
Teena Ann Thomas et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1045-1050

www.ijera.com 1045 | P a g e

High Performance Error Detection and Correction Technique for Memories

Using Difference - Set Codes

Teena Ann Thomas
1
, Ashad Kumar A

2

 M-Tech Vlsi Design Scholar1, Professor2,

Dept of Ece, Met’school of Engg: Mala Thrissur, Kerala

ABSTRACT
As technology scales, Single Event Upsets (SEU) become more common and affect a large number of memory

cells. In order to protect memories against SEUs is to make use advanced error detecting and correcting codes

are used. An error detection method for difference – set cyclic codes with majority logic is presented in this

paper. Majority logic decodable codes have the capability to correct a large number of errors so these codes are

used in memory applications. But they require a large decoding time which affects the memory performance.

The proposed fault detection technique resolves this problem. It reduces the memory access time when there is

no error in the data read. In this technique the Majority Logic Decoder (MLD) itself used to detect failures, thus

area become minimal and keeps the extra power consumption low.

Keywords: Error Correcting Code, block codes, majority logic.

I. INTRODUCTION
Memories are the most universal component

today. They are prone to errors like soft and transient

errors. Some type of embedded memory, such as

ROM, SRAM, DRAM, flash memory etc is seen in

almost all system chips. Now days, the memory failure

rates are increasing due to the impact of technology

scaling-smaller dimensions, high integration densities,

lower operating voltages. The ability to quickly

determine that a bit has flipped is key to high

reliability and high availability applications. Some

commonly used error detecting techniques are Triple

Modular Redundancy (TMR) and Error Correction

Codes (ECCs).
The TMR triplicates all the memory parts of

the system and to choose the correct data using a

voter. This method have disadvantage of large area

and complexity overhead of three times. Therefore the

ECC became the best way to mitigate soft errors in

memory

The most commonly used ECC codes are

Single Error Correction (SEC) codes that can correct

one bit error in a memory word. Due to consequence

of augmenting integration densities, there is an

increase in soft errors which points the need for higher
error correction capabilities. More advanced ECCs has

been proposed for memory applications but even

Double Error Correction (DEC) codes with a parallel

implementation results in a significant power

consumption penalty. The usual multi error correction

codes, such as Reed– Solomon (RS) or Bose

Chaudhuri–Hocquenghem (BCH) are not suitable for

this task due to complex decoding algorithm.

Cyclic block codes have the property of being

majority logic (ML) decodable. Therefore cyclic block

codes have been identified as more suitable among the

ECC codes that meet the requirements of higher error

correction capability and low decoding complexity. In

this paper, we will focus on one specific type of LDPC

codes, namely the difference-set cyclic codes

(DSCCs), which is widely used in the Japanese

teletext system or FM multiplex Broad casting systems
The main reason for using ML decoding is

that it is very simple to implement and thus it is very

practical and has low complexity [1]. The drawback of

ML decoding is that, for a coded word of bits, it takes

cycles in the decoding process, posing a big impact

on system performance. One way of coping with this

problem is to implement parallel encoders and

decoders which lead to the increase in complexity and

power consumption. As most of the memory reading

accesses will have no errors, the decoder is most of the

time working for no reason. This has motivated the use
of a fault detector module that checks if the codeword

contains an error and then triggers the correction

mechanism accordingly. In this case, only the faulty

code words need correction, and therefore the average

read memory access is speeded up, at the expense of

an increase in hardware cost and power consumption.

The rest of this paper is organized as follows,

Section II gives an overview of existing ML decoder,

Majority Logic Detector/Decoder ; Section III presents

the modified High performance ML detector/decoder

(MLDD) using difference-set cyclic codes; Section IV

discusses the results obtained for the different versions
in respect to effectiveness, performance, and area.

Finally, Section V concludes this paper.

II. EXISTING SYSTEMS
1. PLAIN MAJORITY LOGIC DECODER

MLD is based on a number of parity check

equations which are orthogonal to each other, so, for

each iteration, each codeword bit only participates in

one parity check equation, except the very first bit

RESEARCH ARTICLE OPEN ACCESS

Teena Ann Thomas et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1045-1050

www.ijera.com 1046 | P a g e

which contributes to all equations. For this reason, the

majority result of these parity check equations decide

the correctness of the current bit under decoding.

MLD was first mentioned in [1] for the Reed–Muller

codes. Then, it was extended and generalized in [2] for

all types of systematic linear block codes that can be
totally orthogonalized on each codeword bit.

 Fig.1 shows memory system with plain

MLD, Initially, the data words are encoded and then

stored in the memory.

Fig.1 Memory system with plain MLD

When the memory is read, the codeword is

then fed through the ML decoder before sent to the

output for further processing. In this decoding process,

the data word is corrected from all bit-flips that it
might have suffered while being stored in the memory.

The ML decoder is a simple and powerful decoder,

capable of correcting multiple random bit-flips

depending on the number of parity check equations. It

consists of four parts: 1) a cyclic shift register; 2) an

XOR matrix; 3) a majority gate; and 4) an XOR for

correcting the codeword bit under decoding.

The input signal x is initially stored into the

cyclic shift register and shifted through all the taps. The

intermediate values in each tap are then used to

calculate the results {Bj} of the check sum equations

from the XOR matrix. In the Nth cycle, the result has
reached the final tap, producing the output signal y.

If the codeword under decoding is wrong

then the decoder behave as follows, After the initial

step, in which the codeword is loaded into the cyclic

shift register, the decoding starts by calculating the

parity check equations hardwired in the XOR matrix.

The resulting sums {Bj} are then forwarded to the

majority gate for evaluating its correctness. If the

number of 1’s received in {Bj} is greater than the

number of 0’s that would mean that the current bit

under decoding is wrong and a signal to correct it
would be triggered. Otherwise, the bit under decoding

would be correct and no extra operations would be

needed on it. In the next step, the content of the

registers are rotated and the above procedure is

repeated until all N codeword bits have been

processed. Finally, the parity check sums should be

zero if the codeword has been correctly decoded.

This type of MLD needs as many cycles as

the number of bits in the input signal. This is a big

impact on the performance of the system, depending

on the size of the code. For example, for a codeword

of 73 bits, the decoding would take 73 cycles, which

would be excessive for most applications.

2. MAJORITY LOGIC DETECTOR/DECODER

(MLDD)
A modified version of Plain ML Decoder is

the MLDD. This modified MLD is implemented based

on the Difference set - cyclic codes, which is a part of

LDPC codes [3]. In general, the decoding algorithm is

still the same as the one in the plain ML decoder. The

difference is that, instead of decoding all codeword

bits by processing the ML decoding during N cycles,

the proposed method stops intermediately in the third

cycle [4].

If in the first three cycles of the decoding

process, the evaluation of the XOR matrix for all {Bj}

is “0,” the codeword is determined to be error free and
forwarded directly to the output. If the {Bj} contain in

any of the three cycles at least a “1,” the proposed

method would continue the whole decoding process in

order to eliminate the errors. A detailed schematic of

the proposed design is shown in fig.2.

Fig.2 Internal block diagram of MLDD.

This figure shows the basic ML decoder with

an N -tap shift register, an XOR array to calculate the

orthogonal parity check sums and a majority gate for

deciding if the current bit under decoding needs to be

inverted. Those components are the same as the ones
for the plain ML decoder. The additional hardware to

perform the error detection is illustrated in Fig. 4 are

the control unit and tri state buffers. The control unit

which triggers a finish flag when no errors are

detected after the third cycle. The output tri state

buffers are always in high impedance unless the

control unit sends the finish signal so that the current

values of the shift register are forwarded to the output.

The control unit manages the detection

process. It uses a counter that counts up to three,

which distinguishes the first three iterations of the ML
decoding. In these first three iterations, the control unit

evaluates the by combining them with the OR1

function. This value is fed into a three-stage shift

Teena Ann Thomas et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1045-1050

www.ijera.com 1047 | P a g e

register, which holds the results of the last three

cycles. In the third cycle, the OR2 gate evaluates the

content of the detection register. When the result is

“0,” the FSM sends out the finish signal indicating that

the processed word is error-free. In the other case, if

the result is “1,” the ML decoding process runs until
the end. This clearly provides a performance

improvement respect to the traditional method. But the

area becomes high.

III. PROPOSED SYSTEM
High performance Majority Logic Detector/

Decoder (MLDD) is proposed here, this high

performance MLDD is the improved version of

existing MLDD in terms of area and performance. In
this MLDD, decoder itself is used to detect and correct

errors, without increasing the circuit complexity. The

proposed MLDD is implemented using the difference

set cyclic codes (DSCCs).

3.1 BLOCK DIAGRAM

Basic block diagram of High Performance

Majority Logic Detector / Decoder (MLDD) is shown

in Fig 3.

Fig.3. Internal block diagram of high Performance

MLDD.

The main components of High Performance

MLDD includes,

 Cyclic shift register.

 XOR matrix.

 Majority gate.

 XOR gate.
 Control unit without FSM.

 Tri – state buffers.

In general, the decoding algorithm is still the

same as the one in the plain ML decoder version. The

difference is that, instead of decoding all codeword

bits by processing the ML decoding during N cycles,

the proposed method stops intermediately in the third

cycle. If in the first three cycles of the decoding

process, the evaluation of the XOR matrix for all {Bj}

is “0,” the codeword is determined to be error-free and

forwarded directly to the output. If the {Bj} contain in

any of the three cycles at least a “1,” the proposed
method would continue the whole decoding process in

order to eliminate the errors. The Fig 3 shows the

basic ML decoder with cyclic shift register, an XOR

array to calculate the orthogonal parity check sums

and a majority gate for deciding if the current bit

under decoding needs to be inverted. Those

components are the same as the ones for the plain ML
decoder. The additional hardware to perform the error

detection is illustrated in Fig 3 as: i) the control unit

which triggers a finish flag when no errors are

detected after the third cycle and ii) the output tri -

state buffers. The output tri - state buffers are always

in high impedance unless the control unit sends the

finish signal so that the current values of the shift

register are forwarded to the output y. The flow

diagram of MLDD algorithm is shown in Fig. 4.

Fig.4. Flow chart of MLDD algorithm.

3.1.1 Cyclic Shift Register
Cyclic shift register is used to shift the data

cyclically. For an N- bit input data, decoder requires N

tap shift register. The cyclic shift register consists of

two modules as follows:

 D flip-flop

 Multiplexer

The input code word bits are stored in the

cyclic shift register and shifted to all the registers. It

circulates all code word bits of the register around both

MSB and LSB ends with no loss of information. The

cyclic shift register is designed in parallel in serial out

fashion. Initially the selection pin of each mux is kept
low and the data is loaded into the flip flops and then

selection pin is kept high, during this time input signal

Teena Ann Thomas et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1045-1050

www.ijera.com 1048 | P a g e

is shifted. And input of the first flip flop is xor’ed result

of the LSB and output of majority gate.

3.1.2 XOR Matrix

XOR matrix is formed by a polynomial

which is based on parity check sum equations. An
example of calculating parity check equation is as

follows. C Consider a code of length 6:

x=(x1,x2,x3,x4,x5,x6)

Suppose that x1+ x2+ x3+ x4 =0

 x2+ x3+ x5 =0

 x1+ x3+ x6=0

Assign any values to x1, x2, x3, solve for x4,x5,x6

 Parity-check equations

 1 1 1 1 0 0

H = 0 1 1 0 1 0

 1 0 1 0 0 1

 HxT =0.

 Where, H is called a parity-check matrix of the

code.

 Consider an (n, k) cyclic code C with parity-

check matrix H. The row space of H is an (n, n-k)

cyclic code of Cd . Then for V in C and W in Cd

W·V = w0v0+ w1v1+．．．+wn-1v n-1=0 (3.1)

 The equality is called a parity-check equation.

Suppose the received vector r = v + e

where

 e = (e0,e1,．．,en-1) (3.2)

For any vector w in the dual code Cd , we can form the

following linear sum of the received digits:

A = w·r = w0r0+ w1r1+．．．+wn-1r n-1 (3.3)

 This is called a parity-check sum or simply check
sum. A checksum is a simple type of redundancy

check that is used to detect errors in data. If r is a code

vector in C, this parity-check sum, A, must be zero;

however, if r is not a code vector in C, then A may not

be zero.

3.1.3 Majority gate
Majority gate evaluates the result of parity

check sum such that If the number of 1’s received in

{Bj} is greater than the number of 0’s , which means

the current bit under decoding is wrong, and a signal
to correct it would be triggered. Signal for correction

is developed by the control unit. The output of

majority gate is the majority result of the parity check

sum equations. Type – 2 ML decoder is used.

3.1.4 Control unit

The control unit manages the detection

process. It uses a counter that counts up to three,

which distinguishes the first three iterations of the ML

decoding. The block diagram of control unit is shown

in Fig.5. It consist a counter and a decision block.

Counter counts up to three. Decision block consist of
one OR gate, three stage shift register and a NOR gate.

Result of the parity check sum equation is given to the

OR gate and the result of the OR gate is shifted

through the three stage shift register and counter stops

counting after third count then the content in the shift

register is fed to the NOR gate. Output of the NOR

gate is high only when all input are low that means

code word is error free then output of the NOR gate is

given to tri – state buffer. Thus the decision block

sends out the finish signal, active high signal to the tri

– state buffer. Tri – state buffer is initially at high

impedance state and after receiving the finish signal tri
– state buffer provide the code word stored in the

cyclic shift register directly to the output. In other

case, if the output of NOR gate is “0,” tri – state buffer

remains in the high impedance state and the ML

decoding process runs until the end.

Fig 5.Block diagram of control unit.

3.1.5 Tri – state buffer

 Tri- state buffer has three states, active high,

active low and high impedance. Initially tri-state

buffer is at high impedance state, when control unit

sends finish signal then the current value presented in

the shift register are forwarded to the output via tri-
state buffers. Active high tri – state buffer is used here.

IV. EXPERIMENTAL RESULTS
The proposed High performance MLDD and

existing systems simulated using ModelSim 6.3f and

implemented using Xilinx 11.1. After implementation

area is calculated based on number of gates.

4.1 SIMULATED RESULTS

4.1.1 Plain MLD

Fig. 6 shows the simulated result of plain

MLD. This is designed for a code word of size 21 –

bit. In this single bit error detection and correction is

done. It requires 21 cycles for detecting and

correcting a code word affected by an error. This

Teena Ann Thomas et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1045-1050

www.ijera.com 1049 | P a g e

reduces the overall performance of the system

associated with the memory.

Fig. 6. Simulated result of plain MLD.

4.1.2 Majority Logic Detector/Decoder.

MLDD is simulated and it detected and

corrected multi bit errors. Only three decoding cycle is

required for detecting a code word is affected by error

or not. For correcting a code word affected by error it

requires 26 cycles.

Fig 7.Simulated result of MLDD.

4.1.3 High Performance MLDD

Simulated result of high performance of

MLDD is shown in Fig. 8. This high performance

MLDD is designed for 21 – bit code word. It required
only 3 cycles for detection of an error. Thus it

improves the overall performance of the system

associated with memory using high performance

MLDD technique.

Fig 8. Simulated result of High Performance MLDD.

4.2 Comparison between existing and proposed

systems in terms of area

Table1. Provides the number of LUT’s and

flip flops required for the existing and proposed

systems. From the table it is clear that area of the

proposed system is less than that of existing MLDD.

TABLE 1
AREA

MODEL

MLD

MLDD

HIGH

PERFORMANCE

MLDD

No: Of

Sliced Ff

26

68

37

No: Of 4

Input LUT

56

100

73

No:Of

Bonded IOB

45

46

46

V. CONCLUSION
 A new technique for error detection and

correction based on Difference Set Cyclic Code

(DSCC) with majority logic decoding was proposed.

This can be applied for system with high soft error

rate. This technique can be able to detect any error

pattern in the first three cycles of the decoding

process. And correction of detected code word

requires N + 5 cycles. Using this technique detection

and correction of multi bit errors can be done. This

improves the performance of the systems associated
with memories employing this design. On other hand,

the MLDD error detector module has been designed in

a way that is independent code size. This makes its

area overhead quite reduced compared with other

traditional approaches.

REFERENCES
[1] S. Lin and D. J. Costello, Error Control

Coding, 2nd ed. Englewood Cliffs, NJ:
Prentice Hall, 2004.

[2] I. S. Reed, “A class of multiple-error-

correcting codes and the decoding scheme,”

IRE Trans. Inf. Theory, vol. IT-4, pp. 38–49,

1954.

[3] E. J.Weldon, Jr., “Difference-set cyclic

codes,” Bell Syst. Tech. J., vol.45, pp. 1045–

1055, 1966.

[4] Shih – Fu Liu, Pedro Reviriego, Juan Antonio

Maestro, “Efficient majority logic fault

detection with Difference – set Codes for
memory applications”, IEEE Trans. VLSI

Syst., vol. 20, no 1, pp. 148 -156, Jan 2012.

[5] I. S. Reed, “A class of multiple-error-

correcting codes and the decoding scheme,”

IRE Trans. Inf. Theory, vol. IT-4, pp. 38–49,

1954.

Teena Ann Thomas et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1045-1050

www.ijera.com 1050 | P a g e

[6] H. Naeimi and A. DeHon, “Fault secure

encoder and decoder for Nano Memory

applications,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 17, no. 4, pp. 473–

486, Apr. 2009.

[7] P. Ankolekar, S. Rosner, R. Isaac, and J.
Bredow, “Multi-bit error cor- rection

methods for latency-contrained flash memory

systems,” IEEE Trans. Device Mater.

Reliabil., vol. 10, no. 1, pp. 33–39, Mar.

2010.

