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Abstract:  The proposed EMG signals analysis relies on the frequency domain where features of healthy EMG 

signal and myopathic EMG signals are analyzed and compared. Methodology described the relationship 
between the EMG signals and the properties of a contracting & myopathic muscle by analysing its power 

density spectrum. Periodogram Mean-Square Spectrum Estimate (PMSSE) of EMG Signal and the Power 

spectral Density is calculated with Welch's PSD estimate method by taking Hamming & Kaiser Window for 

both the healthy & myopathic signals. The analysis can provide important clues to design feature extraction 

methods and the resulting information can be used to determine the origin of the weakness. 
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I. Introduction 
Clinical electromyography analyses the 

electromyogram (EMG) recorded from a contracting 

muscle using a needle electrode to diagnose 

neuromuscular disorders. EMG is composed of 
discrete waveforms called motor unit action 

potentials (MUAPs), which result from the repetitive 

discharges of groups of muscle fibers called motor 

units (MUs). The term MU refers collectively to one 

motoneuron and the group of muscle fibers it 

innervates and is the smallest unit of skeletal muscle 

that can be activated by volitional effort. MUAPs 

from different MUs tend to have distinct shapes, 

which remain almost the same for each discharge. 

The MUAPs can therefore be identified and tracked 

using pattern recognition techniques. The resulting 

information can be used to determine the origin of the 
weakness, i.e. neurogenic or myopathic diseases 

[1,3]. The changes brought about by a particular 

disease alter the properties of the muscle and nerve 

cells, causing characteristic changes in the MUAPs. 

Distinct MUAPs can be seen only during weak 

contractions when few motor units are active. When a 

patient maintains low level of muscle contraction, 

individual MUAPs can be easily recognised. As 

contraction intensity increases, more motor units are 

recruited. Different MUAPs will overlap, causing an 

interference pattern in which the neurophysiologist 
cannot detect individual MUAP shapes reliably. 

Usually, in clinical electromyography, 

neurophysiologists assess MUAPs from their shape 

using an oscilloscope and listening to their audio 

characteristics. Thus, an experienced 

electrophysiologist can detect abnormalities with 

reasonable accuracy. However, subjective MUAP 

assessment, although satisfactory for the detection of 

unequivocal abnormalities, may not be sufficient to  

 

delineate less obvious deviations or mixed patterns of 

abnormalities [4]. Therefore, for an effective 

automated MUAP assessment, a systematic handling 

of EMG signal must decompose the signal into 

MUAPs and classify each MUAP into different 

classes. 

Although, a number of computer-based 
quantitative EMG analysis algorithms have been 

developed [5] practically none of them has gained 

wide acceptance for extensive clinical use. Most 

importantly, there are no uniform international 

criteria neither for pattern recognition of similar 

MUAPs or for MUAP feature extraction [8]. Out of 

the two assessment tasks (i.e. MUAP detection and 

classification) according to our knowledge only the 

first one has attracted attention. Buchthal et al. [9, 10] 

developed one of the earliest methods for quantitative 

EMG decomposition, where MUAPs were recorded 
photographically and then were selected for analysis. 

LeFever and DeLuca [11] used a special three 

channel recording electrode and a visual computer 

decomposition scheme based on template matching 

and firing statistics for MUAP identification. Stalberg 

et al. [8], in their original system used waveform 

template matching whereas more recently [12] they 

have used different shape parameters as input to a 

template matching technique. Andreassen [13] 

followed the manual method developed by Buchthal 

using template matching with four templates for the 
recognition of MUAP‘s recorded at threshold 

contraction. Stashuk and Qu [14] proposed a method 

to identify MUAPs based on power spectrum 

matching. Hassoun et al. [15] proposed a system 

called neural network extraction of repetitive vectors 

for electromyography (NNERVE) which uses the 

time domain waveform as input to a three layer 
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artificial neural network with a 

‗‗pseudounsupervised‘‘ learning algorithm for 

classification. McGill et al. [16] used a method based 

on a combination of shape recognition of the MUAPs 

and statistical probability of occurrence. Fang et al. 

[17] developed a comprehensive technique to identify 
single motor unit (SMU) potentials based on one-

channel EMG recordings measuring waveform 

similarity of SMU potentials in the wavelet domain. 

A common problem in signal and image 

processing is in the rejection of signal noise 

components and the increase of the signal-to-noise 

ratio. This process involves the correct selection of 

signal sampling frequency, frequency regions of 

desired signal components and cut-off frequencies for 

their extraction. In most cases the low-pass filter is 

applied at first to reject signal noise and to reduce the 

auto-aliasing effect followed by the high-pass filter to 
remove signal trend components. The EMG signal is 

nonstationary as its statistical properties change over 

time. In most cases its sampling rate is greater than 1 

kHz affecting possibilities of noise reduction. The 

MUAPa are transients that exist for a short period of 

time, which is not identical in all cases. For that 

reason, time-frequency methods are now being used 

to characterize the localized frequency content of 

each MUAP [1]. Most often and even in our case, 

wavelet transform is used. 

 

II. Properties of the Power Density 

Spectrum for EMG Signal 
The power density spectrum of the EMG 

signal may be formed by summing all the auto and 

cross-spectra of the individual MUAPTs, as indicated 

in this expression:  

 Si  

𝑝

𝑖=1

+  𝑆𝑢𝑖𝑢𝑗(

𝑞

𝑖 ,𝑗=1
𝑖≠𝑗

)                   

Where, Su, (  ) = the power density of the MU 

APT, Ui (t); and S𝑢𝑖𝑢𝑗() = the cross-power density 

spectrum of MUAPTs Ui(t) and u;(t). This spectrum 

will be nonzero if the firing rates of any two active 

motor units are correlated. Finally, p = the total 
number of MUAPTs that comprise the signal; q = 

the number of MUAPTs with correlated discharges. 

For details of this mathematical approach, refer to 

De Luca and van Dyk (1975). De Luca et al (1982b) 

have shown that many of the concurrently active 

motor units have, during an isometric muscle 

contraction, firing rates which are greatly correlated. 

It is not yet possible to state that all concurrently 

active motor units are correlated. Therefore, q is not 

necessarily equal to p, which represents the total 

number of MUAPTs in the EMG signal. The above 

equation may be expanded to consider the following 
facts:  

1. During a sustained contraction, the 

characteristics of the MUAP shape may change as 

a function of time (r). For example, De Luca and 

Forrest (1973a), Broman (1973, 1977), Kranz et al 

(1983), and Mills (1982) have all reported an 

increase in the time duration of the MUAP. [4][6] 

2. The number of MUAPTs present in the EMG 

signal will be dependent on the force of the 

contraction (F).  
3. The detected EMG signal will be filtered by the 

electrode before it can be observed. This electrode 

filtering function will be represented by R(w, d), 

where d is the distance between the detection 

surfaces of a bipolar electrode.  

Note that the recruitment of motor units as a 

function of time during a constant force has not been 

considered; however, the required modification to the 

equation is trivial, and the concept may easily be 

accommodated. The concept of "motor unit rotation" 

during a constant force contraction (i.e., newly 

recruited motor units replacing previously active 
motor units) which has, at times, been speculated to 

exist, has also not been included. No account may be 

found in the literature which has provided evidence 

of this phenomenon by definitively excluding the 

likelihood that the indwelling electrode has moved 

relative to the active muscle fibers and, in fact, 

records from a new motor unit territory in the muscle. 

[1][8][10] 

𝑆𝑚 , 𝑡,𝐹 = 𝑅 ,𝑑 [ 𝑆𝑢𝑖 , 𝑡 

𝑝 𝐹 

𝑖=1

+   𝑆𝑢𝑖𝑢𝑗(, 𝑡)

𝑞(𝐹)

𝑖 ,𝑗=1
𝑖≠𝑗

 

Where, MUAPT power density function 𝑆𝑚 , 𝑡,𝐹  
There are three eventualities that may 

influence its time dependency: (1) the characteristics 

of the shape of the MUAP Ui(t) and Uj(t) change as a 
function of time; (2) the number of MUAPTs which 

are correlated varies as a function of time; (3) the 

degree of cross-correlation among the correlated 

MUAPTs varies. A change in the shape of the MUAP 

of Ui(t) and Uj(t) would not only cause an alteration 

in the cross-power density term but also would cause 

a more pronounced modification in the respective 

auto power density spectra. Hence, the power density 

spectrum of the EMG signal would be altered 

regardless of the modifications of the individual 

cross-power density spectra of the MUAPTs. There is 

to date no direct evidence to support the other two 
points. In fact, De Luca et al (1982a and b) have 

presented data which indicate that the cross-

correlation of the firing rates of the concurrently 

active motor units does not appear to depend on 

either time during, or force of a contraction. [1][4] 

This apparent lack of time-dependent cross-

correlation of the firing rates is not inconsistent with 

previously mentioned observations, indicating that 

the synchronization of the motor unit discharges 

tends to increase with contraction time. These two 

properties can be unrelated. Up to this point, the 
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modeling approach has provided an explanation of 

the following aspects and behavior of the power 

density spectrum:  

1. The amplitude increases with additionally 

recruited MUAPTs.  

2. The IPI firing statistics influence the shape of the 
spectrum below 40 Hz, although this effect is not 

necessarily consistent, and is less evident at 

higher force when an increasing number of 

motor units are active.  

3. The tendency for motor units to "synchronize" 

will affect the spectral characteristics but will be 

limited to the low frequency components.  

4. Modification in the waveform of MUAPs within 

the duration of a train will affect most of the 

spectrum of the EMG signal. This is particularly 

worrisome in signals that are obtained during 

contractions that are anisometric, because in such 
cases the waveform of the MUAP may change in 

response to the modification of the relative 

distance between the active muscle fibers and the 

detection electrode.  

The above associations do not fully explain 

the now well-documented property of the EMG 

signal, which manifests itself as a shift towards the 

low frequency end of the frequency spectrum during 

sustained contractions. It is apparent that 

modifications in the total spectral representation of 

the MUAPs can only result from a modification in 
the characteristics of the shape of the MUAP. During 

attempted isometric contraction, such modifications 

have their root cause in events that occur locally 

within the muscle. Broman (1973) and De Luca and 

Forrest (1973a) were the first to present evidence that 

the MUAP increases in time duration during a 

sustained contraction. [5] More recently, Kranz et al 

(1981) and Mills (1982) have provided further 

support. [6] 

 

III. Spectral Analysis of EMG Signal 
Spectrum analysis is also applied to EMG 

studies. Various feature extraction methods based on 

the spectral analysis are experimented. By using of 

information contained in frequency domain could 

lead to a better solution for encoding the EMG signal. 

Time-frequency analysis based on short-time Fourier 

transform is a form of local Fourier analysis that 

treats time and frequency simultaneously and 

systematically. The characters of EMG signals in 

frequency domain are explored and demonstrated in 
this chapter. The short time variability of spectrum, 

which is an essential fact for using time-frequency 

methods in EMG feature extraction, is also discussed 

in this chapter. The analysis can provide important 

clues to design feature extraction methods. Wavelets 

approach is another powerful technique for time-

frequency analysis.  

 

 

IV. Power Spectral Density (PSD) of 

EMG Signal 
EMG Signals cannot be described by a well-

defined formula. The distributions for the various 

grasp types can be however described with the 

probability laws. EMG signal is a random process 

whose value at each time is a random variable. [7] 

The Fourier transform we used in the previous 

section views non random signals as weighted 

integral of sinusoidal functions. Since a sample 

function of random process can be viewed as being 

selected from an ensemble of allowable time 

functions, the weighting function for a random 
process must refer in some way to the average rate of 

change of the ensemble of allowable time functions. 

The power spectral density (PSD) of a wide sense 

stationary random process X (t) is computed from the 

Fourier transform of the autocorrelation function R(τ 

) : 

Sx f =  R  .
+∞

−∞

e−j2ft d 

Where the autocorrelation function 

R  = E[X t +  X(t) 

The nonparametric methods are methods in which the 
estimate of PSD is made directly from a signal itself. 

One type of such methods is called periodogram. The 

periodogram estimate for PSD for discrete time 

sequence x1, x2, x3 …. xk is defined as square 

magnitude of the Fourier transform of data: 

𝑆 %𝑓 =
1

𝑘
.  Xm

m=k

m=1

. e−jfm  ² 

An improved nonparametric estimator of the 

PSD is proposed by Welch P.D. The method consists 

of dividing the time series data into (possibly 

overlapping) segments, computing a modified 
(windowed) periodogram of each segment, and then 

averaging the PSD estimates. The result is Welch's 

PSD estimate. The multitaper method (MTM) is also 

a nonparametric PSD estimation technique which 

uses multiple orthogonal windows. 

 

        The first step toward the computation of spectral 

variables is the estimation of the PSD function of the 

signal. When the voluntary myoelectric signal is 

processed (albeit the raw periodogram is an 

asymptotically unbiased but inconsistent spectral 
estimator), both spectral variables (MNF and MOF) 

are computed adding the amplitudes of many spectral 

lines, thus dramatically reducing the effect of the in 

determination of the power content of the individual 

spectral lines. 

 

V. Results 
The EMG is collected from Physio Bank 

ATM having 4000 samples of a healthy & Myopathic 
subject where the length of the recorded signal was 

10 seconds. The simulation part is carried out in Mat 

lab platform. 
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Fig 1. The input healthy/normal EMG signal 

 

 
Fig 2. The input Myopathic EMG signal 

 

1.1.  Hamming window 

The hamming window, w = hamming(L) 

returns an L-point symmetric Hamming window in 

the column vector w. L should be a positive integer. 

The coefficients of a Hamming window are 

computed from the following equation. 

(n)=0.54-0.46cos(2
n

N
), 0 ≤ n ≤ N 

The window length is L=N+1 

w = hamming (L,'sflag') returns an L-point Hamming 

window using the window sampling specified by 
'sflag', which can be either 'periodic' or 'symmetric' 

(the default). The 'periodic' flag is useful for 

DFT/FFT purposes, such as in spectral analysis. The 

DFT/FFT contains an implicit periodic extension and 

the periodic flag enables a signal windowed with a 

periodic window to have perfect periodic extension. 

When 'periodic' is specified, hamming computes a 

length L+1 window and returns the first L points. 

When using windows for filter design, the 

'symmetric' flag should be used. 

 
Fig 3. Power Spectral Density of Normal EMG 

Signal with Hamming window 

 
Fig 4. Power Spectral Density of Myopathic EMG 

Signal with Hamming window 

 

 
Fig 5. Periodogram Power Spectral Density Estimate 

of Normal EMG Signal with Hamming Window 

 

 
Fig 6. Periodogram Power Spectral Density Estimate 

of Myopathic EMG Signal with Hamming Window 

 

The power spectral density of the input 

Normal EMG signal (fig-5) can be estimated by its 

periodogram where the frequency range is from -500 

to 500 Hz and the Power per frequency is -20 to +25 

db/Hz in the both side-lobe of the spectrum but the 

mid portion the Power per frequency (frequency -200 

to +200 Hz) is about 0 to +40 db/Hz for Hamming 

Window method.  

Whereas the power spectral density of the 
Myopathic EMG signal (fig-6) can be estimated by 

its periodogram and the frequency range is from -500 

to 500 Hz and the Power per frequency is -10 to +30 

db/Hz in the both side-lobe of the spectrum but the 

mid portion the Power per frequency (frequency -100 

to +100 Hz) is about +10 to +40 db/Hz for Hamming 

Window method.  

 

1.2. Kaiser window 

The Kaiser Window, w = Kaiser (L, beta) 

returns an L-point Kaiser window in the column 
vector w. beta is the Kaiser window β parameter that 

affects the sidelobe attenuation of the Fourier 

transform of the window. The default value for beta 

is 0.5.To obtain a Kaiser window that designs an FIR 
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filter with sidelobe attenuation of α dB, use the 

following β. 

      =

     
0.1102  − 21 ,     > 50

0.5842( − 21)0.4 +  0.07886  − 21 , 5    50 ≥  ≥ 21
0,         < 21

   

Increasing beta widens the main lobe and decreases 

the amplitude of the sidelobes (i.e., increases the 

attenuation). 

 
Fig  7. Power Spectral Density of Normal EMG 

Signal with Kaiser Window 

 

 
Fig  8. Power Spectral Density of Myopathic EMG 

Signal with Kaiser Window 

 

The Power Spectral Density of Normal EMG Signal 

is found to be higher than that of myopathic signal. In 

case of Hamming Window the max PSD is 44dB/Hz 

for normal signal and 40 dB/Hz for Myopathic signal 

whereas for Kaiser Window it is 45dB/Hz for normal 

signal & 41dB/Hz for myopathic signal. 

 

 
Fig 9. Periodogram Power Spectral Density Estimate 

of normal EMG Signal with Kaiser Window 

 

 
Fig 10. Periodogram Power Spectral Density 

Estimate of Myopathic EMG Signal with Kaiser 
Window 

The Periodogram Power Spectral Density 

Estimate of Normal EMG Signal with Kaiser 

Window is being shown in Fig-9 where the Power 

per frequency is decreasing from initial 80 dB/rad 

sample to nearby 20 dB/rad sample gradually with 

respect to its normalized frequency.  
Whereas the Periodogram Power Spectral 

Density Estimate of Myopathic EMG Signal with 

Kaiser Window is being shown in Fig-10 and the 

Power per frequency is decreasing from initial 70 

dB/rad sample to nearby 20 dB/rad sample gradually 

with respect to its normalized frequency 

The Periodogarm Mean-Square Spectrum 

estimate for the Normal EMG signal (fig-12) and its 

frequency limits in the interval of -100 to 100 Hz and 

the myopathic signal spectrum spreads over the 

frequency range of -400 to 400 Hz. 

 During a sustained isometric contraction the 
surface EMG signal becomes ―slower‖, the power 

spectral density is compressed toward lower 

frequencies and spectral variables (MNF, MDF) 

decrease. The decrease of these variables reflects a 

decrease of muscle fiber conduction velocity and 

changes of other variables (such as active motor unit 

pool, degree of synchronization, etc). 

𝑓𝑚 =  𝑓 𝑃 𝑓 𝑑𝑓/ 𝑃 𝑓 𝑑
∞

0

∞

0

 

 

 𝑃 𝑓 𝑑𝑓 =  𝑃 𝑓 𝑑𝑓 =
1

2

∞

𝑓𝑚𝑒𝑑

𝑓𝑚𝑒𝑑

0

 𝑃 𝑓 𝑑𝑓
∞

0

 

 
Fig11. Mean and median spectral frequencies of the 

EMG signal (MNF and MDF) 

 

 
Fig12. Periodogram Mean-Square Spectrum Estimate 

of Normal EMG Signal 

 

 
Fig13. Periodogram Mean-Square Spectrum Estimate 

of Myopathic EMG Signal 
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The PSD shown above summarizes the 

frequency components for the entire length of the 

EMG data. Another important part of spectral 

analysis relies on studying how the frequency 

components vary with time. Qualitative assessments 

can be made by calculating the PSD for each segment 
of data and comparing them.  

 

VI. Conclusion 
It has been shown that the mean and median 

frequencies of the EMG signal decrease with time 

during a task that induces fatigue. The result 

essentially gives an evaluation of what contribution 

each frequency has to the original signal. In order to 

gain meaningful information from this type of 
calculation, the segment of data being studied must 

be stationary, meaning that the statistics of the signal 

do not change with time. The most important 

application of spectral analysis in our study was to 

make differentiate between normal and myopathic 

EMG signals and the spectral behaviour. Our analysis 

leads to better investigation of myopathic diseases 

and the origin of such diseases. Future research 

involves the neuromuscular signal analysis and  

disease findings.  
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