
Rupinder Kaur et al. Int. Journal of Engineering Research and Applications                 www.ijera.com 

Vol. 3, Issue 5, Sep-Oct 2013, pp.573-574 

 

 

www.ijera.com                                                                                                                              573 | P a g e  

 

 

 

 

Generation of Test Data Using Genetic Algorithm 
 

Rupinder Kaur*, Sandeep Kaur Dhanda* 
*A.P., CSE/IT Department, Baba Banda Singh Bahadur Engineering college, Fatehgarh Sahib (Punjab), India  

 

ABSTRACT  

Genetic Algorithm has been implemented to automate the generation of test data. The test data was derived from 

the program's structure with the aim to traverse every line of code in the software. This work uses fitness 

function and variables are represented in binary code. The power of using Genetic Algorithm lies in its ability to 

handle input data which may be of complex structure. Thus, the problem of test data generation is treated 

entirely as an optimization problem. The advantage of Genetic Algorithm is that through the search and 

optimization process, test sets are improved. The work has been tested with the help of Triangle Type 

Classification program. 

Keywords- Genetic Algorithm, Crossover, Mutation, Test Data, Fitness Function 

 

I. INTRODUCTION 

Software  testing  is  one  of  the  main  

realistic  methods  to  increase  the  confidence  of  

the programmers in  the  correctness  and  reliability  

of  software. Generating adequate test data manually 

is labour intensive and time-consuming process. This 

problem has motivated researchers to create test data 

generators that can examine a program’s structure 

and generate adequate test data automatically. It is 

not a small task to judge whether a finite set of input 
test data is adequate or not. The goal is to uncover as 

many faults as possible with a potent set of a 

constrained number of tests. Obviously, a test series 

that has the potential to uncover many faults is better 

than one that can only uncover few. Random test data 

generation consists of generating test inputs at 

random, in the hope that they will exercise the 

desired software features. Often, the desired inputs 

must satisfy some constraints, and this makes a 

random approach likely to fail [2]. Software testing 

automation is not a straightforward forward process. 
For years, many researchers have proposed different 

methods to generate test data automatically, i.e. 

different methods for developing test data generators 

[1, 5]. Genetic algorithms that can automatically 

generate test cases to test selected path. This 

algorithm takes a selected path as a target and 

executes sequences of operators iteratively for test 

cases to evolve [3]. A method for optimizing 

software testing efficiency by identifying the most 

critical path clusters in a program [4].This paper has 

been organized in four sections. Section II describes 

the introduction to genetic algorithm, section III 
introduces methodology used to achieve the 

objectives and section IV shows the final results and 

their discussion. 

 

II. GENETIC ALGORITHM 
Genetic Algorithms were invented by John 

Holland in the 1960s and were developed by Holland 

and his students and colleagues at the University of 
Michigan .Holland’s original goal was not to design 

algorithms to solve specific problems, but rather to 

formally study the phenomenon of adaptation as it 

occurs in nature and to develop ways in which the 

mechanisms of natural adaptation might be imported 

into computer systems. The Genetic Algorithm (GA) 

starts by creating an initial population of individuals, 

each represented by randomly generated genotype. 

The fitness of individuals is evaluated in some 

problem-dependent way, and the GA tries to evolve 

highly fit individuals from the initial population. 
 In translating the concepts of genetic algorithms to 

the problem of test-data generation, the following 

tasks are performed: 

• First of all consider the population to be a set of 

test. 

• Find the set of test data that represents the initial 

population. This set is randomly generated 

according to the format and type of data used by 

the program under test. 

• Determining the fitness of each individual which 

is based on a fitness function that is problem-

dependent. 
• Select two individuals that will be mated to 

contribute to the next generation. 

• Apply the crossover and mutation processes. 

 

 Various operators of genetic algorithm have 

been used. The selection operator chooses two 

individuals from a generation to become parents for 

the recombination process (crossover and mutation). 

There are different methods of selecting individuals, 

e.g. randomly or with regard to their fitness value. 

The crossover operation is used to produce the 
descendants that make up the next generation. 

Mutation operation picks a gene at random and 

changing its state according to the mutation 

probability. In a binary code, this simply means 

changing the state of a gene from a 0 to a 1 or vice 

RESEARCH ARTICLE                               OPEN ACCESS 



Rupinder Kaur et al. Int. Journal of Engineering Research and Applications                 www.ijera.com 

Vol. 3, Issue 5, Sep-Oct 2013, pp.573-574 

 

 

www.ijera.com                                                                                                                              574 | P a g e  

versa. A fitness value of an individual is the measure 

of its strength to survive in the next generation. It 

reflects the chance an individual has to be present 

directly in the next generation or to be selected for 

mating with other individuals in the current 

generation to produce children for next generation. 
 

III. METHODOLOGY USED 
Single point crossover and bit inversion 

mutation methods are used in genetic algorithm. 

Selection of values is based on their fitness function 

by using roulette wheel selection method. 

The following code fragment is used to check the 

flow of program. All the statements are given 

weights. The assigned weights will be used to 
calculate the fitness function of each test case input 

given to genetic algorithm.  

0. int a,b,c; 

1. int match = 0; 

2. if (a = b) 

3. match = match + 1; 

4. if (a == c) 

5. match = match + 2; 

6. if (b == c) 

7. match = match + 3; 

8. if (match == 0) /* if a, b and c are not equals to 

each other*/ 
9. if (a + b <= c) 

10. printf("Not a triangle"); return 0.0; } 

11. else if (b + c <= a) { 

12. printf ("Not a triangle"); return 0.0; } 

13. else if (a + c <= b) { 

14. printf("Not a triangle"); Return 0.0; } else { 

15. double p = (a + b + c)/2.0; printf ("Scalene"); 

16. return sqrt (p*(p-a)*(p-b)*(p-c)); /* compute 

square */ } 

17. else if (match == 1) /* if (a = b ≠c) */ 

18. if (a + b <= c) { 
19. printf ("Not a triangle"); return 0.0; } 

20. double h = sqrt (pow (a, 2) - pow(c/2.0, 2)); 

printf ("Isosceles"); 

21. return (c*h)/2.0; /* compute square */ } 

22. else if (match == 2) /* if (a = c ≠b) */ 

23. if (a + c <= b) { 24. printf ("Not a triangle"); 

return 0.0; } else { 

25. double h = sqrt (pow (a, 2) - pow (b/2.0, 2)); 

printf ("Isosceles"); 

26. return (b*h)/2.0; /* compute square */ } 

27. else if (match == 3) /* if (b = c ≠a) */ 

28. if (b + c <= a) { 
29. printf ("Not a triangle."); return 0.0; } else { 

30. double h = sqrt (pow (b, 2) - pow (a/2.0, 2)); 

printf ("Isosceles"); 

31. return (a*h)/2.0; /* compute square */ } else { /* 

if (a = b= c) */ printf( "Equilateral"); 

32. return (sqrt (3.0)*a*a)/4.0; /* compute square*/ 

} 

Fig 1 Triangle Type Determination Program 

 

IV. RESULTS 
In order to compare the effectiveness of 

using GA, it has been compared with random testing. 

The following graph shows that the random testing is 

good enough for small size of input but as the size 

increases, the execution time for the program 

increases. So, genetic algorithm works good in that 

case  

 
Fig 2 CPU Time taken to run genetic algorithm and 

random numbers 

 

REFERENCES 
[1]  Mansour N, Miran Salame,” Data 

Generation for PathTesting”, Software 

Quality Journal, 12, 121–136, 2004,Kluwer 
Academic Publishers.  

[2]  Michael, C.C., McGraw, G.E., Schatz, 

M.A., Walton, C.C., “ Genetic algorithm for 

dynamic test data generation” , Technical 

Report, RSTR-003-97-11 

[3]  Nirpal Premal B ,Kale K V,” Using Genetic 

Algorithm for Automated Efficient Software 

Test Case Generation for Path Testing”, 

International Journal in Advanced 

Networking and Applications Volume: 02, 

Issue: 06, Pages: 911-915 (2011) 
[4]  Srivastava, P.R., Kim, T.H.” Application of 

genetic algorithm in software testing”, 

International Journal of Software 

Engineering and Its Applications 3(4) 

(October 2009) 

[5]  Srivastava P. R. et al, “Generation of test 

data using Meta heuristic approach” IEEE 

TENCON (19-21 NOV 2008), India 

available in IEEEXPLORE. 

.   

 


