aesthetically 

displeasing also by Man which importantly was a 

public health hazard, since they harboured human 

pathogens and increased the risk of spreading excreta-

related diseases through the water-borne route. In order 

to prevent such problems, the sewage treatment 

systems were designed. Through most of human 

history, agriculture has been in effect a major form of 

biological water treatments through its use of the 

potential pollutants of human and animal wastes to 

support plant growth. Municipal sewage, for example 

sometimes after treatment is applied as a source of 
nutrients over land occupied by natural vegetation or 

various crops (Hunt and Lee, 1976; Wood-Well, 

1977). Such wastes are still important in world 

agriculture, especially where commercial fertilizers are 

not readily available (Tourbier and Pierson, 1979). 

 

Microalgae for wastewater treatment  

The history of the commercial use of algal 

cultures spans about 75 years with application to 

wastewater treatment and mass production of different 

strains such as Chlorella and Dunaliella. Currently 
significant interest is developed in some advanced 

world nations such as Australia, USA, Thailand, 

Taiwan and Mexico (Borowitzka and Borowitzka, 

1988, 1989a,b; Moreno et al., 1990; Wong and Chan, 

1990; Renaud et al., 1994). These are due to the 

understanding of the biologists in these nations for the 

biology and ecology of large scale algal cultures, as 

well as in the engineering of large-scale culture 
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systems and algal harvesting methods, all of which are 

important to the design and operation of high rate algal 

cultures to produce high-value products, such as 

Pharmaceuticals and genetically engineered products 

(Javanmardian and Palsson, 1991). These include 

antibacterial, antiviral, antitumers/anticancer, 
antihistamine and many other biologically valuable 

products (Starr et al., 1962; Borowitzka, 1991; 

Ibraheem, 1995; Haroun et al., 1995).Bio-treatment 

with microalgae is particularly attractive because of 

their photosynthetic capabilities, converting solar 

energy into useful biomasses and incorporating 

nutrients such as nitrogen and phosphorus causing 

eutrophication (De la Nou¨ e and De Pauw, 1988). This 

fascinating idea launched some fifty-five years ago in 

the U.S. by Oswald and Gotaas (1957) has since been 

intensively tested in many countries (Goldman, 1979; 

Shelef and Soeder, 1980; De Pauw and Van 
Vaerenbergh, 1983). Palmer (1974) surveyed 

microalgal genera from a wide distribution of waste 

stabilization ponds. In order of abundance, and 

frequency of occurrence the algae found were 

Chlorella, Ankistrodesmus, Scenedesmus, Euglena, 

Chlamydomonas, Oscillatoria, Micractinium and 

Golenkinia. A survey of algal taxa in six-lagoon 

systems in Central Asia was completed by Erganshev 

and Tajiev (1986). Their analysis of long term data 

revealed that the Chlorophyta was dominant both in 

variety and quantity followed by Cyanophyta, 
Bascillariophyta and Euglenophyta. Palmer (1969) 

listed the algae in the order of their tolerance to 

organic pollutants as reported by 165 authors. The list 

was compiled for 60 genera and 80 species. The most 

tolerant eight genera were found to be Euglena, 

Oscillatoria, Chlamydomonas, Scenedesmus, 

Chlorella, Nitzschia, Navicula and Stigeoclonium. 

More than 1000 algal taxa have been reported one or 

more times as pollution tolerant which include 240 

genera, 725 species and 125 varieties and forms. The 

most tolerant genera include eight green algae, five 

blue-greens, six flagellates and six diatoms. Since the 
land-space requirements of microalgal wastewater 

treatment systems are substantial (De Pauw and Van 

Vaerenbergh, 1983), efforts are being made to develop 

wastewater treatment systems based on the use of 

hyperconcentrated algal cultures. This proved to be 

highly efficient in removing N and P within very short 

periods of times, e.g. less than 1 h(Lavoie and De la 

Nou¨ e, 1985). The algal systems can treat human 

sewage (Shelef et al., 1980; Mohamed, 1994; 

Ibraheem, 1998), livestock wastes (Lincoln and Hill, 

1980), agro-industrial wastes (Zaid-Iso,1990;Ma et 
al.,1990; Phang, 1990, 1991) and industrial wastes 

(Kaplan et al., 1988). Also, microalgal systems for the 

treatment of other wastes such as piggery effluent (De 

Pauw et al., 1980; Martin et al., 1985a,b and Pouliot et 

al., 1986), the effluent from food processing factories 

(Rodrigues and Oliveira,1987) and other agricultural 

wastes (Phang and Ong,1988) have been studied. Also, 

algae based system for the removal of toxic minerals 

such as lead, cadmium, mercury, scandium, tin, arsenic 

and bromine are also being developed (Soeder et al., 

1978; Kaplan et al., 1988; Gerhardt et al., 1991; 

Hammouda et al., 1995; Cai-XiaoHua et al., 1995). 

The technology and biotechnology of microalgal mass 

culture have been much discussed (Burlew, 1953; 
Barclay and Mc-Intosh, 1986; Richmond, 1986; Lembi 

and Waaland, 1988; Stadler et al., 1988 and Cresswell 

et al., 1989). Algal systems have traditionally been 

employed as a tertiary process(Lavoie and De la Nou¨ 

e, 1985; Martin et al., 1985a; Oswald, 1988b). They 

have been proposed as a potential secondary treatment 

system (Tam and Wong, 1989). Tertiary treatment 

process removes all organic ions. It can be 

accomplished biologically or chemically. The 

biological tertiary treatment appears to perform well 

compared to the chemical processes which are in 

general too costly to be implemented in most places 
and which may lead to secondary pollution. However, 

each additional treatment step in a wastewater system 

greatly increases the total cost. The relative cost of 

treatment doubles for each additional step following 

primary treatment (Oswald, 1988b). A complete 

tertiary process aimed at removing ammonia, nitrate 

and phosphate will thus be about four times more 

expensive than primary treatment. Microalgal cultures 

offer an elegant solution to tertiary and quinary 

treatments due to the ability of microalgae to use 

inorganic nitrogen and phosphorus for their growth 
(Richmond, 1986; Oswald, 1988b,c; Garbisu et al., 

1991, 1993; Tam and Wong, 1995). And also, their 

capacity to remove heavy metals (Rai et al., 1981), as 

well as some toxic organic compounds (Redalje et al., 

1989), therefore, does not lead to secondary pollution. 

Amongst beneficial characteristics they produce 

oxygen, have a disinfecting effect due to increase in 

pH during photosynthesis (Mara and Pearson, 1986; 

De la Nou¨ e and De Pauw, 1988). Algae can be used 

in wastewater treatment for a range of purposes, some 

of which are used for the removal of coliform bacteria, 

reduction of both chemical and biochemical oxygen 
demand, removal of N and/or P, and also for the 

removal of heavy metals. 

 

Performance Of Common Duckweed Species On 

Different Types Of Wastewater 

Duckweeds belong to the fastest-growing 

angiosperm  plants on earth (Hillman and Culley, 

1978). Maximum growth rates of Lemnaceae are 

species- and clone-spe- cific. Maximum relative 

growth rates (RGR) of 0.73 to 0.79 d -1 were measured 

in lesser duckweed (Lemna  aequinoctialisWelw.) and 
Indian duckweed [Wolffiami- croscopica (Griffith) 

Kurz], which correspond to dou- bling times between 

20 and 24 h. Lowest maximal growth rates are 

observed in submerged species (Lan- dolt and 

Kandeler, 1987). For comparison, RGR values of 

angiosperm herbaceous plants range between 0.031 

and 0.365 d
_1

 (Lambers and Poorter, 1992), whereas 

algae grow at rates between 0.26 and 2.84 d-1  (Nielsen 
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and Sand-Jensen, 1990). The growth of common 

duckweed species, including fat duckweed (Lemna 

gibba L.), common duckweed (Lemna minor L.),  star 

duckweed (Lemna trisulca L.), great duckweed 

[Spirodela polyrhiza (L.) Schleiden], and  spotless 

watermeal [Wolffia arrhiza (L.) Horkel ex C.F.H. 
Wimmer], on different types of wastewater (300–442 

mg L-1 chemical oxygen demand [COD], 14–52 mg 

Kjeldahl nitrogen L-1, and 7–9 mg total P L-1) 

compared with a standard mineral growth medium ( 

1/10 Huttner) was considerably different. All species 

yielded less on the two artificial wastewaters (sucrose, 

propionic acid, acetate, and milk powder) on the  

mineral medium, whereas the submerged species (star  

duckweed)  The smallest species (spotless watermeal) 

performed to highly variably (low r2). Only great 

duckweed and fat duckweed performed equally well on 

domestic sewage compared with the mineral medium 
(Vermaat and Hanif, 1998). The latter species has been 

selected frebling quently for trials on wastewater, but 

no reference gives explicit reasons for this selection 

(Sutton and Ornes,1975; Oron et al., 1987; Boniardi et 

al., 1994). 

            Spirodela                          Lemna          

Wolffia            Wolffiella 

 

Model of wastewater treatment  
The model of the proposed sewage treatment 

aquaculture farm is shown in Figure 1 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-1. Model of the proposed wastewater treatment  

for aquaculture purpose. 

 

III. CONCLUSION 
Although duckweed pond technology is 

known to be a robust option and involves low 

operating cost, not much work has been carried out on 

it in India. Very limited references are available and 

that too of small sized or pilot sized plants. However, 

based on the available information the following can 

be concluded about this technology option : 

-  Duckweed ponds have the same or even better 
performance efficiency with regard to the BOD 

and nutrient removal. 

-  They can operate in conjunction with waste 

stabilisation ponds and/or maturation ponds to 

achieve complete and high degree of treatment in 

terms of BOD, SS and faecal coliform. 

-  Indian warm climatic conditions are favourable for 

rapid growth of duckweed which serves as a 

source of protein in fish and cattle feed thereby 

leading to tangible resource recovery from 

wastewater treatment 

-  They can serve as centres of job creation for 
community based organisations who can be 

involved in sustainable aquaculture production 

activities 

-  Unlike WSPs, more care and skill is required in 

their operation and maintenance as the weed needs 

to be harvested regularly and to be fed to the 

fishes or processed as animal feed 

-  Care is required in maintaining a thick layer of the 

weed to prevent growth of other competing 

aquatic plants such as blue green algae, etc. 
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-  Furthermore, elaborate arrangement of floating 

barriers is required to break the wave or wind 

action and to prevent drifting of the duckweed 

mass 

-  As in case of WSP, the only drawback of this 

technology option is its large land requirement 
which may be difficult to obtain in large urban 

centers. 
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