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ABSTRACT 
As technology scales, Single Event Upsets (SEU) become more common and affect a large number of memory 

cells. In order to protect memories against SEUs is to make use advanced error detecting and correcting codes 

are used.  An error detection method for difference – set cyclic codes with majority logic is presented in this 

paper. Majority logic decodable codes have the capability to correct a large number of errors so these codes are 

used in memory applications. But they require a large decoding time which affects the memory performance. 

The proposed fault detection technique resolves this problem. It reduces the memory access time when there is 

no error in the data read. In this technique the Majority Logic Decoder (MLD) itself used to detect failures, thus 

area become minimal and keeps the extra power consumption low. 

Keywords: Error Correcting Code, block codes, majority logic. 

 

I. INTRODUCTION 
Memories are the most universal component 

today. They are prone to errors like soft and transient 

errors. Some type of embedded memory, such as 

ROM, SRAM, DRAM, flash memory etc is seen in 

almost all system chips. Now days, the memory failure 

rates are increasing due to the impact of technology 

scaling-smaller dimensions, high integration densities, 

lower operating voltages. The ability to quickly 

determine that a bit has flipped is key to high 

reliability and high availability applications. Some 

commonly used error detecting techniques are Triple 

Modular Redundancy (TMR) and Error Correction 

Codes (ECCs). 
The TMR triplicates all the memory parts of 

the system and to choose the correct data using a 

voter. This method have disadvantage of large area 

and complexity overhead of three times. Therefore the 

ECC became the best way to mitigate soft errors in 

memory 

The most commonly used ECC codes are 

Single Error Correction (SEC) codes that can correct 

one bit error in a memory word. Due to consequence 

of augmenting integration densities, there is an 

increase in soft errors which points the need for higher 
error correction capabilities. More advanced ECCs has 

been proposed for memory applications but even 

Double Error Correction (DEC) codes with a parallel 

implementation results in a significant power 

consumption penalty. The usual multi error correction 

codes, such as Reed– Solomon (RS) or Bose 

Chaudhuri–Hocquenghem (BCH) are not suitable for 

this task due to complex decoding algorithm. 

Cyclic block codes have the property of being 

majority logic (ML) decodable. Therefore cyclic block 

codes have been identified as more suitable among the 

ECC codes that meet the requirements of higher error 

correction capability and low decoding complexity. In 

this paper, we will focus on one specific type of LDPC 

codes, namely the difference-set cyclic codes 

(DSCCs), which is widely used in the Japanese 

teletext system or FM multiplex Broad casting systems 
The main reason for using ML decoding is 

that it is very simple to implement and thus it is very 

practical and has low complexity [1]. The drawback of 

ML decoding is that, for a coded word of bits, it takes 

cycles in the decoding process, posing a big impact 

on system performance. One way of coping with this 

problem is to implement parallel encoders and 

decoders which lead to the increase in complexity and 

power consumption. As most of the memory reading 

accesses will have no errors, the decoder is most of the 

time working for no reason. This has motivated the use 
of a fault detector module that checks if the codeword 

contains an error and then triggers the correction 

mechanism accordingly. In this case, only the faulty 

code words need correction, and therefore the average 

read memory access is speeded up, at the expense of 

an increase in hardware cost and power consumption. 

The rest of this paper is organized as follows, 

Section II gives an overview of existing ML decoder, 

Majority Logic Detector/Decoder ; Section III presents 

the modified High performance ML detector/decoder 

(MLDD) using difference-set cyclic codes; Section IV 

discusses the results obtained for the different versions 
in respect to effectiveness, performance, and area. 

Finally, Section V concludes this paper. 

 

II. EXISTING SYSTEMS 
1. PLAIN MAJORITY LOGIC DECODER 

MLD is based on a number of parity check 

equations which are orthogonal to each other, so, for 

each iteration, each codeword bit only participates in 

one parity check equation, except the very first bit 
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which contributes to all equations. For this reason, the 

majority result of these parity check equations decide 

the correctness of the current bit under decoding. 

MLD was first mentioned in [1] for the Reed–Muller 

codes. Then, it was extended and generalized in [2] for 

all types of systematic linear block codes that can be 
totally orthogonalized on each codeword bit. 

 Fig.1 shows memory system with plain 

MLD, Initially, the data words are encoded and then 

stored in the memory. 

 

 
Fig.1 Memory system with plain MLD 

  

When the memory is read, the codeword is 

then fed through the ML decoder before sent to the 

output for further processing. In this decoding process, 

the data word is corrected from all bit-flips that it 
might have suffered while being stored in the memory. 

The ML decoder is a simple and powerful decoder, 

capable of correcting multiple random bit-flips 

depending on the number of parity check equations. It 

consists of four parts: 1) a cyclic shift register; 2) an 

XOR matrix; 3) a majority gate; and 4) an XOR for 

correcting the codeword bit under decoding. 

The input signal x is initially stored into the 

cyclic shift register and shifted through all the taps. The 

intermediate values in each tap are then used to 

calculate the results {Bj} of the check sum equations 

from the XOR matrix. In the Nth cycle, the result has 
reached the final tap, producing the output signal y. 

If the codeword under decoding is wrong 

then the decoder behave as follows, After the initial 

step, in which the codeword is loaded into the cyclic 

shift register, the decoding starts by calculating the 

parity check equations hardwired in the XOR matrix. 

The resulting sums {Bj} are then forwarded to the 

majority gate for evaluating its correctness. If the 

number of 1’s received in {Bj} is greater than the 

number of 0’s that would mean that the current bit 

under decoding is wrong and a signal to correct it 
would be triggered. Otherwise, the bit under decoding 

would be correct and no extra operations would be 

needed on it. In the next step, the content of the 

registers are rotated and the above procedure is 

repeated until all N codeword bits have been 

processed. Finally, the parity check sums should be 

zero if the codeword has been correctly decoded. 

This type of MLD needs as many cycles as 

the number of bits in the input signal. This is a big 

impact on the performance of the system, depending 

on the size of the code. For example, for a codeword 

of 73 bits, the decoding would take 73 cycles, which 

would be excessive for most applications. 

 

2. MAJORITY LOGIC DETECTOR/DECODER 

(MLDD) 
A modified version of Plain ML Decoder is 

the MLDD. This modified MLD is implemented based 

on the Difference set - cyclic codes, which is a part of 

LDPC codes [3]. In general, the decoding algorithm is 

still the same as the one in the plain ML decoder. The 

difference is that, instead of decoding all codeword 

bits by processing the ML decoding during N cycles, 

the proposed method stops intermediately in the third 

cycle [4]. 

If in the first three cycles of the decoding 

process, the evaluation of the XOR matrix for all {Bj} 

is “0,” the codeword is determined to be error free and 
forwarded directly to the output. If the {Bj} contain in 

any of the three cycles at least a “1,” the proposed 

method would continue the whole decoding process in 

order to eliminate the errors. A detailed schematic of 

the proposed design is shown in fig.2. 

 
Fig.2 Internal block diagram of MLDD. 

  

This figure shows the basic ML decoder with 

an N -tap shift register, an XOR array to calculate the 

orthogonal parity check sums and a majority gate for 

deciding if the current bit under decoding needs to be 

inverted. Those components are the same as the ones 
for the plain ML decoder. The additional hardware to 

perform the error detection is illustrated in Fig. 4 are 

the control unit and tri state buffers. The control unit 

which triggers a finish flag when no errors are 

detected after the third cycle. The output tri state 

buffers are always in high impedance unless the 

control unit sends the finish signal so that the current 

values of the shift register are forwarded to the output.  

The control unit manages the detection 

process. It uses a counter that counts up to three, 

which distinguishes the first three iterations of the ML 
decoding. In these first three iterations, the control unit 

evaluates the by combining them with the OR1 

function. This value is fed into a three-stage shift 
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register, which holds the results of the last three 

cycles. In the third cycle, the OR2 gate evaluates the 

content of the detection register. When the result is 

“0,” the FSM sends out the finish signal indicating that 

the processed word is error-free. In the other case, if 

the result is “1,” the ML decoding process runs until 
the end. This clearly provides a performance 

improvement respect to the traditional method. But the 

area becomes high.  

 

III. PROPOSED SYSTEM 
High performance Majority Logic Detector/ 

Decoder (MLDD) is proposed here, this high 

performance MLDD is the improved version of 

existing MLDD in terms of area and performance. In 
this MLDD, decoder itself is used to detect and correct 

errors, without increasing the circuit complexity. The 

proposed MLDD is implemented using the difference 

set cyclic codes (DSCCs). 

 

3.1 BLOCK DIAGRAM 

Basic block diagram of High Performance 

Majority Logic Detector / Decoder (MLDD) is shown 

in Fig 3. 

 
Fig.3. Internal block diagram of high Performance 

MLDD. 

The main components of High Performance 

MLDD includes, 

 Cyclic shift register. 

 XOR matrix. 

 Majority gate. 

 XOR gate. 
 Control unit without FSM. 

 Tri – state buffers. 

In general, the decoding algorithm is still the 

same as the one in the plain ML decoder version. The 

difference is that, instead of decoding all codeword 

bits by processing the ML decoding during N cycles, 

the proposed method stops intermediately in the third 

cycle. If in the first three cycles of the decoding 

process, the evaluation of the XOR matrix for all {Bj} 

is “0,” the codeword is determined to be error-free and 

forwarded directly to the output. If the {Bj} contain in 

any of the three cycles at least a “1,” the proposed 
method would continue the whole decoding process in 

order to eliminate the errors. The Fig 3 shows the 

basic ML decoder with cyclic shift register, an XOR 

array to calculate the orthogonal parity check sums 

and a majority gate for deciding if the current bit 

under decoding needs to be inverted. Those 

components are the same as the ones for the plain ML 
decoder. The additional hardware to perform the error 

detection is illustrated in Fig 3 as: i) the control unit 

which triggers a finish flag when no errors are 

detected after the third cycle and ii) the output tri - 

state buffers. The output tri - state buffers are always 

in high impedance unless the control unit sends the 

finish signal so that the current values of the shift 

register are forwarded to the output y. The flow 

diagram of MLDD algorithm is shown in Fig. 4. 

 
Fig.4. Flow chart of MLDD algorithm. 

 

3.1.1 Cyclic Shift Register 
Cyclic shift register is used to shift the data 

cyclically. For an N- bit input data, decoder requires N 

tap shift register. The cyclic shift register consists of 

two modules as follows:  

 D flip-flop  

 Multiplexer  

The input code word bits are stored in the 

cyclic shift register and shifted to all the registers. It 

circulates all code word bits of the register around both 

MSB and LSB ends with no loss of information. The 

cyclic shift register is designed in parallel in serial out 

fashion. Initially the selection pin of each mux is kept 
low and the data is loaded into the flip flops and then 

selection pin is kept high, during this time input signal 
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is shifted. And input of the first flip flop is xor’ed result 

of the LSB and output of majority gate. 

 

3.1.2 XOR Matrix 

XOR matrix is formed by a polynomial 

which is based on parity check sum equations. An 
example of calculating parity check equation is as 

follows.  C Consider a code of length 6: 

x=(x1,x2,x3,x4,x5,x6) 

 

Suppose that          x1+ x2+ x3+ x4 =0 

  x2+ x3+ x5 =0 

  x1+ x3+ x6=0 

 

Assign any values to x1, x2, x3, solve for x4,x5,x6  

 Parity-check equations 

 

 1     1 1     1 0      0 

H  = 0     1      1     0     1      0 

 1     0 1      0  0      1 

 

  HxT =0. 

       Where, H is called a parity-check matrix of the 

code. 

  Consider an (n, k) cyclic code C with parity-

check matrix H. The row space of H is an (n, n-k) 

cyclic code of Cd . Then for V in C and W in Cd 

W·V = w0v0+ w1v1+．．．+wn-1v n-1=0                (3.1) 

         The equality is called a parity-check equation. 

Suppose the received vector r = v + e  

where 

    e = (e0,e1,．．,en-1)                                             (3.2) 

For any vector w in the dual code Cd , we can form the 

following linear sum of the received digits: 

A =  w·r = w0r0+ w1r1+．．．+wn-1r n-1         (3.3) 

       This is called a parity-check sum or simply check 
sum. A checksum is a simple type of redundancy 

check that is used to detect errors in data. If r is a code 

vector in C, this parity-check sum, A, must be zero; 

however, if r is not a code vector in C, then A may not 

be zero.  

 

3.1.3 Majority gate 
Majority gate evaluates the result of parity 

check sum such that If the number of 1’s received in 

{Bj} is greater than the number of 0’s , which means 

the current bit under decoding is wrong, and a signal 
to correct it would be triggered. Signal for correction 

is developed by the control unit. The output of 

majority gate is the majority result of the parity check 

sum equations. Type – 2 ML decoder is used. 

3.1.4 Control unit 

The control unit manages the detection 

process. It uses a counter that counts up to three, 

which distinguishes the first three iterations of the ML 

decoding. The block diagram of control unit is shown 

in Fig.5. It consist a counter and a decision block. 

Counter counts up to three. Decision block consist of 
one OR gate, three stage shift register and a NOR gate. 

Result of the parity check sum equation is given to the 

OR gate and the result of the OR gate is shifted 

through the three stage shift register and counter stops 

counting after third count then the content in the shift 

register is fed to the NOR gate. Output of the NOR 

gate is high only when all input are low that means 

code word is error free then output of the NOR gate is 

given to tri – state buffer. Thus the decision block 

sends out the finish signal, active high signal to the tri 

– state buffer. Tri – state buffer is initially at high 

impedance state and after receiving the finish signal tri 
– state buffer provide the code word stored in the 

cyclic shift register directly to the output. In other 

case, if the output of NOR gate is “0,” tri – state buffer 

remains in the high impedance state and the ML 

decoding process runs until the end.  

 

Fig 5.Block diagram of control unit. 

 

3.1.5 Tri – state buffer 

 Tri- state buffer has three states, active high, 

active low and high impedance. Initially tri-state 

buffer is at high impedance state, when control unit 

sends finish signal then the current value presented in 

the shift register are forwarded to the output via tri-
state buffers. Active high tri – state buffer is used here.  

 

IV. EXPERIMENTAL RESULTS 
The proposed High performance MLDD and 

existing systems simulated using ModelSim 6.3f and 

implemented using Xilinx 11.1. After implementation 

area is calculated based on number of gates. 

 

4.1 SIMULATED RESULTS 

4.1.1 Plain MLD 

Fig. 6 shows the simulated result of plain 

MLD. This is designed for a code word of size 21 – 

bit. In this single bit error detection and correction is 

done.  It requires 21 cycles for detecting and 

correcting a code word affected by an error. This 
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reduces the overall performance of the system 

associated with the memory. 

 
Fig. 6. Simulated result of plain MLD. 

 

4.1.2 Majority Logic Detector/Decoder. 

MLDD is simulated and it detected and 

corrected multi bit errors. Only three decoding cycle is 

required for detecting a code word is affected by error 

or not. For correcting a code word affected by error it 

requires 26 cycles. 

 
Fig 7.Simulated result of MLDD. 

 

4.1.3 High Performance MLDD 

Simulated result of high performance of 

MLDD is shown in Fig. 8. This high performance 

MLDD is designed for 21 – bit code word. It required 
only 3 cycles for detection of an error. Thus it 

improves the overall performance of the system 

associated with memory using high performance 

MLDD technique.  

 
Fig 8. Simulated result of High Performance MLDD. 

 

4.2 Comparison between existing and proposed 

systems in terms of area 

Table1. Provides the number of LUT’s and 

flip flops required for the existing and proposed 

systems. From the table it is clear that area of the 

proposed system is less than that of existing MLDD. 

 

 

 

TABLE 1 
AREA 

 

MODEL 

 

MLD 

 

MLDD 

 

HIGH 

PERFORMANCE 

MLDD 

No: Of 

Sliced Ff 

        

26 

 

68 

 

37 

No: Of 4 

Input LUT 

 

56 

 

100 

 

73 

No:Of 

Bonded IOB 

          

45 

 

46 

 

46 

 

V. CONCLUSION 
 A new technique for error detection and 

correction based on Difference Set Cyclic Code 

(DSCC) with majority logic decoding was proposed. 

This can be applied for system with high soft error 

rate.  This technique can be able to detect any error 

pattern in the first three cycles of the decoding 

process. And correction of detected code word 

requires N + 5 cycles. Using this technique detection 

and correction of multi bit errors can be done. This 

improves the performance of the systems associated 
with memories employing this design. On other hand, 

the MLDD error detector module has been designed in 

a way that is independent code size. This makes its 

area overhead quite reduced compared with other 

traditional approaches.  
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