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Abstract 
In this paper, the problem of Jeffery-Hamel flow of nanofluid with magnetic effect is analyzed. The 

basic governing equations which are highly nonlinear are solved analytically using a semi-numerical-analytical 

technique called differential transform method (DTM) and numerically using Runge-Kutta shooting method 

(RKSM). The principle of differential transformation is briefly introduced, and then applied for the 
aforementioned problem. Results for velocity filed in a divergent channel are presented for various values of 

nanoparticle solid volume fraction, Hartmann number and Reynolds number. The values obtained by DTM and 

RKSM are agree to the order of 10-5. Further the values obtained by DTM are justified by comparing with the 

values obtained by Moghimi et al. [1,2] and Sheikholeslami et al. [3] and the values agree to the order of 10-5, 

10
-5

 and 10
-4

 respectively. 
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I. INTRODUCTION: 
The study of flows in converging/diverging 

channel is very important due to its engineering and 

industrial applications. Such applications include 
exchanging heat transfer of heat exchangers for milk 

flowing, cold drawing operation in polymer industry, 

extrusion of molten polymers through converging 

dies, pressure driven transport of particles through a 

symmetric converging/diverging channel and many 

others [4-6]. The well known Jeffery-Hamel problem 

deals with the flow of an incompressible viscous 

fluid between the non-parallel walls. This flow 

situation was initially formulated by Jeffery [7] and 

Hamel [1]. Later, this problem is extensively studied 

by the various researchers. A survey of information 

on this can be found in the references [6,8]. Apart 
from using numerical methods, the Jeffery-Hamel 

flow problem was solved by other techniques 

including the Homotopy analytical method (HAM), 

the Homotopy perturbation method (HPM), the 

Adomain decomposition method (ADM) and the 

spectral-Homotopy analysis method. Recently, the 

three analytical methods such as Homotopy analysis 

method, Homotopy perturbation method and 

Differential transformation method (DTM) were used 

by Joneidi et al. [9] to find the analytical solution of 

Jeffery-Hamel flow. 
A large number of theoretical investigations 

dealing with magnetohydrodynamic (MHD) flows of 

viscous fluids have been performed during the last 

decades due to their rapidly increasing applications in 

many fields of technology and engineering, such as 

MHD power generation, MHD flow meters, and 

MHD pumps [10]. Many mathematic models have 

been proposed to explain the behavior of the viscous 

MHD flow under different conditions [11–14]. The 

classical Jeffery–Hamel problem was extended in 

[15] to include the effects of external magnetic field 

on conducting fluid. Motsa et al. [16] found the 

solution of the nonlinear equation for the MHD 

Jeffery–Hamel problem by using novel hybrid 

spectral-homotopy analysis. Recently, Moghimi et al. 

[1] studied the MHD Jeffery–Hamel flows in non-
parallel walls by using homotopy analysis method. 

Moghimi et al. [2] also solved the Jeffery–Hamel 

flow problem by using the homotopy perturbation 

method. More recently, the effects of magnetic field 

and nanoparticle on the Jeffery-Hamel flow using a 

powerful analytical method called the Adomian 

decomposition method were studied by 

Sheikholeslami et al. [3]. 

Nanoparticles are made from various 

materials, such as oxide ceramics (Al2O3, CuO), 

nitride ceramics (AlN, SiN), carbide ceramics (SiC, 
TiC), metals (Cu, Ag, Au), semiconductors, carbon 

nanotubes and composite materials such as alloyed 

nanoparticles. Nanofluids consist of a base fluid and 

ultrafine nanoparticles aim to achieve the maximum 

possible thermal properties at the minimum possible 

concentrations (preferably<1% by volume) by 

uniform dispersion and stable suspension of 

nanoparticles (preferably<10 nm) in host fluids [17]. 

Many studies on nanofluids are being conducted by 

scientists and engineers due to their diverse technical 

and biomedical applications. Examples include 
nanofluid coolant: electronics cooling, vehicle 

cooling, transformer cooling, super powerful and 

small computers cooling and electronic devices 

cooling; medical applications: cancer therapy and 

safer surgery by cooling and process industries; 

materials and chemicals: detergency, food and drink, 

oil and gas. Ultra high-performance cooling is 
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necessary for many industrial technologies. However, 

poor thermal conductivity is a drawback in 

developing energy-efficient heat transfer fluids 

necessary for ultra high–performance cooling. 

Numerous models and methods were proposed by 

different authors to study convective flows of 
nanofluids, and we mention here the papers by Choi 

[18]. Duangthongsuk and Wongwises [19], Yacob et 

al. [20], etc.  

 The concept of differential transformation 

was first proposed by Zhou [21] in solving linear and 

nonlinear initial valued problems in electrical circuit 

analysis. Later Chen and Ho [22] applied the 

differential transformation method to second order 

eigen-value problems and the transverse vibration of 

a twisted beam under axial loading. The differential 

transform method obtains a semi-analytical solution 

in the form of a polynomial. It is different from the 
traditional higher order Taylor’s series method, 

which requires symbolic competition of the necessary 

derivatives of the functions. The Taylor series 

method is computationally taken long time for large 

orders. With this method, it is possible to obtain 

highly accurate results or exact solutions for 

differential equations. This method is well-addressed 

in [23–26]. 

The aim of this paper is to introduce the 

differential transform technique as an alternative to 

existing methods in solving singular two-point 
boundary value problems. To our knowledge, the 

combined effect of nanoparticles and magnetic field 

in the Jeffery-Hamel flow problem using DTM is not 

addressed yet.  

 

II. PROBLEM STATEMENT AND 

GOVERNING EQUATION: 
Consider the steady fully developed flow of 

an incompressible conducting viscous fluid between 

two rigid plane walls that meet at an angle 2  as 

shown in Fig. 1. The rigid walls are considered to be 

divergent if 0   and convergent if 0  . We 

assume that the velocity is purely radial and depends 

on r  and   so that   , ,0u r v  only and further 

there is no magnetic field in the z  direction. The 

continuity equation, the Navier–Stokes equations and 

Maxwell’s equations in polar coordinates are [3] 
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where  ,u u r   is the velocity, P  is the pressure, 

0B  is the electromagnetic induction,   is the 

conductivity of the fluid, 
nf  is the effective 

viscosity, 
nf  is the effective density and 

nfK  is the 

effective thermal conductivity of nanofluid.  

The boundary conditions are 

at the centerline of the channel: 0
u







,  

at the boundary of the channel: 0u  . 

 

 
Fig. 1 Geometry of the MHD Jeffery–Hamel flow in 

convergent/divergent cannel with angle 2 . 

 
We consider throughout the paper, the 

thermophysical properties of the nanofluid as they are 

given in [27], see the Table 1. Also the density of the 

nanofluid 
nf  and the viscosity of the nanofluid 

nf  

are given by the expressions (see [3,28])  
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where   is the solid volume fraction, the subscripts 

,nf  f  and s  respectively are the thermo-physical 

properties of the nanofluids, base fluid and the solid 
nanoparticles. 

Considering only radial flow, the continuity 

Eq. (1) implies that 
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,
f
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                                       (5) 

Following [4] we define the dimensionless 

parameters 

 
 
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f
F

f
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    where 





                          (6) 

Substituting Eqs. (4) - (6) into Eqs. (2) and 

(3) and eliminating the pressure term yields the 

nonlinear ordinary differential equation 

       
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where   is the is the angle between two plates, A  is 

a parameter, Re  is a Reynolds number and M  is the 
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Hartmann number based on the electromagnetic 

parameter are introduced as follows: 

1 s
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where 
maxU  is the velocity at the center of the 

channel ( 0r  ) and the Reynolds number  .  

max

max
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Re

convergent- channel: 0, 0
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According to the relation (5) and (6), the 
boundary conditions will be 

 0 1F  ,  ' 0 0F  ,                         (9) 

 1 0F  .                                      (10) 

Physically, these boundary conditions mean 

that maximum values of velocity are observed at 

centerline 0   as shown in Fig. 1. Thus, rate of 

velocity is zero at 0  . Also, the no-slip condition 

at a solid boundary is considered. 

 

2.1  Basic Idea of Differential transformation 

 method (DTM) 

Suppose  u y  is analytic in a domain D, 

then it will be differentiated continuously with 

respect to y  in the domain of interest. The 

differential transform of function  u y  is defined as  
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                                     (11) 

where  u y  is the original function and  U k  is the 

transformed function which is called the T-function. 

The differential inverse transform of  U k  

is defined as follows: 

   
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                                      (12) 

In real applications, the function  u y  by a 

finite series of (12) can be written as 
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and Eq. (12) implies that    
1

k
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 

   is 

neglected as it is small. Usually, the values of n are 

decided by a convergence of the series coefficients.  

The fundamental mathematical operations 

performed by differential transform method are listed 

in Table 2. 

 

III. SOLUTION WITH DIFFERENTIAL 

TRANSFORM METHOD: 
Now Differential Transformation Method 

has been applied to solving Eq. (7). Taking the 

differential transformation of Eq. (7) with respect to 

k ,  and following the process as given in Table 2 

yields: 
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where  F k  is the differential transform of  F 
 

and 0, 1, 2, 3,...................k n  represents the 

number of term of the power series. 

From a process of inverse differential 

transformation, it can be shown that the solution of 

each sub-domain take 3n  terms for the power 

series. 

The transforms of the boundary conditions 

are 

      10 1, 1 0, 2F F F a            (15) 

Using the conditions as given in Eq. (10), one can 

evaluate the unknown 1a . By using the DTM and the 

transformed boundary conditions, above equation 

that finally lead to the solution of a system of 

algebraic equations. For copper-water nanofluid with 

Re 100 , 1000M  , 0.1   and 5    we have 

found 
1 -1.8328675214a  . 

 

3.1  Convergence of DTM solution 

The validation of the present results has 

been verified with the classical case of a Newtonian 

fluid ( 0  ), see Moghimia et al. [1,2] and 

Sheikholeslami et al. [3]. Also the convergence of the 
present method is observed by comparing our results 

with those of numerical method using the Runge-

Kutta shooting method (RKSM). The non-

dimensional velocity  F 
 
for different values of 

Reynolds number Re , Hartmann number M  and 

angle between the plates   are shown in Tables 3–5.  

These tables agree very well the results between 

DTM-RKSM, DTM-HAM (Moghimi et al. [1]), 

DTM-HPM (Moghimi et al. [2]) and DTM-ADM 
(Sheikholeslami et al. [3]). In particular, Table 6 

gives a snap shot of the velocity values at different 

points inside the diverging channel while Table 6 

also demonstrates on the convergence rate of the 

DTM. In general, fifteen terms of the DTM 

approximation are sufficient to give a match with the 

numerical results up to five decimal places. This table 

shows that the DTM converges more easily for these 

type problems. The numerical results of copper-water 

nanofluid with and without magnetic effect are 

presented in Table 7 obtained by DTM and RKSM 
which show a favorable agreement, thus give 

confidence that the results obtained are accurate. 

Moreover, the values of  F   are presented in Table 

7 is for future reference also. 
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IV. RESULTS AND DISCUSSION: 
The problem of Jeffery-Hamel flow of 

nanofluid with high magnetic field is discussed in a 

divergent channel. The governing equation for the 
posed problem is highly nonlinear and hence closed 

form solutions cannot be obtained. The objective of 

this work is to find the solutions of the Jeffery-Hamel 

flow by DTM and estimating the order of error. This 

paper also highlights the solution procedure of DTM.  

The graphical results depicted in Figs. 2–6 

are broadly in line with those given in [6] but now 

modified for nanofluid by the effects of the applied 

magnetic field. Numerical simulations show that for 

fixed Hartmann numbers, the fluid velocity decreases 

with Reynolds numbers in divergent channel. 
Figure 2 display the velocity profiles for 

silver (Ag), copper (Cu), Diamond, TiO2 and SiO2 

nanoparticles. It is observed that the values for silver 

and copper show closer values and Diamond, TiO2 

and SiO2 are also close to each other. The optimal 

velocity is observed for SiO2 nanoparticle and 

minimal is for silver nanoparticle.  

The result obtained for different solid 

volume fraction is illustrated in Fig. 3. As the solid 

volume fraction   increases the fluid velocity 

decreases. That is, the fluid velocity is more for base 

fluid  0   and less for nanofluid. Physically 

speaking, as the nanoparticles add to the pure fluid 

the density of the fluid increases and then the fluid 

becomes denser, so that it can have more difficult 

movement through the channel. 

Figure 4 predicts the magnetic effect 

(Hartmann number M ) of viscous fluid and 
nanofluid on the velocity for divergent channel with 

fixed Reynolds number. The results show moderate 

increases in the velocity with increasing Hartmann 

number for both viscous and nanofluid and, in line 

with observations for viscous fluid  0  , no back 

flow is observed for all Hartmann numbers. It can be 

seen in Fig. 4 that without magnetic field  0M   at 

5    and Re 50  backflow starts, with Hartmann 

number increasing this phenomenon is eliminated. By 

increasing Reynolds number, the backflow expands 

so greater magnetic field is needed in order to 
eliminate it. 

Figure 5 illustrates the effect of Reynolds 

number Re  on the fluid velocity for fixed Hartmann 

number for both viscous fluid and nanofluid. As 

Reynolds number increases the fluid velocity 

decreases for both viscous and nanolfuids. Here also 

back flow is excluded for small Reynolds number 

and it observed for large Reynolds. 

Figure 6 give a comparison between the 

DTM and the numerical approximations (RKSM) for 

various values of  . Of particular note here is that 

an exact match between the two set of approximate 

solutions is obtained with only fifteen terms of the 

DTM solution series. These findings firmly establish 

the DTM as an accurate and efficient alternative to 

the other semi-analytical methods. We also observed 

from Fig. 5 that as the angle between the plates   
increases the fluid velocity increases.  

 

V. CONCLUSIONS: 
In this paper we have used the DTM to find 

the analytical solution of magnetohydrodynamic 

Jeffry-Hamel flow problem in the nanofluid. It was 

found that DTM is a powerful method for solving 

problems consisting 3rd order nonlinear differential 

equations. A reliable algorithm is presented based on 

the DTM to solve highly nonlinear equations. A 

comparison was made between the available results 

of obtained by different methods such as Homotopy 

analytical method, Homotopy perturbation method 

and Adomian decomposition method solutions, 
numerical results from the RKSM and the present 

approximate solutions. The numerical study indicates 

that the DTM gives more accurate in comparison to 

shown methods. The method has been applied 

directly without requiring linearization, 

discretization, or perturbation. The obtained results 

certify the reliability of the algorithm and give it a 

wider applicability to nonlinear differential 

equations. The influence of various physical 

parameters on the velocity was discussed in detail. 

The basic conclusions are as follows: 

 Increasing Reynolds numbers leads to decreases 
the velocity field. 

 Increasing Hartmann number will lead to 

backflow reduction.  

 Also the results show that fluid velocity of 

nanofluid is less when compared to fluid without 

nanoparticles. 

 The results obtained in this paper are nearly 

similar to the results obtained by Sheikholeslami 

et al. [3] in the absence of different 

nanoparticles. 
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Fig. 2 Velocity profiles for several nanoparticles. 
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Fig. 3 Velocity profiles for several values of solid volume fraction. 
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Fig. 4 Velocity profiles for several values of Hartmann number and solid volume fraction. 
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Fig. 5 Velocity profiles for several values of Reynolds number and solid volume fraction. 
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Fig. 6 Comparison results between DTM and RKSM for several values of  . 

 

Table 1. Thermo-physical properties for pure water and various types of nanoparticles. 

Property Pure water Silver (Ag) Copper (Cu) Diamond SiO2 TiO2 

 2kg m  997.1 10500 8933 3510 2200 4250 

 Nm s  1 x 10-3 - - - - - 

 W mKk  0.613 429 400 1000 1.2 8.9538 

 1 K  207 x 10-6 18 x 10-6 17 x 10-6 1.0 x 10-6 5.5 x 10-6 0.17 x 10-6 

 

Table 2. The operations for the one-dimensional differential transform method. 

Original function Transformed function 

( ) ( ) ( )y x g x h x    ( ) ( ) ( )Y k G k H k   

( ) ( )y x g x  ( ) ( )Y k G k  

( )
( )

dg x
y x

dx
   ( ) ( 1) ( 1)Y k k G k    

2

2

( )
( )

d g x
y x

dx
   ( ) ( 1)( 2) ( 2)Y k k k G k      

( ) ( ) ( )y x g x h x   
0

( ) ( ) ( )
k

l

Y k G l H k l


    

( ) my x x   
1, if

( ) ( )
0, if

k m
Y k k m

k m



   


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Table 3. Comparison results between DTM – HAM (Moghimia et al. [1]) and RKSM solution for velocity when 

0  , Re 50 , 5    , 1000M  . 

  DTM 

Moghimi et al. [1] 

HAM 

Numerical 

(RKSM) 

Error 

(DTM-Numerical) 

Error 

(HAM-Numerical) 

0 1 1 1 0.00E+00 0.00E+00 

0.1 0.99675670 0.99675704 0.99675875 6.63E-05 6.65E-05 

0.2 0.98649151 0.98649281 0.98649971 8.56E-05 8.76E-05 

0.3 0.96751661 0.96751931 0.96753507 7.98E-05 8.35E-05 

0.4 0.93673804 0.93674218 0.93677065 6.34E-05 6.83E-05 

0.5 0.88920852 0.88921354 0.88925841 4.49E-05 4.99E-05 

0.6 0.81746155 0.81746646 0.81752984 2.85E-05 3.26E-05 

0.7 0.71062383 0.71062756 0.71070737 1.58E-05 1.85E-05 

0.8 0.55338810 0.55339006 0.55347566 6.90E-06 8.20E-06 

0.9 0.32514224 0.32514237 0.32520872 1.71E-06 2.05E-06 

1 0 0 0 0.00E+00 0.00E+00 

 
Table 4. Comparison results between DTM – HPM (Moghimia et al. [2]) and RKSM solution for velocity when 

0  , Re 50 , 7.5   , 1000M  . 

  
DTM 

Moghimi et al. [2] 

HPM 

Numerical 

(RKSM) 

Error (DTM-

Numerical) 

Error (HPM-

Numerical) 

0 1 1 1 0.00E+00 0.00E+00 

0.1 0.9937611 0.9937607 0.9937652 9.46E-05 1.39E-04 

0.2 0.9747903 0.9747886 0.9748064 1.25E-04 1.62E-04 

0.3 0.9422833 0.9422794 0.9423182 1.25E-04 1.51E-04 

0.4 0.8947504 0.8947431 0.8948089 1.08E-04 1.26E-04 

0.5 0.8297590 0.8297471 0.8298433 8.43E-05 9.62E-05 

0.6 0.7434936 0.7434756 0.7436019 5.85E-05 6.58E-05 

0.7 0.6300130 0.6299866 0.6301378 3.49E-05 3.88E-05 

0.8 0.4799708 0.4799338 0.4800960 1.61E-05 1.78E-05 

0.9 0.2783235 0.2782789 0.2784181 4.10E-06 4.50E-06 

1 0 0 0 0.00E+00 0.00E+00 

 

Table 5. Comparison results between DTM – ADM (Sheikholeslami et al. [3]) and RKSM solution for velocity 

when 0  , Re 25 , 5   . 

 0M   

  DTM 
Sheikholeslami et al. [3]  

(ADM) 

Numerical 

(RKSM) 

Error 

(DTM-RKSM) 

Error 

(ADM-RKSM) 

0 1.000000 1.000000 1.000000 0.00E+00 0.00E+00 

0.1 0.986669 0.986637 0.986667 2.00E-06 3.00E-05 

0.2 0.947251 0.947127 0.947244 7.00E-06 1.17E-04 

0.3 0.883404 0.883146 0.883392 1.20E-05 2.46E-04 

0.4 0.797674 0.797259 0.797654 2.00E-05 3.95E-04 

0.5 0.693202 0.692638 0.693176 2.60E-05 5.38E-04 

0.6 0.573389 0.572716 0.573359 3.00E-05 6.43E-04 

0.7 0.441558 0.440850 0.441526 3.20E-05 6.76E-04 

0.8 0.300645 0.300013 0.300618 2.70E-05 6.05E-04 

0.9 0.152962 0.152552 0.152944 1.80E-05 3.92E-04 

1 0.000000 0.000000 0.000000 0.00E+00 0.00E+00 

 500M   

0 1.000000 1.000000 1.000000 0.00E+00 0.00E+00 

0.1 0.990221 0.992695 0.990223 2.00E-06 -2.47E-03 

0.2 0.960939 0.970544 0.960944 5.00E-06 -9.60E-03 

0.3 0.912287 0.912273 0.912297 1.00E-05 2.40E-05 

0.4 0.844405 0.832683 0.844422 1.70E-05 1.17E-02 

0.5 0.757317 0.743421 0.757341 2.40E-05 1.39E-02 

0.6 0.650758 0.643816 0.650789 3.10E-05 6.97E-03 

0.7 0.523953 0.515303 0.523987 3.40E-05 8.68E-03 
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0.8 0.375331 0.361234 0.375364 3.30E-05 1.41E-02 

0.9 0.202153 0.194730 0.202176 2.30E-05 7.45E-03 

1 0.000000 0.000000 0.000000 0.00E+00 0.00E+00 

 

Table 6. Comparison results between DTM and RKSM for fixed 0.1  , Re 5 , 5   , 100M  . 

  5 terms 10 terms 15 terms 20 terms 30 terms RKSM 

1 0 0 0 0 0 0 

0.9 0.181193 0.187290 0.187278 0.187278 0.187278 0.187280 

0.8 0.346815 0.355144 0.355131 0.355131 0.355131 0.355134 

0.7 0.495699 0.503963 0.503952 0.503952 0.503952 0.503954 

0.6 0.626815 0.633813 0.633805 0.633805 0.633805 0.633807 

0.5 0.739270 0.744534 0.744528 0.744528 0.744528 0.744529 

0.4 0.832308 0.835827 0.835823 0.835823 0.835823 0.835824 

0.3 0.905313 0.907335 0.907333 0.907333 0.907333 0.907333 

0.2 0.957802 0.958709 0.958709 0.958708 0.958708 0.958709 

0.1 0.989433 0.989661 0.989661 0.989661 0.989661 0.989661 

0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

 

Table 7. Comparison results between DTM and RKSM when 0.2  , Re 25 , 5   . 

 0M   200M   

  DTM 
Numerical 

(RKSM) 

Error 

(DTM-

RKSM) 

DTM RKSM 

Error 

(DTM-

RKSM) 

0 0 0 0.00E+00 0 0 0.00E+00 

0.1 0.134828 0.134724 1.04E-04 0.151112 0.151074 3.80E-05 

0.2 0.270828 0.270717 1.11E-04 0.296318 0.296276 4.20E-05 

0.3 0.406256 0.406152 1.04E-04 0.435188 0.435147 4.10E-05 

0.4 0.538121 0.538031 9.00E-05 0.566012 0.565975 3.60E-05 

0.5 0.662374 0.662302 7.20E-05 0.686043 0.686013 3.00E-05 

0.6 0.774186 0.774133 5.30E-05 0.791797 0.791774 2.20E-05 

0.7 0.868370 0.868337 3.30E-05 0.879439 0.879425 1.40E-05 

0.8 0.939943 0.939927 1.60E-05 0.945255 0.945248 7.00E-06 

0.9 0.984743 0.984738 4.00E-06 0.986132 0.986130 2.00E-06 

1 1.000000 1.000000 0.00E+00 1.000000 1.000000 0.00E+00 
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