
K. Aruna et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.705-709

www.ijera.com 705 | P a g e

A Systematic Methodology for the Detection and Correction of

Soft Errors

K. Aruna, Mr. T. Suneel Kumar,
M.Tech,VLSI Design, PBR VITS, Kavali,

M.Tech, Asst. Professor, Dept of ECE, Nellore (D.T), A.P.

Abstract
Continuous shrinking in feature size, increasing power density etc, increases the vulnerability of

microprocessors against soft errors even in terrestrial applications. The register file is one of the essential
architectural components where soft errors can be very mischievous because errors may rapidly spread from

there throughout the whole system. Thus, register files are recognized as one of the major concerns when it

comes to reliability. The project introduces Self-Immunity, a technique that improves the integrity of the register

file with respect to soft errors. Based on the observation that a certain number of register bits are not always

used to represent a value stored in a register. The project deals with the difficulty to exploit this obvious

observation to enhance the register file integrity against soft errors. It shows that our technique can reduce the

vulnerability of the register file considerably while exhibiting smaller overhead in terms of area and power

consumption compared to state-of-the-art in register file protection. For embedded systems under stringent cost

constraints, where area, performance, power and reliability cannot be simply compromised, it proposes a soft

error mitigation technique for register files. Xilinx-ISE tool for synthesizing and the VHDL language is used.

Key words: Error Correction Code, Self-Immunity Technique, Register file Integrity, Vulnerability.

I. Introduction
Over the last decade, and in spite of the

increasingly complex architectures, and the rapid

growth of new technologies, the technology scaling

has raised soft errors to become one of the major

sources for processor crashing in many systems in the

nano scale era. Soft errors caused by charged

particles are dangerous primarily in high-

atmospheric, where heavy alpha particles are

available. However, trends in today‟s nanometer

technologies such as aggressive shrinking have made

low-energy particles, which are more superabundant
than high-energy particles, cause appropriate charge

to provoke a soft error. On the other hand, relatively

little work had been conducted for register files

although they are very susceptible against soft errors.

In fact, soft errors in register files can be the cause of

a large number of system failures. Recently, Blome et

al. showed that a considerable amount of faults that

affect a processor usually come from the register file.

Therefore, some processors protect their registers

with Error Correction Code (ECC), but such

solutions may be prohibitive in certain applications
(like embedded) due to the significant impact in

terms of area and power. Moreover, power

consumption was conventionally a major concern in

embedded systems due to their considerable power

overhead. This project addresses this challenge by

introducing a novel technique, called Self-Immunity

to improve the resiliency of register files to soft

errors, especially desirable for processors that

demand high register file integrity under stringent

constraints.

The contributions within this work are as follows:
(1) It presents a technique for improving the

immunity of register files against soft errors by

storing the ECC in the unused bits of a register.

(2) It solves the problem of the area and power

overhead that typically comes as a negative side

effect in register file protection by achieving

high area and power saving with a slight

degrading in the register file vulnerability

reduction (7%) compared to a full protection

scheme.

The rest of this project is organized as
follows. Section 2 summarizes the previous work

while Section 3 presents this proposed technique.

Section 4 exhibits the implementation details and

Section 5 evaluates the register file vulnerability

reduction and gives a comparison to the state-of-the-

art. Finally, Section 6 concludes the project.

II. Related work and background
The earliest schemes of register file

protection such as Triple Modular Redundancy

(TMR) and ECC can achieve a high level of fault

tolerance but they may not be suitable solutions in

embedded systems due to their power and area

overheads. Recently, Fazeli et al. showed that

protecting the whole register file with SEC-DED

comes with about 20% power overhead.

The proposed approach utilizes the Cross-

parity check as a method for correcting multiple

RESEARCH ARTICLE OPEN ACCESS

K. Aruna et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.705-709

www.ijera.com 706 | P a g e

errors in the register files. Spica et al. showed that

there is a very little gain (just 2%) in fault tolerance

for caches if they increase the protection to Double

Error Correction while the overhead for that gain is

considerable.

Thus, any soft error occurring during “write-
write” or “read- write” intervals will have no effect

on the system, because it will be corrected

automatically by the next write operation. The

“write-read” and “read-read” intervals are called as

vulnerable intervals as shown in Fig. 1. The RVF of a

register is defined as the sum of the lengths of all its

vulnerable intervals divided by the sum of the lengths

of all its lifetimes.

.

Fig. 1. Different Register Access Intervals.

The achieved RVF reduction is 23%, 41%,

67% and 93% for protecting 2, 4, 8 and 16 out of 32,

64 registers respectively. The maximizing register

file integrity against soft errors by reducing the
register file vulnerability. In either full or partial

protection schemes, this reduction increases the area

and power overheads.

III. Proposed Self-Immunity Technique
It proposes to exploit the register values that

do not require all of the bits of a register to represent

a certain value. Then, the upper unused bits of a

register can be exploited to increase the register‟s
immunity by storing the corresponding SEC

Hamming Code without the need for extra bits. The

Hamming Code is defined by k, the number of bits in

the original word and p, the required number of

parity bits (approximately). Thus, the code

word will be . In this proposed technique, the

optimal value of k is the value which guarantees that

w, the bit-width of the register file, can cover both k,

the required number of bits to represent the value,

and the corresponding ECC bits of that value. In

other words, the value and its ECC should be stored

together within the bit-width of a register.
Consequently, the following condition should be

valid . Thus, the optimal value of k is

57 in 64-bit architectures.

When studying 64-bit architectures, where

each register can represent a 64-bit value, it may

exploits the register values, which require less than or

equal to 57 bits by storing the corresponding ECC

bits in the upper unused seven bits of that register to

improve the register file integrity against soft errors.

This technique is called as Self-Immunity Technique.

These values are called as “57-bit” values. It

calls register values which need more than 57 bits to

be represented “over-57-bit” register values. The

percentage of register values usage for different

applications of the MiBench Benchmark compiled

for MIPS architecture is shown in Fig. 2.

A. Problem Description

1) Goal: The goal of our technique is to reduce the

register file vulnerability with minimum impact on

both area and power overhead.

2) Effectiveness of our technique: in a full

protection scheme, an ECC generation is performed

with each write operation and similarly ECC

checking is performed with each read operation. This

technique decides to protect the value depending if it

is valid for Self-Immunity, then it activates the ECC

generator to compute the ECC bits. Otherwise, the
ECC generation is skipped. Similarly, on every

register read operation, instead of always checking

ECC, our technique checks whether the

ECC is being embedded in the register value, and

only if it is, ECC checking & correction is performed.

On average 12% of the data will be stored in the

register file without protection. As a result, this

technique reduces and it may lead to reduce the

consumed power.

B. Architecture for Our Proposed Technique
The key challenge in distinguishing whether

the ECC bits are embedded in the register value or

not, is that the processor does not have sufficient

information to make this decision when reading a

value from a register. Consequently, it needs to

distinguish “57-bit” register values from “over-57-

bit” register values. To do that, a self-π bit is

associated with each register and it initially clears all

self-π bits to indicate the absence of any Self-

Immunity. We explain the proposed architecture with

the required algorithms in three different steps.

Writing, reading and correcting data into a

register:

1. Writing from a register: Fig. 4 illustrates that

whenever an instruction writes a value into a

register it checks the upper seven bits of that

value is '0' or not. If they are (57-bit register

value case), the corresponding self-π bit is set to

'1' indicating the existence of Self-Immunity.

The ECC value is generated and stored in the

upper unused bits of the register. Hence, the data

value and its ECC are stored together in that
register. In the second case (over-57-bit register

value), the corresponding self-π bit is set to '0'

and the value is written into the register without

encoding.

2. Reading from a register: In read Operations ,

the self-π bit is used to distinguish between a

Self-Immunity case and a non self-Immunity

K. Aruna et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.705-709

www.ijera.com 707 | P a g e

case. In the first case, the value and the

corresponding ECC are stored together in that

register and the read value should be decoded. In

another case, the stored value is not encoded and

as a result there is no need to be decoded as is

shown in Fig5.
3. Corrected data: In correction, it will check

Encoder hamming code and decoder hamming code,

two hamming codes are equal there is no correction

otherwise it will check the Self-Immunity case and

correct the data

Fig. 2. Microarchitectural support for reading a

register value.

C. Potential Power Saving

This proposed architecture promises to
consume less power. In this architecture, “over-57-

bit” register values are neither encoded nor decoded

and consequently the encoding and decoding

operations are not performed with each read and

write operation as it happens in a full protection

scheme. This may reduce the power consumption of

this proposed architecture because the encoding and

decoding operations are performed only in the case of

“57-bit” register values. Fig4 shows that on average

12% and 13% of the total number of read and write

operations are occurred in the case of “over-57-bit”
register values. As a result, proposed architecture

may consume less power because the encoder and

decoder are lesser times accessed.

Fig4. The percentage of read and write operations

in the case of “over-26-bit” register values

IV. Implementation details
Since the probability of multiple bit-errors is

largely lower than the single bit-error, a single bit-

rror model has been considered in this project. In this
fault injection environment, faults are injected on the

fly while the processor executes an application. In

each fault injection simulation, one of the 64 registers

is selected randomly and a bit in that register is

chosen randomly and then flipped. Notice that a write

operation clears out the previous injected error into

that register. Likewise, by using a uniform

distribution, a random cycle is chosen as the time that

soft error occurs. This makes sure that the faults will

be injected only when the program is executed. Since

an injected fault might produce an infinite loop, a
watchdog timer was implemented for the required

number of execution cycles. It stops the simulation

when the cycle count exceeds two times the number

of cycles in the fault-free case. Towards evaluating

this proposed technique, it uses different applications

from MiBench Benchmark compiled for MIPS

architecture to take into account different possible

scenarios for register utilization. Simulations were

conducted using the MIPS model simulator. When a

simulation terminates, the corresponding output

information (final results, content of the register file,

execution time and state of the processor) are stored
and used to classify the simulation.

V. Experimental Results and Evaluation
As is depicted in Table 1, this proposed

technique improves the register file integrity

effectively by reducing largely the number of errors

in each category. On average, this proposed

technique reduces the number of error by 100%,

87%, 93%, 93%, and 100%

Table.1. Processor behavior for single error

injection after implementing this proposed

technique.

K. Aruna et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.705-709

www.ijera.com 708 | P a g e

Complete Simulation Result of Implemented System:

Fig.5. Percentage of error rate reduction after

implementing this proposed technique.

 Since latent errors have no effect on the

output of an application, they are less harmful. This

means that it can safely add the “Latent” category to
the “Effect-Less” category since in both categories

the final results are still completely correct. In this

case, on average, the system fault coverage after

implementing our technique reaches on average 98%

and up to 100%.

To investigate the advantages of using this

proposed technique in terms of area overhead against

“Fully ECC” and against the partially protection, it

implemented and synthesized for a Xilinx XC2V600

different versions of a 64-bit, 64-entry, dual read

ports, single write port register file. Fig. 6 shows the

comparison results in terms of RVF reduction and
area overhead. As is noticed, this technique achieves

a good area saving with slight degradation (7%) in

the register file vulnerability reduction compared to

“Fully ECC”. Furthermore, protecting 16 out of 64

registers “16ECCs” can achieve similar RVF

reduction to our result but this technique occupies

31% less area. On the other hand, protecting 4

registers “4ECCs” comes with an area overhead

similar as this technique but this technique achieves

1.3X improvement in terms of RVF reduction.

Since the main target of this project are 64-
bit embedded processors, a synthesizable VHDL

model of the DLX processor is used to investigate the

performance and power penalties for each technique.

Also the Xpower tool from Xilinx is used to estimate

the total power consumption. Since the used encoder

and decoder are less complex as explained earlier, the

critical path in this proposed architecture is shorter.

Consequently, this technique improves the

performance compared to other competitors. As
shown Fig.7, this technique comes with a minimum

impact on both performance and power. It achieves

54% delay reduction and consumes with 94% less

power compared to “Fully ECC”. Furthermore,

protecting 16 out of 64 registers “16 ECCs” achieves

similar RVF reduction as mentioned before, but this

technique achieves a 47% performance improvement

and consumes 87% less power. On the other hand,

this technique consumes 75% less power and

achieves 29% improvement in terms of delay

overhead compared to “4ECCs”. It can be concluded
that this technique achieves the best overall result

compared to state-of-the-art in register file

vulnerability reduction.

Fig.7.The performance and power overhead

comparison

VI. CONCLUSION
 For embedded systems under stringent cost

constraints, where area, performance, power and

reliability cannot be simply compromised, it proposes

a soft error mitigation technique for register files.
This experiment on different embedded system

applications demonstrate that this proposed Self-

Immunity technique reduces the register file

vulnerability effectively and achieves high system

fault coverage. Moreover, this technique is generic as

K. Aruna et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.705-709

www.ijera.com 709 | P a g e

it can be implemented into diverse architectures with

minimum impact on the cost.

REFERENCES
[1] Greg Bronevetsky and Bronis R. de

Supinski,”Soft ErrorVulnerability of

Iterative Linear Algebra Methods,” in the

22ndannual international conference on

Supercomputing, pp. 155-164,2008.

[2] J.L. Autran, P. Roche, S. Sauze, G. Gasiot,

D. Munteanu, P. Loaiza,M. Zampaolo and J.

Borel, “Real-time neutron and alpha soft-

errorrate testing of CMOS 130nm SRAM:

Altitude versus undergroundmeasurements,”

in ICICDT„08, pp. 233–236, 2008.
[3] S.S. Mukherjee, C. Weaver, J. Emer, S.K.

Reinhardt and T. Austin,“A Systematic

Methodology to Compute the

ArchitecturalVulnerability Factors for a

High-Performance Microprocessor,”

inInternational Symposium on

Microarchitecture (MICRO-36), pp.29-40,

2003.

[4] T.J. Dell, “A whiteproject on the benefits of

Chippkill-Correct ECC forPC server main

memory,” in IBM Microelectonics division

Nov1997.
[5] S. Kim and A.K. Somani, “An adaptive

write error detectiontechnique in on-chip

caches of multi-level cache systems,” in

Journalof microprocessors and

microsystems, pp. 561-570, March 1999.

[6] G. Memik, M.T. Kandemir and O. Ozturk,

“Increasing register file immunity to

transient errors,” in Design, Automation and

Test inEurope, pp. 586-591, 2005.

[7] Jongeun Lee and AviralShrivastava, “A

Compiler Optimization toReduce Soft Errors
in Register Files,” in LCTES 2009.

[8] Jason A. Blome, Shantanu Gupta,

ShuguangFeng, and Scott Mahlke,“Cost-

efficient soft error protection for embedded

microprocessors,”in CASES ‟06, pp. 421–

431, 2006.

[9] P.Montesinos, W.Liu, and J.Torrellas,

“Using register lifetimepredictions to protect

register files against soft errors,” in

DependableSystems and Networks, pp.286–

296, 2007.

[10] M. Rebaudengo, M. S. Reorda, and
M.Violante, “An AccurateAnalysis of the

Effects of Soft Errors in the Instruction and

DataCaches of a Pipelined Microprocessor,”

in DATE‟03, pp. 602-607,2003.

[11] I. Koren and C. M. Krishna, Fault-Tolerant

Systems. San Mateo, CA:Morgan

Kaufmann, 2007.

[12] MiBench (http://www.eecs.umich.edu/

mibench/).

[13] T. Slegel et al, “IBM‟s S/390 G5

microprocessor design,” in IEEEMicro, 19,

pp. 12-23, 1999.

[14] M. Fazeli,A. Namazi, and S.G. Miremadi

“An energy efficientcircuit level technique

to protect register file from MBUs and SETs
inembedded processors,” in Dependable

Systems & Networks 2009, pp.195–

204,DNS‟09.

[15] K. Walther, C. Galke and H.T. VIERHAUS,

“On-Line Techniquesfor Error Detection

and Correction in Processor Registers with

Cross-Parity Check,” in Journal of

Electronic Testing: Theory andApplications

19, pp.501-510, 2003.

[16] M. Spica and T.M. Mak, “Do we need

anything more than single biterror correction

(ECC)?,“ in Memory Technology, Design
andTesting, Records of the International

Workshop on 9-10, pp. 111–116, 2004.

[17] M. Kandala, W. Zhang, and L. Yang, “An

area-efficient approach to improving register

file reliability against transient errors,” in

Advanced Information Networking and

Applications Workshops, AINAW '07, pp.

798–803, 2007.

[18] http://archc.sourceforge.net/.

[19] Jun Yan and Wei Zhang, “Compiler-guided

register reliability improvement against soft
errors,” in EMSOFT ‟05, pp. 203–209,2005.

[20] E. Touloupis, J.A. Flint, V.A. Chouliaras

and D.D. Ward, “Efficient protection of the

pipeline core for safety-critical processor-

based systems,” in IEEE workshop on

Signal Processing Systems Design and

Implementation, pp. 188-192, 2005.

[21] Jongeun Lee and A. Shrivastava, “A

Compiler-Micro architecture Hybrid

Approach to Soft Error Reduction for

Register Files,” in Computer-Aided Design

of Integrated Circuits and Systems, pp.1018-
1027, 2010.

[22] Jongeun Lee and A. Shrivastava, “Compiler-

managed register fileprotection for energy-

efficient soft error reduction,” in ASP-DAC,

pp.618–623, 2009.

[23] RiazNaseer, RashedZafarBhatti, and Jeff

Draper, “Analysis of SoftError Mitigation

Techniques for Register Files in IBM Cu-08

90nmTechnology,” in MWSCAS‟06, pp.

515-519, 2006.

http://www.eecs.umich.edu/
http://archc.sourceforge.net/

