
Maha Attia Hana Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.183-189

www.ijera.com 183 | P a g e

MVEMFI: Visualizing and Extracting Maximal Frequent

Itemsets

Maha Attia Hana*
*(Department of Electrical and Communication Department Canadian International College ElSheikh Zaid,

Deputed from Faculty of computers & Information, Helwan University, Egypt

ABSTRACT
Association rule is a data mining technique that has a huge number of applications. One of the crucial steps in

association rule is the extraction of frequent itemsets. This research is inspired by simple appealing visualization
of itemsets frequencies in the simple well known two dimension matrix representations. This paper proposes a

new procedure to extract maximal frequent itemsets called Matrix Visualization and Extraction of Maximal

Frequent Itemsets. The procedure consists of two steps. The first step sets the environment to mine data while

the second extracts frequent itemsets. MVEMFI procedure has been tested by three synthetic datasets and

processing time has been recorded. It has been found that MVEMFI performance is not affected by the number

of transactions or the density of items’ occurrences in the dataset.

Keywords – Association rules, Data mining, Maximal frequent itemset

I. INTRODUCTION
Association rule is a promising tool to expand

the scope of data analysis and to reveal hidden

relations among data values. Association rule miming
has wide spectrum of applications in the area of

customer relationship management [1], financial

applications [2], tax inspection [3], traffic

management [4] and computing in cloud environment

[5, 6], education [7, 8].

Association rules mines dataset by

discovering frequent patterns, then generates a set of

rules that reveals the relationship between dataset

items. The first step in association rule mining process

is to extract frequent itemsets and the final step is rule

generation. The most common used parameters for

data mining are support and confidence. There are two
ways two identify frequent itemsets either through

candidate generation as in Apriori [9, 10] or without

candidate generation as in pattern growth methods and

their modifications [11, 12, 13, 14, 15, 16]. Also, there

are three types of frequent itemsets; typical frequent

itemsets [9, 10], closed frequent itemsets [15, 16, 17]

and maximal frequent itemsets [11, 15, 18]. A typical

frequent itemset is any itemset with frequency above a

specific threshold. A closed frequent itemset is a

frequent itemset that doesn’t have a superset with the

same frequency. A maximal frequent itemset is a
frequent itemset which has no proper frequent

superset. Pruning the search of frequent itemsets

depends on two properties. The first property states

that if an itemset is infrequent, then all it supersets

must be infrequent. The second property is that if an

itemset is frequent, then all its subsets must be

frequent. This research proposes a new non-candidate

frequent itemsets generation procedure called Matrix

Extraction and Visualization of Frequent Itemsets

“MVEMFI”. The importance of the current research is

to represent and to visualize itemsets’ frequencies in a

naïve simple two dimension matrix notation.

MVEMFI procedure starts by constructing the matrix,

then it undergoes a few processing steps and evolves
by extracting frequent itemsets. The paper starts by

reviewing related work in section two. Section three

explains MVEMFI procedure while section four

explains the conducted experiments. The results are in

section five and the research is concluded in section

six along with suggested future work.

II. RELATED WORK
There exits many association rule mining

algorithms and this section reviews some of these

algorithms. Apriori Algorithm [9, 10] employs a

bottom-up search that enumerates every single

frequent itemset. It starts by examining the count of

single k-itemsets, then identifies frequent ones and

uses them to produce k+1-itemsets. Apriori repeats the

last two steps until no more frequent itemsets can be

found. The exponential complexity of algorithm limits

its usage to short patterns. Max-Miner [11] extracts

only the maximal frequent itemsets by generating all

the frequent itemsets using both bottom-up and top-
down traversal. After identifying maximal frequent

patterns, all frequent patterns are derived by scanning

database to determine their frequency. It uses subset

pruning for an infrequent itemset and “look ahead”

pruning for the subsets of a frequent itemset. It mines

long frequent itemsets and needs several scans to

database. Pincer-Search [12] identifies maximal

frequent itemsets and runs both bottom-up and top-

RESEARCH ARTICLE OPEN ACCESS

Maha Attia Hana Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.183-189

www.ijera.com 184 | P a g e

down searches at the same time. Both previously

mentioned properties are used to prune candidates

based on information gathered in one direction. If

some maximal frequent itemset is found in the top-

down direction, then this itemset can be used to

eliminate its subsets as they are frequent. Also, if an
infrequent itemset is found in the bottom-up direction,

then it eliminates all its supersets in the top-down

direction. The difference between Max-miner and

Pincer-Search is that Max-miner uses a heuristic that

looks ahead for the longest itemsets and reorder the

items according to their frequency, so that itemset

appears in the most candidate group. FP-tree [16, 17]

mines closed frequent itemsets. FP-growth uses a

divide-and-conquer way. It first scans dataset to get

frequent itemset and in the second scan it generates

FP-tree. Then, FP-growth starts to mine FP-tree

starting by 1-K itemset, constructing conditional
pattern base, then conditional FP-tree and mine it. FP-

max [18] is a variation of FP-tree by using maximal

frequent itemset. FP-max implements maximal

frequent itemsets tree to keep track of all maximal

frequent itemsets. FP-max reduces the number of

subset frequency test operation, thus it reduces the

search time. Eclat [14] uses TID(s) and their

intersections to determine itemsets’ frequencies. TID

are stored in a bit matrix. Eclat uses a prefix tree to

search in depth-first order. MAFIA [15] mines

maximal or closed frequent itemsets from a
transactional database using a depth-first. Mafia uses

the above two properties to prune the search along

with a third one. The third pruning method is based on

the fact that if one transaction is a subset of another

then the frequency of the former conforms to the

latter. [19] Proposed HANA algorithm that has two

steps. The first step uses TID(s) to count the frequency

of the k-itemsets by intersecting transactions and

storing the results in a matrix and then identifies the

frequent itemsets. The second step generates (k-1)-

itemsets for the frequent ones by introducing the

concept of multiplex matrices. [20] Proposed HOUI-
Mine algorithm to mine high on-shelf utility itemsets

using three tables to speed processing. OS table is

used to indicate the items on-shelf information. PTTU

table records the transaction utility of all the

transactions occurring within a time period. COSUI

table records high transaction-weighted-utility of an

itemset. The pruning strategy based on the on-shelf

utility upper bound. The filtration mechanism for

generating itemsets is also designed to prune

redundant candidate itemsets early and to

systematically check the itemsets. [21] Proposed
association rule hiding (ARH) algorithm which deals

with sensitive data. It mines the data, extracts rules,

identifies sensitive rules, and then modifies the

database to hide the transactions that support those

sensitive rules. They compared ARH results with the

k-anonymity method. They reported that ARH has

decreased the data loss and time to hide itemsets

compared with the k-anonymity method. [22]

Proposed MFIF method that finds the maximal

frequent item first by looking for transactions with

maximum number of items rather than the minimal

frequent itemset that starts by k equals one and

increases to get k+1 frequent itemsets. If the frequency
of maximal frequent itemset is greater or equal than

the support, then it is a maximal frequent itemset.

Otherwise, MFIF searches the corresponding subsets

for a maximal frequent itemset. [23] Proposed a

mining algorithm called Mining Frequent Weighed

Itemsets (FWI). FWI assign different weights to all

items and uses Weighted Itemset-Tidset tree (WIT-

trees). Then, they proposed a Diffset strategy for both

efficient computation of the weighted support of

itemsets and for mining FWI.

III. MATRIX VISUALIZATION AND

EXTRACTION OF MAXIMAL

FREQUENT ITEMSETS “MVEMFI”

PROCEDURE
The visualization of frequent itemsets in

matrix notation is shown in Fig. 1.

(a)

(b)

Maha Attia Hana Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.183-189

www.ijera.com 185 | P a g e

(c)

Fig. 1 Symbolic (a), binary (b) and decimal (c)

itemsets representation in matrix notation

The analysis of Fig. 1 reveals a set of

interesting findings. Itemsets are represented in the

matrix by their decimal values. All possible itemsets

are represented either individually, as one element in

the matrix, or by combing two elements. If the matrix

is reordered, their will be chunks of k-itemsets in

blocks. Itemsets in the last column/row are supersets

of all other items in previous column/row. In analogy,

all itemsets in the first column/row are subsets of all

other items in succeeding column/row. The itemset in

the last column and the last row is superset for any
itemset in matrix. Therefore, recognizing the relation

of two itemsets would be applied rationally to their

corresponding column/row. MVEMFI procedure

consists of two processes, Fig. 2. The first process

prepares data mining settings while the second process

identifies maximal frequent itemsets from the dataset.

Fig. 2 MVEMFI procedure

3.1 Mine Processing Preparations Process

Mine processing preparations process consists of

following four steps and the pseudo code is in Fig. 3.

Step 1: Determine the number of items and divide

number of items in almost two equal values;
No_row_items and No_column_items.

Step 2: Construct a two dimensional matrix where

number of rows and columns equal to the number of

itemsets that is generated from No_row_items and

No_column_items, respectively. Fig. 1 shows

symbolic, binary and decimal itemsets representations

in matrix notation.

Fig. 3 Pseudo code for process 1

Step 3: Prepare to reorder the itemsets’s elements in

rows and columns according to the number of items

present in the itemset. For example, the matrix in Fig.

1 is reordered as shown in Fig. 4.

Step 4: Identify the subsets and the supersets for each

itemset in the first row and the first column. The

indices of the subsets and the supersets for any

row/column are the same. So, determining the subsets

and the supersets for one row and one column is
sufficient. Moreover, if No_row_items and

No_column_items are equal, then get the subsets and

supersets for one dimension only. The results of this

step are shown in Fig. 5.

Process 1: Mine Processing Preparations

Input: number of items

Output: No_row_items, No_column_items, Frequency matrix,

Row subsets, Row supersets, Column subsets, Column

supersets

Steps:

1. No_row_items = round (No_items/2)

 No_column_items = No_items – No_row_items

2. Constrruct frequency matrix (2 ^ No_row_items, 2 ^

No_column_items)

3. Sort rows’ indices according to number of bits set to 1

 Sort columns’ indices according to number of bits set to

1

4. For each row index

 Get Row’s index subsets

 Get Row’s index supersets

 End

 If (not (No_row_items == No_column_items))

 For each row index

 Get Column’s index subsets

 Get Column’s index supersets

 End

 Else

 Column subsets = Row subsets

 Column supersets =Row supersets

 End

Maha Attia Hana Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.183-189

www.ijera.com 186 | P a g e

Fig. 4 Symbolic itemsets sorted by the number of

items

Fig. 5 Itemsets’ subsets and supersets

3.2 Maximal Frequent Itemsets Extraction

Process

Maximal frequent itemsets extraction process

consists of the following five steps and the pseudo

code is in Fig. 6.
Step 1: Read the data set and convert each transaction

itemset into decimal value. Then, for each transaction

calculate the matrix element indices and increments its

count.

Step 2: Sort the matrix according to step#3, process#1.

Step 3: Increment all subsets of each itemset in the

matrix, using the discovered supersets. This enables

the calculations of k-itemset frequency.

Step 4: Remove infrequent itemsets. An infrequent

itemset has a frequency less than the support value.

Step 5: Remove all subsets of frequent items, using the
discovered subsets and supersets in step#4, process#1.

The removal starts with subsets of frequent itemsets in

columns, then in rows as the number of columns

maybe less than those of rows.

Fig. 6 Pseudo code for process 2

For example, if the number of items is five

{a, b, c, d, e}, then items are divided into three items

{a, b, c} and two other items {d, e}. The itemsets for

{a, b, c} are represented in matrix row elements and

{d, e} are represented in matrix column elements.

Next, the Frequency matrix is constructed by initiating
No_rows = 8 and No_column = 4. In step 3, both rows

and columns values are sorted according to the

number of items present in each itemset, Fig. 7. In the

last step, the subsets and the supersets for each itemset

in a row and a column is identified. Then, step#1,

process#2 starts by reading data and converting it into

decimal number, Table 1. Next, the matrix element

index for each transaction is calculated and the

corresponding matrix element is incremented, Fig.

8(a).

Fig. 7 Sorted Symbolic itemsets representation

Table 1 Dataset Sample

T

No.
Binary Itemset

Decimal

Value

T1 1 0 1 0 0 20

T2 0 1 1 0 1 13

T3 1 1 0 0 1 25

T4 1 1 0 1 0 26

T5 1 0 1 1 0 22

T6 1 1 0 0 0 24

T7 1 0 0 0 0 16

Column index of subsets for itemsets in a row = {{}, {1}, {1},

{1,2,3}, {1,2,4}, {1,3,4}, {1,2,3,4,5,6,7} }

Column index of supersets for itemsets in a row =

{{1,2,3,4,5,6,7,8}, {5,6,8}, {5,7,8}, {6,7,8}, {8}, {8}, {8}, {} }

Row index of subsets for itemsets in a column = { {}, {1}, {1},

{1}, {1}, {1,2,3}, {1,2,4}, {1,3,4}, {1,2,5}, {1,3,5},

{1,4,5},{1,2,3,4,6,7,8}, {1,2,3,5,6,9,10}, {1,2,4,5,7,9,11},

{1,3,4,5,8,10,11}, {1,2,3,4,5,..15} }

Row index of supersets for itemsets in a column =

{{6,7,9,12,13,14,16}, {6,8,10,12,13,15,16}, {7,8,11,12,14,15,16},

{9,10,11,13,14,15,16}, {12,13,16}, {12,14,16}, {12,15,16},
{13,14,16}, {13,15,16}, {14,15,16}, {16}, {16}, {16}, {16}, {} }

Process 2: Maximal Frequent Itemsets Extraction

Input: Data set, Support, No_row_items, No_column_items,

Frequency matrix, Row subsets, Row supersets,

Column subsets, Column supersets

Output: Maximal Frequent itemsets

Steps:

1. Read Tid from Dataset

2. For each Tid

 Dec_Tid = decimal (Tid)

 Column index = floor (Dec_Itemset / (2^row_items))

 Row index = Dec_Itemset % (2^row_items)

 Frequency_matrix(Row index, Column index)++

 End

3. For each row

 For each column

 Remove Frequency_matrix(row,column) < support

 End

 End

4. Remove all subsets of frequent itemsets in

Frequency_matrix(row,column)

Maha Attia Hana Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.183-189

www.ijera.com 187 | P a g e

T8 1 1 1 1 0 30

T9 0 0 0 1 1 3

T10 0 0 1 1 1 7

T11 0 0 0 1 1 3

T12 0 0 1 1 1 7

T13 0 0 0 0 1 1

For example, in the set of transactions {AC,

CE, ABDE}, their decimal values are {5, 20, 27}. The

matrix indices for each one is {(5,0), (4,2), (3,3)} and

their element frequency in matrix is incremented by

one. In step 2, Frequency_matrix is sorted, Fig. 8(b).

(a) (b)

Fig. 8 Frequency_matrix (a) before sorting (b) after
sorting

In step 3, all subsets of each itemset in

Frequency_matrix are incremented, using the

discovered row’s supersets and column’s supersets.

Fig. 9 shows Frequency_matrix after updates.

(a) row frequency updates (b) column

frequency updates

Fig. 9 Frequency_matrix after incrementing all

itemsets’ subsets

Next, infrequent itemsets are removed using a
support value equals to one, Fig. 10. Finally, all

frequent subsets of a frequent super itemset are

removed starting by column then row, Fig. 11. At the

last step, the final maximal frequent itemsets are

identified along with their frequency. Maximal

frequent itemsets are {abc, ad, cd, bde}

Fig. 10 Frequent itemsets

(a) (b)

Fig. 11 Subsets removal of frequent itemsets in (a)

Column and (b) Row

IV. EXPERIMENT
Three data sets are used to examine this work

which has been used in [19]. Three datasets {A, B, C}

are generated synthetically. The number of items in

each set is 24 and the average number of items

presence per transaction per data set is {2, 7 and 13}

with 2000 transactions per data set.

V. RESULTS
Table 2 and Fig. 12 illustrate the processing

time of MVEMFI algorithm for the three datasets for

different transactions. Table 3 shows the mean and the

standard deviation for each dataset separately and for

the three datasets. MVEMFI is characterized by

having almost a constant time of processing with mean

value equals to 715.57 and standard deviation of 5.03.

Table 2 MVEMFI procedure processing time

Transaction

No.

Dataset

A

Dataset

B

Dataset

C

50 696.80 702.18 706.06
100 699.24 702.70 710.45
150 702.19 703.36 710.94

200 705.40 707.64 711.32
250 705.43 708.63 724.63
500 717.31 725.26 732.60
1000 723.29 733.80 733.09
2000 735.97 738.33 736.96

650.00

700.00

750.00

50 100 150 200 250 500 1000 2000

Transaction No.

C

P

U

T

i

m

e

Dataset A Dataset B Dataset C

Fig. 12 CPU time for MVEMFI procedure

Table 3 Statistical measures for MVEMFI procedure

Statistics
Dataset

A

Dataset

B

Dataset

C

Dataset

A, B

&C Mean 710.71 715.24 720.76 715.57

Standard

Deviation
13.59 14.87 12.41 5.03

Maha Attia Hana Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.183-189

www.ijera.com 188 | P a g e

Table 4 and Fig. 13 show the comparison between

MVEMFI procedure and HANA algorithm in terms of

the processing time. It is noticeable that HANA

algorithm outperformed MVEMFI in case of small

transaction number and low density datasets. On the

other hand, MVEMFI procedure outperformed HANA
algorithm in case of high density datasets even in

small number of transactions.

Table 4 HANA algorithm processing time

Transaction

No.

Dataset

A

Dataset

B

Dataset

C
50 0.14 2.11 74

100 0.34 9.09 1444

150 0.61 25 7740

200 0.97 54 139660

250 1.34 87 373395

VI. CONCLUSION AND FUTURE WORK

This paper proposes MVEMFI procedure to

discover frequent items without candidate generation

using matrix notation. It can inferred that the variation

in processing times for all runs is small regardless of

number of transaction or the density of the items in the
datasets which is better than a solution with high

variability in the processing time.

0

100

200

300

400

500

600

700

800
C

P

U

T

i

m

e

50 100 150 200 250

Transaction No.

Dataset A

HANA MVEMFI

(a)

0

100

200

300

400

500

600

700

800
C

P

U

T

i

m

e

50 100 150 200 250

Transaction No.

Dataset B

HANA MVEMFI

(b)

0

50000

100000

150000

200000

250000

300000

350000

400000

C

P

U

T

i

m

e

50 100 150 200 250

Transaction No.

Dataset C

HANA MVEMFI

(c)

Fig. 13 Comparison between MVEMFI procedure and
HANA algorithm (a) dataset A (b) dataset B (c)

dataset C

Also, MVEMFI is characterized by using

matrix notation which is a simple well known data

type. HANA and MVEMFI algorithms interchange the

best performance as HANA uses transaction

identifiers to extract frequent itemsets which are not

the case with MVEMFI. HANA algorithm extracts all

frequent itemsets while MVEMFI extracts maximal

frequent itemsets. This explains why HANA algorithm

outperformed MVEMFI in case of datasets with fewer
items per transaction as well as when the number of

transactions is few. There are several advantages of

the MVEMFI algorithm. The above two characteristics

are also two advantages that covers predictability,

stability and simplicity. The next advantage is that it

divides the number of items into two portions which

limits the explosive nature of itemsets generation.

Also, three of processing steps when identified for one

matrix element are applied to the containing

column/row. Those steps are reorder itemsets’

elements, identify subsets and supersets. The last

advantage is that the generation of full frequent
itemsets is minimized as it is performed after the

removal of infrequent ones.

Future work may include adapting MVEMFI

procedure to extract typical or closed frequent

itemsets. Further work may include hardwire

MVEMFI procedure and upon successful

performance, it maybe a solution for stream data

mining. Another suggestion is to represent frequent

itemsets by higher matrix dimension and access the

cost and the benefit of adding more dimensions to the

matrix.

References
[1] E. Ngai, L. Xiu, and D. Chau, Application of

data mining techniques in customer

relationship management: A literature review

and classification, Expert Systems with

Applications, 36(2), 2009, 2592–2602.

[2] M. Mak, G. Ho, and S. Ting, A financial data

Maha Attia Hana Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.183-189

www.ijera.com 189 | P a g e

mining model for extracting customer

behavior, International Journal of

Engineering Business Management, Wai

Hung Ip (Ed.), ISBN: 1847-9790, InTech,

DOI:10.5772/50937. Available from:

http://www.intechopen.com/journals/internati
onal_journal_of_engineering_business_mana

gement/a-financial-data-mining-model-for-

extracting-customer-behavior

[3] Q. Zhu, L. Guo, J., N. Xu, and W. Li,

Research of tax inspection cases – choice

based on association rules in data mining”,

Proceedings of the Eighth International IEEE

Conference on Machine Learning and

Cybernetics, Hebei, China, 2009, 2625 -

2628.

[4] W. Cheng, X. Ji, C. Han, and J. Xi, The

mining method of the road traffic illegal data
based on rough sets and association rules”,

IEEE International Conference on Intelligent

Computation Technology and Automation,

Changsha, China, 2010, 856 - 859.

[5] L. Li, and M. Zhang, The Strategy of Mining

Association Rule Based on Cloud

Computing, International Conference on

Business Computing and Global

Informatization (BCGIN), Shanghai, China,

2011, 475-478.

[6] J. Li, P. Roy, S. Khan, L. Wang, and Y. Bai,
Data mining using clouds: an experimental

implementation of Apriori over MapReduce.

The 12th IEEE International Conference on

Scalable Computing and Communications

(ScalCom 2012), Changzhou, China, 2012.

[7] V. Kumar, and A. Chadha, Mining

association rules in student’s assessment data,

International Journal of Computer Science

Issues, 9(5), 2012, 211-216.

[8] R. Prasad, and D. Babu, Mining association

rules with static and dynamic behavior of

learner in the Internet, International Journal
of Computer Applications, 37(4), 2012, 26-

30.

[9] R. Agrawal, T. Imielinski, and A. Swami,

Database Mining: A Performance

Perspective, IEEE Transactions on

Knowledge and Data Engineering, 5(6),

1993, 914-925.

[10] R. Agrawal, and R. Srikant, Fast Algorithms

for Mining Association Rules, International

Confeence Very Large Data Bases, Santiago,

Chile, 1994, 487-499.
[11] R. Bayardo, Efficiently mining long patterns

from databases, ACM Sigmod Record, 27(2),

1998, 85-93.

[12] D. Lin, and Z. Kedem, Pincer-search: a new

algorithm for discovering the maximum

frequent set. In Advances in Database

Technology — EDBT'98 · Lecture Notes in

Computer Science, 1377, 1998, 103-119.

[13] G. Grahne, and J. Zhu, High performance

mining of maximal frequent itemsets”, Proc.

SIAM Int’l Conf. High Performance Data

Mining, CA, USA, 2003, 135−143.

[14] C. Borgelt, Efficient implementations of
Apriori and Eclat. Proceedings of the IEEE

ICDM Workshop on Frequent Itemset Mining

Implementations FIMI 03, Florida, USA,

2003.

[15] D. Burdick, M. Calimlim, J. Flannick, J.

Gehrke, and T. Yiu, MAFIA: a maximal

frequent itemset algorithm, IEEE

Transactions on Knowledge and Data

Engineering, 17(11), 2005, 1490–1504.

[16] J. Han, J. Pei, and Y. Yin, Mining frequent

patterns without candidate generation,

Proceeding of the ACM SIGMOD
International Conference on Management of

Data (SIGMOD’00), TX, USA, 2000, 1-12.

[17] J. Han, J. Pei, Y. Yin, and R. Mao, Mining

frequent patterns without candidate

generation: a frequent-pattern tree approach,

Data Mining and Knowledge Discovery, 8,

2004, 53–87.

[18] G. Grahne, and J. Zhu, Efficiently using

prefix-trees in mining frequent itemsets,

Proceedings of the IEEE ICDM Workshop on

Frequent Itemset Mining Implementations,
Melbourne, Florida, USA, 2003, 98-115.

[19] M. Hana, HANA algorithm: a novel algorithm

for frequent itemsets generation,

International Journal of Intelligent

Computing and Information Science, 7(2),

2007, 41-53.

[20] G. Lan, G. C., T. Hong, and V. Tseng, A

three-scan mining algorithm for high on-shelf

utility itemsets, ACIIDS'10 Proceedings of

the Second international conference on

Intelligent information and database systems:

Part II, 2010, 351-358.
[21] R. Sugumar, A. Rengarajan, and

M.Vijayanand, Extending K-anonymity to

privacy preserving data mining using

association rule hiding algorithm,

International Journal of Advanced Research

in Computer Science and Software

Engineering, 2(6), 2012. Available online at:

www.ijarcsse.com.

[22] H. Jnanamurthy, H. Vishesh, V. Jain, P.

Kumar, and R. Pai, Top down approach to

find maximal frequent itemsets using subset
creation, Computer science & information

technology, 2(4), 2012, 445-452.

[23] Vo, B., Coenen, F., and Le, B, A new method

for mining frequent weighted itemsets based

on WIT-trees, Expert Systems with

Applications, 40(4), 2013, 1256-1264.

