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. Introduction

The rotational motion of a gyrostat about a
fixed point in a uniform force field or in a Newtonian
one is one of the important problems in the theoretical
classical mechanics. This problem had shed the interest
of many outstanding researchers e. g. [1-14]. In fact
this problems require complicated mathematical
techniques. It is known that this motion is governed by
six non-linear differential equations with three first
integrals [15].

Many attempts were made by outstanding
scientists to find the solution of these equations but
they have not found it in its full generality, except for
three special cases (Euler-Poinsot, Lagrange-Poisson
and Kovalevskaya). These cases have certain
restrictions on the location of the body’s centre of mass
and on the values of the principal moments of inertia
[1-3]. Arkhangel’skii, Tu. A. [1] showed that this fourth
algebraic integral exists only in two special cases
analogous to those of Euler and Lagrange and that,
other cases with single-valued integrals are not
additional cases but it can be reduced to previous
cases. The necessary and sufficient condition for some
functions to be a first integral for the Euler- Poisson
equations when the motion of a rigid body is acted
upon by a central Newtonian force field is investigated
in [4]. The Hess’s case for the motion of a rigid body
was studied in [5] having the assumption of giving
initial high value for the angular velocity about some
axis, is imparted to the body.

The motion of Kovalevskaya gyroscope was
studied in [6-11]. In [8], the existance of periodic
solutions for the equation of motion of a rigid body in
a Kovalevskaya top are obtained and it has been

extended in [9]. The periodic solutions nearby
equilibrium points for the same problem are
investigated in [10] using the Liapunov theorem of
holomorphic integral when the body moves under the
influence of a central Newtonian field. The author
generalized this problem in [11] when the body acted
by potential and groscopic forces. An exceptional case
of motion of this gyroscope was treated in [12].

In [16], the authors have obtained the ten
classical integrals for the generalized problem of the
roto-translatory motion of N gyrostats n>2. This

problem was studied in [17], when a system was made
of two gyrostats attracting one another according to
Newton’s law. The problem of the earth’s rotation,
using a symmetrical gyrostat as a model was
considered in [18]. The authors considered the first two
components of the gyrostatic moment are null and the
third component is chosen as a constant. This study
was extended and was generalized in [19].

The small parameter method of Poincaré [20]
was used to find the first terms of the series expansion
of the periodic solutions of the equations of motion of
a rotating heavy rigid body about a fixed point when
the body spins rapidly about the dynamically
symmetric axis [21,22 ] and acted by the gravitaional
and Newtonian force field respectively. This problem
was generalized in [23] when the body moves under
the unfluence of Newtonian force field and the third
component of gyrostatic moment vector.

The problem of a perturbed rotational motion
of a heavy solid close to regular precession with
constant restoring moment was treated in [13] and
[14]. Itis assumed that the angular velocity of the body
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is sufficiently high, its direction is close to the axis of
dynamic symmetry of the body, and the perturbing
moments are small in comparison with the gravity
moments. Averaged systems of the equations of
motion are obtained in the first and second
approximations in terms of the small parameter. The
perturbed problem of the rotatory motion of a
symmetric gyrostat about a fixed point with the third
non-zero component of a gyrostatic moment vector
(about the axis of symmetry) and under the action of
some moments was considered in [24]. This problem is
generalized in [25]. The problem of existence of
periodic motions of a solid was studied in [26]. The
author used the Poincaré’s method of small parameter
to obtain the periodic solutions of the equations of
motion. It was assumed that the center of mass of the
solid differs little from a dynamically symmetric axis.
This problem was generalized in [27], when the body
rotates under the action of a central Newtonian force
field and the third component of the gyrostatic moment
vector.

In this work, the rotational motion of a
gyrostat about a fixed point in a central Newtonian
force field analogous to Lagrange's case is studied
when the body is acted upon by a gyrostatic moment
vector about the moving axes. The equations of motion
and their first integrals are obtained and have been
reduced to a quasilinear autonomous system of two
degrees of freedom with one first integral. Poincaré’s
small parameter method [20] is applied to investigate
the analytical periodic solutions of the equations of
motion of the body with one point fixed, rapidly
spinning about one of the principal axes of the
ellipsoid of inertia. A geometric interpretation of
motion is given by using Euler’s angles [28] to
describe the orientation of the body at any instant of
time. The numerical solutions of the autonomous
system are obtained using the fourth order Runge-
Kutta method [29]. The phase plane diagrams describe

the stability are presented. A comparison between the
analytical and the numerical solutions shows a good
agreement between them and the deviations are very
small.

The model of a gyrostat has a wide range of
applications in various fields such as satellite, robot
manipulators, and spacecraft. Moreover, the study of
the rotational motion of a gyrostat has been motivated
by industrial applications in many fields. This is
because the gyrostat provides a convenient model for
the satellite-gyrostat, spacecraft and like; see [30,31]

Il.  Equations of Motion and Change of
Variables
Consider a rigid body (gyrostat) of mass M ,

with one fixed point O; its ellipsoid of inertia is
arbitrary and acted upon by a central Newtonian force

field arising from an attracting centre O, being located
on a downward fixed axis OZ passing through the
fixed point with gyrostatic moment vector
/= (41,52,53) about X,y and Z axes respectively.

It is taken into consideration that at the initial
time, the body rotates about z—axiS with a high

angular velocity I, and that this axis makes an angle

6, =nz/2 (n=0,12,..) with the Z-—axis.
Without loss of generality, we select the positive
branches of the Z— axis and of the X— axis in a way to
avoid an obtuse angle with the direction of the
Z —axis. The equations of motion and their three first

integrals similar to Lagrange case take the forms
[32,33]

o+ A G+ AL -y )i, 1= —ca ™ (2 i —ka Ay ),

d,+B, p I‘l—B_l[I’O_l plég—(c\/y_g)‘l rlfl]:gb_l(zﬁr) rn+taByy),

(1)

rlzgz[(CC\/V_g)_l (Gl =P ly)—(Cop 0 —KCryy 1) 1,

7}1:"171’_‘9(]171"1 7}1':gp171"_r171’ 1”:5(%71_p17/1l);

P =1+£S, nyl=1+¢eS,, r+rn+n" =" @)
where

S, =a{(pl—P)+(a—a7 )+ K [(rH—72) +(re —72) + (=) I}-22, 1- )

S, =al( Pro 70— P 74) +(Guo V4o = G 71+ (€Y ) L0410 —72) + Lo (Fio = 71) ©)
+0,(1-y)1;

p=c¥ P, a=cyrja, r=rn, k=N/c* (.=d/dr), @

"__m.n

y=vor, v'=riv, v'=wr t=t/t,

7,>0, O0<yy<1,;
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A =-B,=(C-A)/A, A=B, a=b=A/C, c’=Mgl/C,
®)
e=c 7/, % =Yo=0, 2,20, N=3g/R, g=4/R?

A, B and C are the principal moments of

inertia; X,, Y, and Z, are the coordinates of the
centre of mass in the moving coordinate system
(Oxyz); y, ' and y"are the direction cosines of
the downwards fixed Z—axis of the fixed frame in
space (OXYZ); p, q and r are the projections

of the angular velocity vector of the body on the
principal axes of inertia; R is the distance from the

fixed point O to the centre of attraction O,; A is the
coefficient of attraction of such centre; /,, £, and /,
are the components of the gyrostatic moment vector
L;and Py, Gy Ty Vo0 7o and y, are the initial
values of the corresponding variables.

I11.  Reduction of the Equations of Motion
to a Quasilinear Autonomous System

From the first two equations of (2), one can express the
variables 1, and y; as

r =1+%52[s1 £22 (1=y")
K7
14 1 ! 14
y =1+¢S, —552[81 +22,(1-y))

—k(@=y*)]+-,

Differentiate the first and the fourth equations
of (1) and use (6) to reduce the four remaining
equations to the following two second order
differential equations

(6)

b+ p = (CAY) AL+ e{ A(CT) (A, — Pil5) 0+ A(AL) LS,
—(Ar)"C,p,q, ¢, +z,a (1-A)y, +k (0> = A)y, +(Ar)™
x[azyy, +k Ay 10,3+ {[-0® S, py—azy p 1+ KA [ p(1-7")
+0,(1-C)y i —(L=A)S, 7 1-1, " £y p ATALS, + 22, (17§ 7)

" - 1 ] _
_k(l_Vlz)]"‘(Aro) 1kA17182€3}+53{EZO 7a 1(1_A1)[ S,

1 n n l —. 1 "
+21, (1—y0)—k(1—712)]—E(Ar0) KA 7S, +22, (1-y))

_k(1_71”2)]£3+(2kA1_a71 26)82 p1}+""

tn :(Aro)ilfl‘hg [(1-A) p1+(Aro)7l(€1 S, =1, p,)+(C ro)il(qlgl
- p1£2)7/1']+52[_5171+(1_A1) P, S, +p1ql7/1’_71(z(,)a_l+qlz) (8)
+kAy 1+e%(@atz, -2k A)y, S, +---,

Here I, is large, so rofz, rofs, --- are neglected.
Solving the first and the fourth equations of system (1),
and using (6), we obtain g, and y; in the form

where @' is a new frequency called Ismail and Amer's
frequency [23] and takes the form

&’ = -2A A, w=A.
0 = (A L) [1-(AA ) o+ LAY, —
—ea(zpy —kaA )], ©)

7= rlil(ﬂ}l_gqul”)'
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Let us introduce new variables p, and y, such that

P =P —€x—€x7 V2=71—€V Py, (10)

where

2=CrAAN?*) y; 1,
=1-0?)  [zgat (- A) +k (A~ o)+ (ArR) (@7 —k A ) 4],
v=(1-0?)[1-A - (ArR) "0, ], vi=(cCyy) e, i=123.

In terms of the new variables P, and y,, the variables g, and y, take the form

0, =—X(p2—CA71 yz)—gX[;(2}?2—(AI’0)71(2311]+82{X[(kAl

4, . 1 ; )
—a 1ZO)V+Sll] pZ_EAllsllpZ-'-X (KA 7,) Sy 3+,

(11)
Yi=V,+ X(Aro)_lgz +elv, p, + X (Aro)_lfz S21]"“92{X [(Aro)_lfz Sy
. . 1 .
— X272 _821p2]_581172}+"'a
where

X=A'[1-(AAR) ) m=n+azy—kA, v,=v-X.

Making use of (11) and (10) into (3), we obtain the following expressions for S; and S, in terms of power series
in &

2—i
S, =S,+2 &S,+ (i=1,2) (12)

where

S =a{(Pz = P;)+ X" (Pao = P2) +K[ (720 =72) + (720~ 72 )
+2X (AR) (720 =720, 1-2CX* ATy, (P — D)},

Si,=al 7 (P = P2o)+ (P20 720 = P2 75)1-a X2 [(Ar,) "4, Sy
X (P20 = P2) = X2 (P20 720 = P2 72 )1+ (2 —K) Sy +k{va(py 720
— Py 72)FaV, (Pae 72— Pa 7)) + X (AR) Tl [ (20— 72) S5
+(Poo— PV, F-CX2A™ 1, ¥, (720 —72),
Sor=a{(P20720 = P2 72) = X[ (Pao 720 = P2 72 ) = X (AR) " £, (Pye = P,)I}
Y1 (720 =72)+ Y, 1=aX C AT ) (75— 7,),

(13)

Szzza[‘/(pzzo_ p22)+;((;/20—7/2)+;(1(7/§0—yzz)]+aX{—v2(p§0— pzz)
+A71(C YoV, -X roilgzszl)( pzo_ p2)+€2(AI‘O)4(Sll—X;{2)
X(720_7}2)_Zz(7}§o_722)}+Y1V(pzo_ P2)+ Yo (Poo—Py) = Ys S,

WWW.ijera.com 658 |Page



T.S. Amer et al. Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

From (12), (13) and (6), we get

r, I S, +&%[S,+(k-120)S,, ]+,
2 (14)

14 1 !
71 =1+5521+52(822_E311)_53[512+(k_zo)521]+"'-

Substituting (10), (11), (12), (13) and (14) into (7) and (8), we obtain the following quasilinear
autonomous system of two degrees of freedom

pz"'w’Z P, =CA1A71y1+8F(p2, P2y V2r Var €)s
Vot 7, =(AI‘0)_1€1+8CD(p2, s ¥2r Var €)s

(15)

where

F=F+eFR+& R+, O=D,+sD,+&° Dy+--+,

Fo=—(Ar) " 2 6+ (A R) T L{CTL(P; —2A™Y, P,) +2D, 2, 7,]
—C7A P, (AT Y, = P,) 3= (AR) KC.y, 7, 0,

D, =(ArR) S, L, +(Cr) 7, [AT L (AY, —p,) =0, P, ]

F=f,-vul-0?)p, =, +v(1-0" ) x + 117,),

Fo=fo—0,—viu(1-0®)(x+107.),  P=¢,—v i+ (1-0")p,,

f,=(A ) {12y, (AC)" = p,A C 1y, 7, —CH A (X + 217, (AT Y, = D)}
+(AR) v, p, 7, +2(A)TALLS, —@°S,, p, —a T p, z, + A K p,{l—j?
—2(AA ) 0,7, =27, + (AA L) 0, v, p, + (AA 1) 0, S, 13+ KAX 7,
x[7, + (AA L) LIATY, = P,) KA S, (L-A) 7, —(AR) T ALS,, p,

+ yACA A vy + 1, [ A,S, +C [0 (Aty, — p,) -4, p,11}

@, =1, L {ATS, +(CA) v, 0, (AMY, = 1,) = 2,75 13- (C 1) 0, [ v, p, 1,
+ 7, (2 + 272728+ (1=A) p, Sy + (1-C A [ 7, + £, (AA 1)
x(AY, = )l -rofzga™ —kA + X2[p; + Ay, (AT y, —2p,)]}
-S,(@"2y 7, -2k A7),
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fs :fz(Alro)_l{C_l (127}2)2 +[ ZC_l(A_l yz - pz)_c_lAl pz]

g, 1 . . . _ .
x{[(kA, -a 1ZO)V+§Sll]p2 +kA 7, S, 2,7, (C lAl)"“/z P, P}

_0)2[2 P, 812""811()("‘7(172)]_(Z+1172){a_l(zé)_kAl[l_YZZ
-2(AA, r0)7162 V. —2(7, +(AA, ro)ilgz)(vz p, +(AA, r0)7%2 Su) 1}

+kA1{;/2[}}2+(AA1I‘0)_1€2][(AA1 ro)_lézsll_x127}2]+X[72(Vp2

(16)

+(AA, r0)71£2 Sy)+vp, (7, +(AA ro)ilfz)](Ailyz —P) kA (1-A)
X(72822+Vpz)_(roA)ilAiés{Sll(l"‘Zﬂ/z)"‘z P[ Sy, + S, (k—25) 13}

1 a, ~ o,
+Esn[a 1207/2(1_A1)_€3(Ar0) ! KA 7,1+ p,S,,(2k A, —a 1Z0

v, roil{ p,(C Al)il[ P, _2(A71y2 ~X272)]- pzcil(Ailyz - P}

03 =11 (A CR) = AT (AT Y, = D) (227, + S0 B2) + 7, [ o (KA —a7 74 +% Si1)
KA 75801 147, P, [ S0, (AR) ™ = 2,7, 131, C ) [ = AT P, (227, + 551 0,)
Vo P, (X +2072) 1= (VP S 427, 81,) + (1= AL P, Spp + (1 + 2172) Sai
+ XL P, LS o (AR) T = 2,7, 17+, (AA L) 1+ (A Y, = p,) p, (v, B,

0, S (AATR) )+ (2 +207) 7y + 4, (AA ) )] -vp{a g+ X[ p;
AT, (ATY, =2p,) 132Xy, (A7 Y, = P,)[ Suu £ (A) ™ = 2,7, 1+ kvA P,

_821(a712672_2kA172)-

The first integral of system (15) can be obtained from (2) in the form

722 +7,l7, +20,(AA I’o)_l]+2€{V}/2 P, +[ 7, +4,(AA, ro)_l][vz P,
+0, S, (AA ro)_l]"‘szl}"‘52{‘/2 p22 +v, P, [v, P, +20, S, (AA r0)_1]

+2X []/2 +€2(AA1 rO)_:L][KZ Sll('A\r-O)_1 _;527./2 _821p2]+5221+2(822

-2 Sr=0) -

Our aim is to find the periodic solutions of
system (15) under the condition A=B>C or
A=B<C (@' is positive). This means that, the
body is set in a fast initial spin I, about the major axis

of the ellipsoid of inertia or about the minor axis of the
ellipsoid of inertia.

IV.  Formal Construction of the Periodic
Solutions
Since the system (15) is autonomous, the
following conditions

P, (010) = CAl B Yis
p,(0,0) =0, (18)
72 (0,¢) =0,

(A7)

do not affect the generality of the solutions [23]. The
generating system of (15) is
(

B0 +0?p® =0, 04700, a9

which admits periodic solutions

T, =27zn inthe form

with  period

p? =M, cosw't + M,sinw'z, ¥ =M,cosr,
(20)
where M., i=(1,2,3) are constants to be

determined. So, we suppose the required periodic
solutions of the initial autonomous system in the form
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p,(z.) = (M, + 8,)c0s 'z + (M, + §,)sine'c + 3¢ G, (¢),
k=1
(21)

7o(t, €)= (M + B cos 7+ Y & H, (2),

with period T(¢) =T, +a(g). The quantities S,,  functions of & and vanish when & =0. The initial
- A conditions of (21) can be expressed as
@', and [, represent the deviations of the initial (1) P

values of p,, P, and y, of system (15) from their
initial values of system (19); these deviations are

P, (0, 8)=M,;+ B, P,(0, )= (My+5,), 7,(0,6)=M;+f;, 7,(0,&)=0. (22)

Let us define the functions G, (7) and H, (7) (k=1,2,3,---) by the operator [23]

ou ou ou 1 82 U :kaHk
U=u+ + + . 23
6M1ﬂ1 amzﬁz a|v|3ﬂ3 28M2'Bl (u:gk,hk #)
where
_Lliro inow'(r—t)d
0.(r) =~ [ RO W)sine(r -t dt,
’ (24)

h () = j OO (t)sinw'(r—t)dt, (k=12 3).
0
Now, we try to find the expressions of the functions Fl(o), d)io), |:2(0) and CI)(ZO) . The periodic solutions (20) can

be rewritten as

p? =Ecos(w't—7), ¥ =M,cost, (25)

where

E=J/M2+M?, n=tan*M,/M,.

Making use of (25) and (13), we obtain
SO —aE®{cos’ n+ X w'?sin’n+= (X2 "2 _1)[1-cos2(w't—71)]}

+2kaM,/,(AA, ro)‘lslnr—ZaEa) X 20, (cAye)  [siny +sin(o'z —1)],

S =M, Eaf{cosn +%(a)'x —1)cos[(a)'—1)r—77]—%(a)'x +1)cos[(e' +1)z—n]1}

+aX{CA*M,y,sint—Ea'¢,(AA 1) [sing+sin(o't-71)]1}
+M,[y,(1-cosz)+Yy,sinz],
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S =aE{X [cosn—cos (w't-n)]+ y, M,[cosy—coszcos (0’7 -n)]}-aX’Eaw'
x{ 0, SY (Ar)) [siny +sin(w'c —n)]+ x, M, sinzsin(w't — 1) }+ka{v EM,
x[ cosn —coszcos(w't —n)]-[v, ' EM,sinz sin(w'c—n) -1, X (Ar,)™ (26)
x[ M, S®sinz+v, @ E(sing+sin(@'z—1)) 113 - X*M, 1, £, (cAy ) tsine

+(z5-K) S,

S =a{vE?[cos’n—cos’(w't—n)]+ yM,(1-cosz )+ y,MZsin*}+a{-E®
xXv,0*[sin’n-sin*(0'c-n)]+Ea'[v,y,CX A =1, SO (AAZ )]
x[sinn +sin(w'z —1) ]+ M,sinz[ X (y,M,sinzt+(Ar,) "7, S)
0, 7, (AA 1) 13+ E{vy,[cosn—cos(w't —n) 1+ @' y,[sing
+sin(w't-17)13-v,SY.

Substitution of (25) and (26) into formulas (16), to get

R =[2(AACK) @' (,y, IIM,sinw't—M,cos0'r ]+,
OO =y, {1+ A [aX C— (A, Cr) "¢, IM,sinz+---,

(27)
F9 = L(@)[M,cos0't+M,sina't ]+,
O =M, N(w)cosw'r +---,
where
L(w')=-[a™ Z,+vV i, (1—a)'2)]+A1[k—2€la;5(ArO)"1]+(r0‘1€3A‘1A1—a)2)
><{a[(|\/|f+a>’2x2|v|§)—%(1+a>’2x2)]—%[|<|\/|§c1 +a(w'®X?-1) (28)
x(M2+M2)]-24,a0'M, X2(cAJys ) 3+,
N(@)=-a(MZ?+X?0*M2)+ X’ (1+a)(M/+MJ)-[z/b™"
—Vi (1_w’2)]+kA1_(A—l)(y2)2_r0‘1flzaA‘1
+20,a0'M, X2(cAJyl )" —(z;a™ 2k A)[M, (aM,
+y,)—Cl,a0 M, X(A 1) ]+
Form (24), (27) and (28), the following results are obtained
9,(Ty)=2znM, (AAC ro)_lgz Y2
gl(ro)=—27zna)’M2(AA10r0)‘1£2 Yo
9,(T,) =—7rn(co')‘1M2 L(@"), 9,(T,)=znM,L(a"), (29)
hl(TO) =0, I:]1(1-0) :”nMs Y2{1+ A_l[aX C _(Alc ro)_lgl]}’
h,(Ty) =0, h2(-|-0):7Z'nM3 N(w").

Substituting (22) into (17) for 7 =0, we obtain
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M +2M, B, + B3 +2&[v(M, + B)(My+ B) + L, v, o (AA 1) ™
(M2+:B2)]+"':(7(;')_2 -1

Supposing that y, is independent of &, we get M ; and S, as

M32(1_7gz)%(73)71 0<M; <o, Bs=—ev(My+ )+ (30)

The independent conditions for the periodicity are [21]

—znf, (@) {L(0") -0 Ny (" )[1+ £, (Ar) " (M3 + B, — £, (Ar) ™)1}

+e[G,(Ty) +---1=0,

znB{L (") + Ny (' )(CA A Yy~ B)[1+1, (Aro)_l(Ma + 5, (31)
_El(Bro)il)il]}"‘g[Gz(To)‘F"'] =0,

e[M;+ B, _gl(Aro)il]il[Hl(To)+‘9H2(To)+52 Hg(TO)+---]=0{(8),

where L (@) and N,(@") can be obtained from (28) by replacing M;, M, and M, by f,, [, and
M, + [, respectively. Then, we have

Li(0') =@ Ny(@') = (B + 7 ) Wi( @) + 25 W, (@) + kWy(@") +W, ("), (32)

where

W, (') =§a[(w’xr D[ @ —(, A) AL - 1+ )@ X)?,

W, (") :_ail{l_ailwlz [1+(aB,+VY,) (M, +ﬁ3)_£2aa)’ﬂ2(AA12 ro)il]}'
W, (@)= A1_a)'2A1[1+2(aﬂ1+y1)(M3 +ﬂ3)_2aw,ﬂz(AA12 ro)iléz]a
W, (@) =ayt, (Aro)_l(a)2 —2A)+ (XY, A_lw,)z -V (1_(0,4)

1 12 ! 14 —. !
+Zay1{1+X2a)2 +40, X2 0 B, AJrI ) +2[ B+ (X @ B,) T}

From the condition that the Z— axis has to be expansions of the periodic solutions and the quantity

directed along the major or the minor axis of the (&) can be expressed as
ellipsoid of inertia of the body, it follows that

W, (@") >0 for all @’ under consideration. So, let p, =&[l,y: (CA A r,w'?) ™" + M, cos7 ]
us assume
+ EEE

2, W, (') + kW, (e0') +W, (@) # 0. g, =C X Ay, +e[2ak (AA 1) 20,0,

_ _ _ + X x,IM;sinz + -+,
Using (31), the expression of A3, and /3, are obtained

rL=1-¢’kM,a ¢, (AA 1) sint+---,
in the form of a power series of integral powers of & . ! ¢ 8 L5 (AAT) ‘
These expansions begin with terms of order higher y,=Mjzcosz+--,

than &2. Consequently, the first terms in the
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7i=—Mgsint+ 0, (AA 1) {l+eM,[y,(1-cosz)+y,sinz]}+&*{X y,M,sinz
kM, b/, (AA T) sinz[20, (AA L) + X M sinz]}+ -,
7/=1+eM,[y, (1-cosz)+vy,sint—aC/,y,(A*A’r,)'sinz]

+&° Ma{a;((l—cow)Jr%aMS(;(lJrX 7,)(1—cos2z)—arl, y,

x(AAZ 1) 'sint—y, [y, (L—cosz)+Yy,sint—aC/,y,(A*Alr,) " sin]

—kal, (AA ) sing }+---.

a(g):—eﬂn{1+£1A’l[ro(M3+ﬂ3)—£3]’1}[ z) a’l—v;(l(l—a)'z)
+(Y, X AT kA +ayl (ArR) " +y, My(zga™ -2k A) ]+ -

The solutions obtained in [22], [34] and [35]
have singular points when @ =1, 2, 3,1/2,1/3,---.
These singularities are solved separately in [34], [36],
[37] and [38]. In our problem when we used Ismail and
Amer's frequency @'[23] instead of @, there are no
singular points at all. Moreover, the obtained solutions

are valid for all rational values of @' and are
considered as a general case of [21], [22] and [23].

dy _py+ay

C080:7 ' dt 1_7/"2

: tang, =
7

(33)

V.  Geometric Interpretation of Motion
In this section, the motion of the rigid body is

investigated by introducing Euler’s angles €, y and
@, which can be determined through the obtained

periodic solutions. Since the initial system is
autonomous, the periodic solutions are still periodic if

t is replaced by (t+t,), where t, is an arbitrary

interval of time. Euler’s angles, in terms of time t,
take the forms [27,28]

do_,_dw

cosé. (34)
dt dt

Substituting (33) into (34), in which t has been replaced by t+1t,, and using relations (4), the following

expressions for the angles &, y and ¢ are obtained as

@y =(12)+1r;h+---, g, =tan™ M,,

6 =6, - £[0,(t +h) - 6, ()] - 576, (t + ) — 6, (W],
W =, +CCosect, o5, (v, (t+h) -y () 1+ & [ v, (t+h) -y, (h)]

+&° [ys(t+h)-yy(h) 1},

¢ =@y + T T—ccoty/cos b, {[g(t+N) - (h)]+& [, (t+h) -, (M]}
—&*{tand, [o, (t +h) — p; ()] +c cot G, cos &, [, (t+h) — o, (W]},

where

0,(t) =—y,cosr,t+[1-car,(A? A’r,)) " ]y,sinnt,
0,t)=(y,Ys—ay)cosrt+{-y,y, —a (A Ar) [ £,(A x,) + Kk, ]}sinr,t

—%a tand,(y, + X y,)Ccos2r,t,

vA(® =C y,(AAR) [ ¢, c0s g, (AA) * tHcosht ],

v, (1) =[(A’A" )" £,Cy, Y, _% X 1, tang, ]t +%(roA1)_1Z;z tang, sin21,t,
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w,(t) =%[;(1tan00 +kCX?y,a l, (A A 1) tand, + x, ¥,/ , (A7 Ar,) “ tang, ]t

+% S tang,sin2r,t—Cy, y, (A2 Ar)) ™ cosrt,

o, (1) =y (1), o, (1) =y, (1),
@5(t) =% ka ¢,(A, Ar,) ™" cosr,t.

It is evident that the Eulerian angles &, v
and ¢ depend on some arbitrary constants

6y, ¥, , ¢, and I, (I, is large). For &£ =0, we
have =0,y =0 and ¢= I,. This permits

permanent rotation of the body with spin T,
(sufficiently large) about the z— axis.

A=B=2249kgm* < C =35.6kg.m?,

r,=1000m,R=2000m, A=0.6, M =30kg,

@, (1) =y, (1),

VI.  Numerical Solutions Matching of

Analytical Solutions
This section is devoted to ascertain accuracy
of the obtained solutions.

(i) We introduce the analytical solutions
through computer program. So, let us consider the
following data that determine the motion of the body

A=B=50.32 kg.m* > C =33.4 kg.m?
z,=5m, y;=0.352,

0, =0,="0,=(0,10,20, 30, 40, 50) kgm’.s*, T =12.566371

Consider p,,, 7,, denoting the analytical solutions

P,,7,. The graphical representations for these
solutions are given in figures (1)-(5) for the case
A=B<C and figures (6)-(10) for the case
A=B>C.

(ii) The quasilinear autonomous system (15) is
solved numerically using the fourth order Runge-Kutta
method through another program with the same
previous data and the initial values of the analytical

solutions. Consider p,,, 7,, to denote the numerical

solutions P,, 7, . The  numerical graphical
representations are given in figures (11)-(15) for the
case A=B<C and figures (16)-(20) for the case
A=B>C.

The comparison between the analytical and
the numerical solutions shows quite agreement
between them, see the corresponding figures (1)-(5),
(11)-(15) and (6)-(10), (16)-(20) for the cases
A=B<C and A=B>C respectively. This
agreement gives powerful ascertain for the analytical
technique. The corresponding phase plane diagrams for
some of these solutions describing the stability of the
solutions are given in figures (4), (5), (9), (10) for the
analytical solutions and (14), (15), (19), (20) for the
numerical solutions.

Here, the concerned plots represent the
functional time dependence of the amplitude of the

-14E-05

waves revealing when ¢ = |£| increases. We conclude

that when /¢ increases the amplitude of the wave
increases also and the number of the waves remain
unchanged, see figures (1), (2), (11) and (12) for the
case A=B<C but for the case A=B>C, we
can see from figures (6), (7), (16) and (17) that the
amplitude of the wave decreases. Also, the solutions

¥,a and y,, remain unchanged for different values of

¢ Dbecause these solutions do not include the variables
0, 0,, 0, A,Band C.

p,,-axis
16E-05

A=B<C

. (=203
12E-05

8E-05 ‘

I
o

4E-05-

0

- 4E-05

i /=103

-8E-05

0 40 80 120 160 200
Fig. (1) t-axis
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VII. Conclusion

The problem of the three-dimensional motion of
a gyrostat in the Newtonian force field with a
gyrostatic moment about one of the principal axes of
the ellipsoid of inertia, is investigated by reducing the
six first-order non-linear differential equations of
motion and their first three integrals into a quasilinear
autonomous system with two degrees of freedom and
one first integral. Poincaré’s small parameter method is

b, n-axis
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A=B>C

120

Fig. (17) t-axis
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Fig. (19) R, -axis

used to investigate the periodic solutions of the present
problem up to the first order approximation in terms of
the small parameter £ . The periodic solutions (33) are
considered as a generalization of those obtained in [21]
(in the case of the uniform force field), [22] (in the
case of the Newtonian force field) and [23] (in the case

of presence £, only). The solutions and the correction

of the period for the latter problems can be deduced
from the obtained solutions in this work as limiting
cases by reducing the Newtonian terms and the
gyrostatic moment. The introduction of an alternative

frequency @' instead of @ avoids the singularities
traditionally appearing in the solutions of other
treatments. The analytical solutions are analysed
geometrically using Euler’s angles to describe the
orientation of the body at any instant of time. These
solutions are performed by computer program to get
their graphical representations. The fourth order
Runge-Kutta method is applied through another
computer program to solve the autonomous system and
represent the obtained numerical solutions. The
comparison between both the analytical and the
numerical solutions is considered to show the
difference between them. These deviations are very
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small, that is the numerical solutions are in full
agreement with the analytical ones. The great effect of
the gyrostatic moment ¢ is shown obviously from the
graphical representations.
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Captions of Figures

Fig. 1

The graphical representation of the analytical solution
p, via t when

¢=(0,10+/3, and 20+/3) kg.m?.s™* for the case

A=B<C.
Fig. 2
The graphical representation of the analytical solution

p, via t when

¢ =(30~/3, 40+/3, and 50+/3)kg.m?.s™* for the

case A=B<C.
Fig. 3
The graphical representation of the analytical solution

7, via t when

¢ =(30~/3, 40+/3, and 50+/3)kg.m?.s™* for the
case A=B<C.

Fig. 4

The phase plane diagram of the analytical solution P,
when ¢ =50+/3 kg.m?.s™ for the case
A=B<C.

Fig. 5
The phase plane diagram of the analytical solution 7,
when ¢ = 10+/3 kg.m?.s™* for the case

A=B<C.
Fig. 6
The graphical representation of the analytical solution

p, via t when

¢=(0,10+/3, and 20+/3) kg.m2.s™ for the case

A=B>C.
Fig. 7
The graphical representation of the analytical solution

p, via t when

¢ =(30+/3, 40+/3, and 50+/3)kg.m?.s™* for the

case A=B>C.
Fig. 8
The graphical representation of the analytical solution

7, via t when

¢ =(30~/3, 40+/3, and 50+/3)kg.m?.s™* for the
case A=B>C.

Fig. 9

The phase plane diagram of the analytical solution P,
when ¢ =50+/3 kg.m?.s™" for the case

A=B>C.
Fig. 10

The phase plane diagram of the analytical solution 7,
when ¢ = 10+/3 kg.m?.s™" for the case

A=B>C.
Fig. 11
The graphical representation of the numerical solution

p, via t when

¢=(0,10+/3, and 20+/3) kg.m2.s™ for the case

A=B<C.
Fig. 12
The graphical representation of the numerical solution

p, via t when

¢ =(30~/3, 40+/3, and 50+/3)kg.m?.s™* for the

case A=B<C.
Fig. 13
The graphical representation of the numerical solution

7, via t when

¢ =(30+/3, 40+/3, and 50+/3)kg.m?.s™* for the
case A=B<C.

Fig. 14

The phase plane diagram of the numerical solution P,
when ¢ =50+/3 kg.m?.s™ for the case
A=B<C.
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Fig. 15
The phase plane diagram of the numerical solution 7,
when ¢ =103 kg.m?.s™* for the case

A=B<C.
Fig. 16
The graphical representation of the numerical solution

p, via t when

¢=(0,10+/3, and 20+/3) kg.m?.s™* for the case

A=B>C.
Fig. 17
The graphical representation of the numerical solution

p, via t when

¢ =(30+/3, 40+/3, and 50+/3)kg.m?.s™* for the

case A=B>C.
Fig. 18
The graphical representation of the numerical solution

7, via t when

¢ =(30+/3, 40+/3, and 50+/3)kg.m?.s™* for the
case A=B>C.

Fig. 19

The phase plane diagram of the numerical solution P,
when ¢ =503 kg.m?.s™ for the case
A=B>C.

Fig. 20

The phase plane diagram of the numerical solution 7,
when ¢ = 10+/3 kg.m?.s™" for the case
A=B>C.
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