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Abstract 
The stability of a viscoelastic fluid-saturated by a nanofluid in a horizontal porous layer, when the boundaries of 

the layer are subjected to periodic temperature modulation, is analyzed. The Darcy-Brinkman-Oldroyd-B fluid 

model is employed and only infinitesimal disturbances are considered. The model used for the nanofluids 
incorporates the effect of Brownian motion. The thermal conductivity and viscosity are considered to be 

dependent on the nanoparticle volume fraction. Three cases of the oscillatory temperature field were examined 

(a) symmetric, so that the wall temperatures are modulated in phase, (b) asymmetric corresponding to out-of 

phase modulation and (c) only the bottom wall is modulated. Perturbation solution in powers of the amplitude of 

the applied field is obtained. The effect of the frequency of modulation on the stability is clearly shown. The 

stability of the system characterized by a correction Rayleigh number is calculated as a function of the 

viscoelastic parameters, the concentration Rayleigh number, porosity, Lewis number, heat capacity ratio, 

Vadász number, viscosity and conductivity variation parameters and frequency of modulation. It is found that 

the onset of convection can be delayed or advanced by the factors represented by these parameters. The 

nanofluid is found to have more stabilizing effect when compared to regular fluid. The effect of all three types 

of modulation is found to be destabilizing as compared to the unmodulated system. 

 

I. Nomenclature 
c   nanofluid specific heat at constant pressure 

pc   specific heat of the nanoparticle material 

 
m

c effective heat capacity of the porous 

 medium 

pd   nanoparticle diameter 

g  gravitational acceleration 

BD   Brownian diffusion coefficient (
2m s ) 

ph   specific enthalpy of the nanoparticle 

 material  

H   dimensional layer depth ( m ) 

jp   diffusion mass flux for the nanoparticles 

,jp T   thermophoretic diffusion 

k   thermal conductivity of the nanofluid 

Bk   Boltzman’s constant 

mk   effective thermal conductivity of the porous 

 medium 

pk   thermal conductivity of the particle material 

Le   Lewis number 

AN    modified diffusivity ratio 

BN      modified particle-density increment 
*p   pressure 

p   dimensionless pressure  *

mp K   

q   energy flux relative to a frame moving with 

 the nanofluid velocity v  

R   thermal Rayleigh- Darcy number 

Rn  concentration Rayleigh number 
*t  time 

t  dimensionless time  * 2

mt H   

*T  nanofluid temperature 

T   dimensionless temperature     * */ hT T T T   

*

cT  temperature at the upper wall 

*

hT  temperature at the lower wall 

RT  reference temperature 

 , ,u v w dimensionless Darcy velocity components 

  * * *, , mu v w H   

v  nanofluid velocity 

Dv  Darcy velocity v  

D

*v  dimensionless Darcy velocity  * * *, ,u v w  

Va   Vadász number  

 , ,x y z dimensionless Cartesian coordinate  

  * * *, ,x y z H  

 * * *, ,x y z  Cartesian coordinates 

 

Greek letters 

m   thermal diffusivity of the porous medium, 

  /m p f
k c  

   proportionality factor 

    conductivity variation parameter 
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a   Non dimensional acceleration coefficient 

1    stress relaxation coefficient 

2    strain retardation coefficient 

   porosity of the medium 

t   amplitude of the modulation 

   viscosity of the fluid  

         viscosity variation parameter  

   fluid density 

p   nanopraticle mass density 

   parameter 
*   nanoparticle volume fraction 

   relative nanoparticle volume 

 fraction     * * */ h c      

   dimensional frequency 

   dimensionless frequency  2H k  

       phase angle ( 0  , symmetric modulation;  

  ,antisymmetric modulation; i    , only 

lower wall temperature modulation) 

 

II. INTRODUCTION 
Interest in sustainable energy has created 

significant demand for new thermal storage and 

thermal management technologies, including 

technologies that employ nanofluids (which are 

suspensions of nanoparticles in liquids). There is also 

interest in increasing the efficiency of existing heat 

transfer processes via improvements in the transport 

properties of heat transfer media such as nanofluids. 

The ability to tune the properties of nanofluids offers 

many advantages in this respect. For example, a 39% 
increase in the heat transfer coefficient has been 

reported by Xuan et al. [1] when an aqueous nanofluid 

containing 2% (v/v) copper nanoparticles was 

employed in place of water in forced convective heat 

transfer experiments in a horizontal tube. Similarly, 

pool boiling experiments with an aqueous nanofluid 

containing 1.25% (v/v) alumina nanoparticles have 

yielded Wen et al. [2] a 40% enhancement in the heat 

transfer coefficient when compared with the 

experiments conducted with pure water. 

Maxwell [3] was the first presenter of a 
theoretical basis to predict a suspension’s effective 

conductivity about 140 years ago and his theory was 

applied from millimeter to micrometer sized particles 

suspensions but Choi and Eastman [4] introduced the 

novel concept of nanofluids by applying the unique 

properties of nanofluids at the annual Mechanical 

Engineering meeting of American Society in 1995. 

Goldstein et al. [5] added the condition that the 

particles must be in colloidal suspension. Choi and his 

colleagues carried out experiments on heat transport in 

systems with CuO nanoparticles in water and 

2 3Al O particles in ethylene glycol and water. They 

found that the particles improve the heat transport by 

as much as 20%, and they interpreted their result in 

terms of an improved thermal conductivity 
0/k k  

which they named the effective conductivity [4].  
A nanofluid is a fluid produced by dispersion 

of metallic or non-metallic nanoparticles or nanofibres 

with a typical size of less than 100 nm in a liquid. 

These nanofluids can be employed to cool the pipes 

exposed to such high temperature of the order 
0100-350 C, while extracting the geothermal energy. 

Further when drilling, they can also be used as 

coolants for the machinery and equipment working in 

high friction and high temperature environment. In the 

petroleum industry also, nanofluids can be used as 

coolants or as drilling fluids. Also in the above fields, 

we come across porous media in the form of rocks 

inside the earth’s crust, which is being affected by the 
rotational component of the earth’s spin on its axis. 

Buongiorno and Hu [6] suggested the 

possibility of using nanofluids in advanced nuclear 

systems. Another recent application of the nanofluid is 

in the delivery of nano-drug as suggested by 

Kleinstreuer et al. [7] and Eastman et al. [8] and 

conducted a comprehensive review on thermal 

transport in nanofluids to conclude that a satisfactory 

explanation for the abnormal enhancement in thermal 

conductivity and viscosity of nanofluids needs further 

studies. Buongiorno [9] conducted a comprehensive 

study to account for the unusual behavior of 
nanofluids based on Inertia, Brownian diffusion, 

thermophoresis, diffusophoresis, Magnus effects, fluid 

drainage, and gravity settling, and proposed a model 

incorporating the effects of Brownian diffusion and 

the thermophoresis. With the help of these equations, 

studies were conducted by Tzou [10] and more 

recently by Nield and Kuznetsov [11]. 

Quite recently non-Newtonian fluids housed 

in fluid-based systems, with and without porous 

matrix, have been extensively used in application 

situations and hence warrant the attention they have 
been duly getting. In the asthenosphere and the deeper 

mantle it is well known now that viscoelastic behavior 

is an important rheological process [12]. The other 

application areas of viscoelastic fluid saturated porous 

media are flow through composites, timber wood, 

snow systems and rheology of food transport. The 

problem housed in a porous medium suggests an 

elastohydrodynamical model for geophysical 

applications and the likes of it [13-15]. 

Herbertt [16] was the first to study natural 

convection in a viscoelastic fluid using the Oldroyd 

[17] model and showed that the elasticity of the fluid 
influenced the onset of marginal convection only in 

the presence of initial finite elastic stress. Green [18], 

and Vest and Arpaci [19] studied the analogous 

problem of Rayleigh-Benard convection in Jeffrey and 

Maxwell fluids, respectively, and concluded that the 

onset of marginal convection is independent of 

viscoelastic parameters, but the condition for the onset 

of oscillatory convection is influenced by these 

parameters. Eltayeb [20] studied linear and nonlinear 

Rayleigh-Benard convection in a visco-elastic fluid 
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using the Oldroyd model, and showed that for Prandtl 

number tending to infinity the results obtained by 

Green [18] using Jeffrey’s model, violate the criterion 

required for the onset of oscillatory convection. 

Further, he showed that the criterion for onset of 

oscillatory convection in the Maxwell fluid used by 
Vest and Arpaci [19] is always satisfied for larger 

values of the Prandtl number. 

One of the effective methods to control 

convection is by maintaining a non uniform 

temperature gradient. Such a temperature gradient may 

be generated by (i) an appropriate heating or cooling at 

the boundaries [21], (ii) injection of fluid at one 

boundary and removal of the same at the other 

boundary [22, (iii) an appropriate distribution of heat 

sources [23], and (iv) radiative heat transfer [24]. 

These methods are mainly concerned with only space-

dependent temperature gradients. However, in many of 
the practical situations cited earlier, the non uniform 

temperature gradient finds its origin in transient 

heating or cooling at the boundaries, so the basic 

temperature profile depends explicitly on position and 

time. This has to be determined by solving the energy 

equation under suitable time-dependent temperature 

boundary conditions, called thermal modulation. 

 Rudraiah et al. [25] studied the effect of 

modulation on the onset of thermal convection in a 

viscoelastic fluid saturated sparsely packed porous 

layer.           Malashetty et al. [26] analyzed the 
combined effect of anisotropy of the porous medium 

and time dependent wall temperature on the onset of 

convection in a horizontal porous layer saturated with 

Oldroyd fluid. 

Although the problem of Rayleigh-Bénard 

problem has been extensively investigated for non-

Newtonian fluids, relatively little attention has been 

devoted to the thermal convection of nanofluids. The 

corresponding problem in the case of the effects of 

conductivity and viscosity ratio has also not received 

much attention until recently.  Kuznetsov and Nield 

[27] investigated the onset of Double-Diffusive 
nanofluid convection in a layer of saturated porous 

medium. Agarwal et al. [28] studied the non-linear 

convective transport in a binary nanofluid saturated 

porous layer. Nield and Kuznetsov [29] studied the 

linear stability theory for the porous medium saturated 

by nanofluid with thermal conductivity and viscosity 

dependent on the nanoparticle volume fraction. 

In the present study, the effect of thermal 

modulation on the onset of convection in a Oldryod-B 

fluid saturated with nanofluid porous medium is 

investigated. The boundary temperature modulation 
alters the basic temperature distribution from linear to 

nonlinear which helps in effective control of 

convective instability. The difficulty in dealing with 

such instability problems is that one has to solve time-

dependent stability equations with variable 

coefficients, and to our knowledge no work has been 

initiated for such fluids in this direction. The resulting 

eigenvalue problem is solved by regular perturbation 

technique with amplitude of the temperature 

modulation as a perturbation parameter. In particular, 

it is shown that the onset of convection can be 

advanced by a proper tuning of the frequency of the 

boundary temperature modulation. 

 

III. MATHEMATICAL FORMULATION 
We consider an infinite horizontal porous 

layer saturated with a viscoelastic nanofluid, confined 

between the planes 0z   and z H  , with the 

vertically downward gravity force acting on it.  A 

Cartesian frame of reference is chosen with the origin 

in the lower boundary and the z -axis vertically 

upwards.  The Boussinesq approximation, which states 

that the variation in density is negligible everywhere in 

the conservation except in the buoyancy term, is 

assumed to hold. 

For an Oldroyd-B fluid, the extra-stress 

tensor T is given by the constitutive equation [30] 

1 2,p   
 

     
 

DS DA
T I S S A

Dt Dt
              (1) 

where p is the hydrostatic pressure, I the identity 

tensor,   the viscosity of the fluid, and S  the extra 

stress tensor, 
1  and 

2  are constant relaxation and 

retardation times respectively. T A q q  is the 

strain-rate tensor, q  is the velocity vector,   is the 

gradient operator, and  

   .
T

t

 
       

 

DS
S S S

Dt
q q q                      (2) 

   .
T

t

 
       

 

DA
A A A

Dt
q q q                  (3) 

It should be noted that this model includes the 

classical viscous Newtonian fluid as a special case for 

1 2 0    , and to be the Maxwell fluid when 

2 0  . 

It is well known that in flow of viscous 

Newtonian fluid at a low speed through a porous 

medium the pressure drop caused by the frictional drag 

is directly proportional to velocity, which is the 

Darcy’s law. By analogy with Oldroyd-B constitutive 

relationships, the following phenomenological model, 

which relates pressure drop and velocity for a 

viscoelastic fluid in a porous medium has been given 
by [31] 

1 21 1 Dp
t K t


 

    
       

    
q                           (4) 

where K  is permeability, Dq  is Darcian velocity, 

which is related to the usual (i.e. volume averaged 

over a volume element consisting of fluid only in the 

pores) velocity vector q by 
D

q q , ε is porosity of 

the porous medium. We note that when 1 2 0   , 

Equation (4) simplified to Darcy’s law for flow of 
viscous Newtonian fluid through a porous medium. 

Thus Equation (4) can be regarded as an approximate 
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form of an empirical momentum equation for flow of 

Oldroyd-B fluid through a porous medium.  

Under consideration of the balance of forces 

acting on a volume element of fluid, the local volume 

average balance of linear momentum is given by 

0 g .
d

p
dt

     S r
q

                                     (5) 

where 
d

dt
 is the material time derivative, r  is Darcy 

resistance for an Oldroyd-B fluid in the porous 

medium. Since the pressure gradient in Equation (4) 

can also be interpreted as a measure of the resistance 

to flow in the bulk of the porous medium, and r is a 

measure of the flow resistance offered by the solid 
matrix, thus r  can be inferred from Equation (4) to 

satisfy the following equation: 

1 21 1
t K t


 

    
      

    
r q                              (6) 

Substituting Equation (6) into Equation (5), we obtain 

             
1 0 21 . 1

d
p

t dt K t


   

     
          

     
g S

q
q  

                                                                                                 (7) 

For Darcy model, ignoring the advection term .q q  

and the viscous term .S , Equation (7) can be 

simplified to (after dropping the suffix D  on q  for 

simplicity) 

0

1 21 1p
t t K t

 
  



     
          

      
g

q
q                                                                                                        

                                                                                       (8) 

The conservation equations take the form 

D. 0  v .                                                     (9) 

Here 
D


v  is the nanofluid Darcy velocity. We write 

 D , ,u v w   v . 

The conservation equation for the nanoparticles, in the 

absence of thermophoresis and chemical reactions, 

takes the form 

1
. .D BD

t


 




    




      

v                          (10) 

where    is the nanoparticle volume fraction,   is the 

porosity, and BD  is the Brownian diffusion 

coefficient. We use the Darcy model for a porous 

medium, then the momentum equation for Oldryod-B  
nanofluid following Equation (5) can be written as 

*

*effD

1 2 D1 g 1p
Kt t t


  



 

  

     
               

v
v 

                                                                                (11)  

Here   is the overall density of the nanofluid, which 

we now assume to be given by 

   *

p 0 T 01 1 T T            
 

               (12) 

where p  is the particle density, 0  is a reference 

density for the fluid, and T  is the thermal volumetric 

expansion. The thermal energy equation for a 

nanofluid can be written as 

     * * *2 * * *

D m Bm f p
. .

T
c c T k T c D T

t
    


 




        

v

                                                                                 (13) 

The conservation of nanoparticle mass requires that 
*

* * * *2 *

D B*

1
. D

t


 




   


v .                      (14)  

Here c  is the fluid specific heat (at constant pressure), 

mk  is the overall thermal conductivity of the porous 

medium saturated by the nanofluid, and 
pc  is the 

nanoparticle specific heat of the material constituting 

the nanoparticles (following Nield and Kuznetsov 

[29]). 

Thus, 

(1 )m eff sk k k    ,                                              (15) 

where   is the porosity, 
effk  is the effective 

conductivity of the nanofluid (fluid plus 

nanoparticles), and 
sk  is the conductivity of the solid 

material forming the matrix of the porous medium. 

We now introduce the viscosity and the conductivity 

dependence on nanoparticle fraction. Following Tiwari 

and Das[32], we adopt the formulas, based on a theory 
of mixtures, 

* 2.5

1

(1 )

eff

f



 



                                                 (16)                                               

*

*

( 2 ) 2 ( )

( 2 ) ( )

eff p f f p

f p f f p

k k k k k

k k k k k





  


  
                         (17) 

Here fk and pk are the thermal conductivities of the 

fluid and the nanoparticles, respectively. 

 Equation (16) was obtained by Brinkman 

[33], and Equation (17) is the Maxwell-Garnett 

formula for a suspension of spherical particles that 

dates back to Maxwell [34]. 

In the case where *  is small compared with unity, we 

can approximate these formulas by 

*1 2.5
eff

f





                                                        (18)                                                      

*

*

*

( 2 ) 2 ( ) ( )
1 3

( 2 )( 2 ) ( )

eff p f f p p f

f p fp f f p

k k k k k k k

k k kk k k k






   
  

  
  



We assume that the volumetric fractions of the 

nanoparticles are constant on the boundaries. Thus, the 

boundary conditions are 
* * *

00,w     at * 0z                          (20) 

* * *

10,w      at  
*z H                                (21) 

For thermal modulation, the external driving force is 

modulated harmonically in time by varying the 

temperature of lower and upper horizontal boundary. 

Accordingly, we take 
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   0, 1 cos
2

t

T
T z t T t


       at * 0z          (22)      

   0, 1 cos
2

t

T
T z t T t 


          at *z H  

                                                                                 (23)  

where 
t  represents a small amplitude of modulation 

(which is used as a perturbation parameter to solve the 

problem),   the frequency of modulation and   the 

phase angle. 

We consider three types of modulation, viz., 

Case (a): Symmetric (in phase, 0  ) 

Case (b): asymmetric (out of phase,   ) and 

Case (c): only lower wall temperature is modulated 

while the upper one is held at constant  temperature 

 i   . 

A.  Basic State  

The basic state of the fluid is quiescent and is given by  

0b bg p  


                                                         (24) 

 
*

2 *

m*m

T
c k T

t



 


                                             (25) 

2 *

2
0bd

dz


                                                                  (26) 

The solution of Eq. (25) satisfying the thermal 

conditions as given in Eqs. (22) and (23) is 

   1 2 ,b tT T z T z t   

where 

 1

2
1

2
R

T z
T z T

H

  
   

 
                                     (27) 

    2 ( , ) Re z H z H i tT z t b e b e e        
 

    (28)  

with  
 

1 2
2

1
2

m

m

c H
i

k

 


 
   

 
 

,  

 
2

iT e e
b

e e

 

 


 



  
  

 
                                         (29) 

and Re  stands for real part. We do not record the 

expressions of  bp  and b  as these are not explicitly 

required in the remaining part of the paper. 

 

B.  Linear Stability Analysis 

Let the basic state be distributed by an 
infinitesimal perturbation.  We now have 

' v v , 'bp p p  ,  'bT T T  ,   'b      (30)                                                            

where prime indicates that the quantities are 

infinitesimal perturbations.  Substituting Eq. (26) in 

Eqs. (9)-(15) and linerising by neglecting products of 

primed quantities, we have, 

     1 2
ˆ ˆ1 1 0z z as p RTe Rn e s s           v v

                                                                    (31) 
2

2

'
' b b bB

T T TNT T T
w k

t z Le z z z zz

      
     

       

  

                                                                                 (32)                                                                                                                                                                                                                                                                                                      

2'1 1 1
' = 'w

t Le




 


 


                                         (33) 

' 0, ' 0, ' 0w T     at  0,1z                            (34) 

After using the transformations  

   * * *, , , ,x y z x y z H , * 2

mt t H  , 

   * * *, , , , mu v w u v w H  , *

f mp p K   , 

* *

0

* *

1 0

 


 





, 

* *

* *

c

h c

T T
T

T T





, 

2

m

H





 , 

( )
,

( ) ( )

p mm

m

p f p f

ck

c c


 

 
  , ,

eff

f





   

p

p
f

k
k

k
 ,   

s
s

f

k
k

k
 ,     m

f

k
k

k
 .       

The dimensionless group that appear are Pr
f

m




  is 

the Prandtl number, 
2

K
Da

H
  is the Darcy number, 

2 Pr
Va

Da


  is the Vadász number, 1 2

m

H








 is the 

relaxation parameter and 2
2 2

m

H

 






 is the 

retardation parameter. a
Va





  is the acceleration 

coefficient, m

m

Le
D


  is the nanofluid Lewis number, 

 * *

0 01 T

f m

R g K T H
R

 

 

 
  is the nanoparticle 

Rayleigh number,  
 

 
 * *

1 0

p

B

f

c
N

c


 


   is a 

modified particle-density increment. 

In deriving Eq. (31) the term proportional to the 

product of   and T  (Oberbeck-Boussinesq 

approximation) is neglected.  This assumption is likely 

to be valid in the case of small temperature gradients 

in a dilute suspension of nanoparticles.  For the case of 

regular fluid (not a nanofluid), the parameters Rn  and 

BN  are zero. 

We eliminate pressure by operating on Eq. 

(31) with ˆ
ze curl curl and using the identity 

2curl curl grad div   results in  

    

  

2 '

1 2

2 2 '

1

1 1

1

a

H H

s s s w

s R Rn

   

 

    

   


                       (35)                                                

Here 2

H  is the two-dimensional Laplacian operator 

on the horizontal plane. Combining Eqs. (32)-(34), we 

obtain equations for the vertical component of velocity 

w  in the form (dropping prime) 

                                                                                                       (36) 
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   

 

 

2
2

2

2 1

1 2 2

1

2
2

1 1

1

1 1

1

1
1 0

a

b

t t Le

s s s w

s Rn
w

t

T
s R w

z t Le




   









    
       

      

  
    

   
    

  

      

where  * *
1 01 1.25 ,      and 

 * *
1 03 1

(1 )
2 2

p

s

p

k
k

k

  
  

  
    
  





.  

It is worth noting that the factor  comes from the 

mean value of   z  over the range [0, 1] and the 

factor   is the mean value of  k z  over the same 

range. That means that when evaluating the critical 

Rayleigh number it is a good approximation to base 

that number on the mean values of the viscosity and 

conductivity based in turn on the basic solution for the 
nanofluid fraction.  

The boundary condition (34) can also be expressed in 

terms of w  in the form  
2

2
0

d w
w

dz
     at   0,1z                                         (37) 

Using Eq. (27), the dimensionless temperature 
gradient appearing in Eq. (32) may be written as 

1bT
f

z



  


                                                        (38) 

where     Re z z i tf A e A e e        
 

for

 
2

ie e
A

e e

 

 




 



 
  

 
and  

1 2

1
2

i



 

   
 

       (39)                                                                                                                                   

                                                                                

IV. Method of Solution 
We seek the eigen functions w and eigen 

values Ra of Eq. (36) for the basic temperature 
gradient given by Eq. (38) that departs from the linear 

profile 1bT

z


 


 by quantities of order

t . We 

therefore assume the solution of Eq. (36) in the form 

       2

0 0 1 1 2 2, , , , ...t tw R w R w R w R      (40)                                                                  

Substituting Eq. (40) into Eq. (36) and equating the 

coefficients of various powers of 
t on either side of 

the resulting equation, we obtain the following system 

of equations up to the order of 2

t  :  

0 0Lw                                                                     (41) 

 
2

2 2 2 20 0 1

1 1 1 1 1 01
R G R f R

Lw s w
Le Le






  
         

   

                                                                                 (42)           

 

 

2 2 21

2 1 0 1 1

2 2 22

1 1 1 0

1

1

RG f
Lw s R w

Le Le

RG f
s R w

Le Le











  
         

  

 
      

 

                                                                                 (43) 

where 

2
2 2 2 2

2 1 1 1

2 20

1 1

1
1 1 1

1

a

Rn
L

t t Le t t t t t

R

t Le

      
 



                  
                       

                 

 
   

 

. 

and 0 1 2, ,w w w  are required to  satisfy the boundary 

conditions of Equation (37). 

We now assume the solutions for Eq. (41) in the form 

   0 0 .exp ,w w z i lx my    where 

     0 0 sinnw z w z n z  n = 1, 2, 3, … and l, m 

are the wave numbers in the x y  plane such that 

2 2 2l m   . The corresponding eigen values are 

given by 

 
2

2 2 2

0 2

n Rn Le
R

   




                             (44) 

For a fixed value of the wave number  , the least 

eigen value occurs at 1n   and is given by 

 
2

2 2

0 2

Rn Le
R

   




                           (45) 

0cR  assumes the minimum value when 2 2   

2

0 4c

Rn Le
R


 


                                             (46) 

These are the values reported by Horton and Rogers 

[35] in the absence of concentration Rayleigh 

number Rn  . 

The equation for 1w  then takes the  form                      

 
 2 2

2

1 0 11 sin
D f

Lw R i G z
Le


   



 
   
 
 

   

                                                                                 (47)                                                                                                                                                                                                                                                                                                                      

where 
d

D
dz

 . 

Thus 

 2 2 2sin sin 2 'cosD f z f z f z        (48)

with 

    ' . . z z i tf R P A e A e e        
 

 

Using Eq. (48), Eq. (47) becomes 

                                                                   (49) 
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   2

1 0 1

1

sin

1
2 '

sin cos

G z

Lw R i
f

L f z z
Le





  


 

 
 

   
 

 
 

 

where 
2 2

1

i
L

Le

   
 . 

We solve Eq. (49) for 
1w  by expanding the right hand 

side of it in Fourier series expansion and inverting the 
operator L .  For this we need the following Fourier 

series expansions 

     
 

   

12
1

2 22 2 2 2
0

4 1 1
2 sin sin

n m z

z

nm

nm e
g e m z n z dz

n m n m


 

  
   

    
 

 
      
   

                                                (50) 

     
   

   

2 12 2
1

2 22 2 2 2
0

2 1 1
2 cos cos

n m z

z

nm

n m e
f e m z n z dz

n m n m


  

  
   

       
   

 
      
   

                                             (51) 

so that 

     
1

sin sinz

nm

n

e m z g n z   




                            (52) 

     
1

cos cosz

nm

n

e m z f n z   




                                                                                                                      (53) 

Now  ,L n A i B                                                                                                                                            (54) 

where 

 

  

           

     

 
   

2
2 3

2 2 2 2 2 2 2 2 2 2 2 2

1

2 2 2 2
3 2

2 2 2 2 2 2 2

2

1

1

a a

a

Rn
n n n

Le Le

A
n

n n
Le Le

  
          

  

    
      

 

   
          

   
  

               
       

and 

     

 
 

 

2
3 2

2 2 2 2 2 2 2 2 2 2 2

1

2 2 2 2
2 3

2 2 2 2 2 2

2

1

1

a a

a

Rn
n n n

Le Le

B
n

n n
Le Le

   
         

  

   
     

 

    
            

   
  

               
      

 

It is easily seen that  

     sin , sini t i tL n z e L n n z e         

     cos , cosi t i tL n z e L n n z e         

and Eq. (49) now become 

 

 
   

 

1

1 12

1 1 0

1

. . sin . . sin

1
2

. . cos

i t i t

n n

n n

i t

n

n

I P A n z e L R P A n z e

Lw i R

R P B n z e
Le

 




   


  


 

 
 

 






 
 

   
 
 
 

 


                                    (55) 

so that 

 

 

 

 

 

 

 

1

1 12

1 1 0

1

. . sin . . sin
, ,

1
2

. . cos
,

n ni t i t

n n

n i t

n

A A
I P n z e L R P n z e

L n L n
w i R

B
R P n z e

Le L n

 



 
 

  
  






 
 

 






 
 

 
    

 
  

 



                                 (56) 
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where          1 1n n nA A g A g        , and  

         1 1n n nB A f A f        . 

To simplify Eq. (43) for 
2w  we need  

 

2

2

0 1 1

2 1
2

2

2 1 0

1

.

fG
R w

Le
Lw s

R w
Le






  
   

   
 
  
 

          (57) 

The equation for 
2w  then can be written as 

 

 

1

2 1 0 1

2
2 2

2

2
1 n

Df DwG
Lw i R L f w

Le

R
Le


 




 

  
     

  

 

          (58)

  where  
2 2 2

n

i n
L

Le

   
 . 

We shall not require the solution of this equation but 

merely use it to determine
2R . 

The solvability condition requires that the time-

independent part of the right hand side of (58) must be 

orthogonal to  sin z . Multiplying Eq. (58) by 

 sin z  and integrating between 0 and 1 we obtain 

 
 

1 2
0

2 12

0

2 1 2
sin

LeR i f G
R w z dz

Le

 




  
  

  




                                                                                        

                           (59) 

where an upper bar denotes the time average. 

 We have the Fourier series expansions 

 sin . . sin i t

nf z R P A n z e      , 

 sin . . sin i t

nDf z R P C n z e                      (60) 

where           1 1n n nC A g A g         

Using Eq. (60) in Eq. (59) we obtain 
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

                                    (61) 

where  * ,L n  is the complex conjugate of  ,L n , 

 
     

2 4 2
2

4 42 4 2 4

16

1 1
n

n
A

n n

 


   


   
. The 

critical value of 
2R , denoted by 

2cR , is obtained at the 

wave number given by equation 
c   for the 

following three different cases.  We evaluate 2cR  for 

the following cases. 

 
(a)  when the oscillating temperature field is 

symmetric so that the wall temperatures are modulated 

in phase (with 0  ), 

(b) when the wall temperature field is antisymmetric 

corresponding to out-of-phase modulation (with 

  ) 

(c)  when only the temperature of the bottom wall is 

modulated, the upper wall being held at a constant 

temperature ( with i   ). 

 

V. Results and Discussion 
The problem of linear convection in a 

sparsely packed Oldryod-B fluid saturated with 

nanofluid layer subject to different periodic 

temperature boundary conditions is investigated.  The 
solution is obtained on the assumption that the 

amplitude of the applied temperature modulation is 

small.  The expression for the critical correction 

Rayleigh number 2cR  is computed as a function of 

frequency of the modulation for different parameter 

values and the results are depicted in Figs. 1-18.  The 

sign of 
2cR  characterizes the stabilizing or 

destabilizing effect of modulation.  A positive 
2cR  

indicates that the modulation effect is stabilizing while 

a negative
2cR  indicates that the modulation effect is 

destabilizing compared to the system in which the 
modulation is absent. 

 The variation of critical correction thermal 

Rayleigh number 2cR  with frequency    for 

symmetric modulation for different governing 

parameters (Figs 1-8) for both regular  0Rn   and 

nanofluids   0Rn  show that for small frequencies 

the critical correction Rayleigh number is negative 

indicating that the effect of symmetric modulation is 

destabilizing while for moderate and large values of 

  its effect is stabilizing.  Figure 1 reveal that an 

increase in the value of 1   is to increase the 

magnitude of 2cR .  On the other hand the effect of 

modulation diminishes as the stress relaxation 

parameter 1  becomes smaller and smaller.  The peak 

negative or positive value of 2cR  is found to increase 

with 1  for both regular and nanofluids.  The effect of 

strain retardation parameter 2  is found to be opposite 

of the stress relaxation parameter 1  as seen in Fig. 2.  

Therefore one can conclude that the stress relaxation 

parameter is more pronounced in aiding the onset of 

convection compared to the effect of strain retardation 

parameter for both regular and nanofluids.  Similar 
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results were observed by Malashetty et al. [26] for 

regular fluid.   

 Figure 3 shows the variation of 
2cR  with   

for different values of concentration Rayleigh number 

Rn .  As Rn  increases the magnitude of correction 

thermal Rayleigh number 
2cR decreases indicating that 

the effect of Rn  is to delay the onset of convection.  

However, 
2cR  is negative for small frequencies 

indicating that the symmetric modulation has 

destabilizing effect while for moderate and large 

values of frequency its effect is stabilizing.  This is a 

similar result obtained by Umavathi [36] for 

Newtonian fluid.  The effect of porosity    for 

symmetric modulation is shown in Fig. 4. This figures 

reveal that as    increases the value of 
2cR   becomes 

small indicating that larger values of   decreases the 

effect of modulation.  Here also it is observed that as 

  increases 
2cR increases to its maximum value 

initially and then starts decreasing with further 

increase in  .  When   is very large all the curves 

for different porosity coincide and 
2cR  approaches to 

zero for both regular and nanofluid.  Figure 5 depicts 

the variation of 
2cR  with frequency   for different 

values of Lewis number Le  for the case of symmetric 

modulation.  Lewis number shows the similar effect as 

that of porosity   .  That is to say that, an increase in 

the value of Lewis number decreases the value of 

2cR  indicating that the effect of increasing Le  is to 

reduce the effect of thermal modulation for both 

regular and nanofluid which is a similar result 
observed Umavathi36.  The effect of thermal capacity 

ratio    is to increase 
2cR  for both regular and 

nanofluids as seen in Fig. 6.  Here also as    

increases 2cR  increases to its maximum initially and 

then starts decreasing with further increase in  .  

When   is very large all the curves for different 

thermal capacity ratio   coincide and 2cR  

approaches to zero for both regular and nanofluids.  

The effect of Vadasz number Va   shows the similar 

nature as that of thermal capacity ratio   as seen in 

Fig. 7.  That is to say that, increasing the value of 

Vadasz number is to decrease the thermal modulation 

for both regular and nanofluid.  The effect of viscosity 

variation parameter   and conductivity variation 

parameter   is shown in Figs. 8 and 9 respectively for 

symmetric modulation.  Their effect is found to be  

similar to the effect of stress relaxation parameter 1  , 

thermal capacity ratio    and Vadasz number  Va .  

That is to say that,   and   delay the onset of 

convection for both regular and nanofluids. 

 The results obtained for the case of 

asymmetric modulation are presented in Figs. 10-18. 

All these figures show that for all parameters small 

frequencies has destabilizing effect while for moderate 

and large values of frequency their effects are 

stabilizing for both regular and nanofluid. It is seen 

from Fig. 10 that an increase in the value of 
1  is to 

increase the magnitude of 
2cR . The effect of strain 

retardation parameter 
2  is to decrease the magnitude 

of 
2cR  as seen in Fig.11. The effect of concentration 

Rayleigh number Rn , porosity  , Lewis number Le , 

thermal capacity ratio  , Vadasz number Va , 

viscosity and conductivity variation parameters   and 

  show the same effect as in the case of symmetric 

modulation and hence a detailed explanation is not 
required.  

The nature of all the graphs for lower wall 

temperature modulation is found to be qualitatively 

similar to the asymmetric modulation and therefore we 

omit a graphical representation of the same. 

 

VI. Conclusions 
The effect of thermal modulation on the onset 

of convection for Oldroyd fluid saturated with 
nanofluids porous layer is studied using a linear 

stability analysis and the following conclusion are 

drawn. 

1. The increase in stress relaxation parameter 

enhances the effect of modulation while increase 

in strain retardation parameter suppresses the 

effect of modulation for all three types of 

modulation. 

2. The concentration Rayleigh and Vadasz number 

suppresses the effect of modulation.  The porosity 

suppresses the effect of modulation for regular 

fluid whereas it enhances the effect of modulation 
for nanofluids.  The thermal capacity ratio, 

Vadasz number, viscosity and conductivity ratio 

enhances the effect of modulation for both regular 

and nanoflid.   

3. The peak values of thermal correction Rayleigh 

number is obtained for regular fluid when 

compared to nanofluids for all thermal 

modulations. 

4. The effect of all three types of modulation 

namely, symmetric, asymmetric, and only lower 

wall temperature modulations is found to be 
destabilizing as compared to the unmodulated 

systerm. 

5. The effect of thermal modulation disappears for 

large frequency in all the cases. 

6. The onset of convection is delayed for nanofluids 

when compared to regular fluid. 

7. The effect of stress and strain relaxation 

parameter for symmetric modulation for regular 

fluid were also obtained by Malashetty et al. [26]. 
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