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ABSTRACT 
 The field of face recognition has been 

explored a lot and the work is still going on. In 

this paper we have proposed a novel approach 

for face recognition using moments. Four feature 

extraction methods have been used: Hu 

moments, Zernike moments, Legendre moments 

and Cumulants. Hu moments include a set of 

seven moments which are derived from the 

conventional geometric moments. These 

moments are invariant against rotation, scaling 

and translation. Legendre and Zernike moments 

have an orthogonal basis set and can be used to 

represent an image with minimum amount of 

information redundancy. These are based on the 

theory of orthogonal polynomials and can be 

used to recover an image from moment 

invariants. Cumulants are sensitive to image 

details and therefore are suitable for 

representing the image features. For feature 

extraction, moments of different orders are 

calculated which form the feature vectors. The 

feature vectors obtained are stored in the 

database and are compared using three different 

classifiers. In case of cumulants, we have 

calculated the bispectrum of images and 

compressed it using wavelets. 

 

Keywords – Bispectrum, Biwavelant, Face 

Recognition, Moments, Wavelets,  

 

I. INTRODUCTION 
 A face recognition system can be defined 

as a computer application for automatically 

identifying or verifying a person from a digital 

image or a video frame from a video source. The 

most convenient way to do this is by comparing 

selected facial features from the image and a facial 

database. The face recognition approaches can be 

classified as: Holistic approach, Region based 

approach and Hybrid and multimodal approach. 

Holistic approach involves matching of faces on the 

basis of entire face. This makes it sensitive to face 

alignment. Region based approaches work on the 

principle of applying different processing methods 

to distinct face regions. They filter out those regions 

that are mostly affected by expression changes or 

spurious elements. 

Hybrid and multimodal approaches involve greater 

architectural complexity and hence provide highest 

accuracy. In hybrid approaches, different 

approaches like  

 

holistic or region based are combined or are used to 

perform matching separately and then their results 

are fused.   

 There are many variations in the facial 

images that need to be considered for face 

recognition. These are due to changes in 

illumination, direction of viewing, facial expression 

and aging etc. Also, the face images have similar 

geometrical features which make discriminating one 

face from the other in the database a challenging 

task. All these factors make it difficult to represent 

face images with distinct feature vectors that are 

invariant to transformation. 

 In this paper, feature extraction techniques 

using moments are considered. In image processing, 

computer vision and related fields, an image 

moment is a particular weighted average (moment) 

of the image pixels' intensities, or a function of such 

moments, generally chosen to have some attractive 

property or interpretation. These are useful to 

describe objects after segmentation. Simple 

properties of the image which can be found via 

image moments include area (or total intensity), its 

centroid and information about its orientation. 

Moments and their functions have been utilized as 

pattern features in a number of applications. These 

features can provide global information about the 

image. Cumulants and wavelets (wavelants) could 

result in easy distinction among the various faces.    

Section 2 mentions the literature review, Section 3 

discusses about the databases and the normalization 

of images, section 4 discusses about the features 

extraction and section 5 gives the classification. 

Section 6 is for results and section 7 is for 

conclusion and future scope. 

 

II. LITERATURE SURVEY  

 A lot of work has been done in the field of 

face recognition using Linear Discriminant 

Analysis. In [1], the author has proposed a novel 

Bayesian logistic discriminant (BLD) model which 

addresses normality and heteroscedasticity (problem 

in which the LDA algorithm assumes the sample 

vectors of each class which are generated from 

underlying multivariate normal distributions of 

common covariance matrix with different means). 

Chao-Kuei Hsieh, Shang-Hong Lai and Yung-

Chang Chen [2], proposed face recognition using an 

optical flow based approach. A single 2-D face 

image with facial expression is used. Information 

from the computed intrapersonal optical flow and 
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the synthesized face image are combined in a 

probabilistic framework for face recognition. 

However, the proposed integrated system is more 

computationally costly. Color Space Normalization 

to enhance the Discriminating Power of Color 

Spaces for Face Recognition was used in [3]. Here 

the authors explain the concept of color space 

normalization (CSN) and two CSN techniques for 

enhancing the discriminating power of color spaces 

for face recognition.  

 In [4], the author has combined Gabor 

features within the scope of diffusion-distance 

calculation. This strategy starts from the Gabor 

filtering that consists of three scales and six 

orientations. It is followed by the calculation of 

diffusion distance based on a Bayesian model. The 

recognition rate of the proposed algorithm reduces 

while handling the occlusions due to dramatical 

pose changes. Zhen Lei, Shengcai Liao, Matti 

Pietikäinen and Stan Z. Li [5], proposed a face 

representation and recognition approach by 

exploring information jointly in image space, scale 

and orientation domains.  

 In [6], Zhiming Liu and Chengjun Liu 

present a novel face recognition method by means 

of fusing color, local spatial and global frequency 

information. Specifically, the proposed method 

fuses the multiple features derived from a hybrid 

color space, the Gabor image representation, the 

local binary patterns (LBP) and the discrete cosine 

transform (DCT) of the input image. 

 Weiwen Zou and Pong C. Yuen [7], 

proposed multi-image face recognition, instead of 

using a single still-image-based approach in order to 

handle complex face image variations in face 

recognition.  

 Xiaoyang Tan and Bill Triggs [8] focused 

mainly on robustness to lighting variations. For this 

purpose, the author has combined robust 

illumination normalization, local texture-based face 

representations, distance transform based matching, 

kernel based feature extraction and multiple feature 

fusion. Richard M. Jiang, Danny Crookes and Nie 

Luo [9], concentrated on feature selection process. 

In the proposed scheme, global harmonic features 

instead of disconnected pixels are used, which 

represent information about 2-D spatial structures. 

Baochang Zhang, Yongsheng Gao, Sanqiang Zhao 

and Jianzhuang Liu in [10] worked on high-order 

local pattern descriptor, local derivative pattern 

(LDP), for face recognition.   

 Gui-Fu Lu, Zhong Lin and Zhong Jin [11], 

proposed a discriminant locality preserving 

projections based on maximum margin criterion 

(DLPP/MMC). DLPP/MMC seeks to maximize the 

difference, rather than the ratio, between the locality 

preserving between class scatter and locality 

preserving within class scatter. This method is a 

little rough and can be improved. In [12], Saeed 

Dabbaghchian, Masoumeh P. Ghaemmaghami and 

Aliaghagolzadeh proposed a new category of 

coefficient selection approach in the Discrete Cosine 

Transform domain for face recognition. The 

approach called Discrimination power analysis 

(DPA) is a statistical analysis based on the DCT 

coefficients properties and discrimination concept. 

In [13], Miao Cheng, Bin Fang, Yuan Yan Tang, 

Taiping Zhang and Jing Wen devised a supervised 

learning method, called local discriminant subspace 

embedding (LDSE), to extract discriminative 

features for face recognition. Imran Naseem, 

Roberto Togneri and Mohammed Bennamoun [14], 

in their research, proposed a linear Regression based 

classification (LRC) for the problem of face 

identification. Wen-Chung Kao, Ming-Chaihsu and 

Yueh-Yiing Yang [15] concentrated on recognizing 

human faces in various lighting conditions.  

 Shuicheng Yan, Huan Wang, Jianzhuang 

Liu, Xiaoou Tang and Thomas S. Huang [16], in 

their paper worked on providing solution to the face 

recognition problem under the scenarios with spatial 

misalignments and/or image occlusions. A 

comprehensive system was presented by Ritwik 

Kumar, Angelos Barmpoutis, Arunava Banerjee and 

Baba C. Vemuri [17], for capturing the reflectance 

properties and shape of the human faces using 

Tensor Splines. But the method requires at least nine 

input images with known illumination directions. 

Also, accurate recovery of Apparent Bidirectional 

Reflectance Distribution functions ABRDF field 

from a single image with cast shadows and 

specularities with no lighting information remains a 

challenge. In [18], Tae-Kyun Kim, Josef Kittler and 

Roberto Cipolla have addressed the problem of face 

recognition by matching image sets. Each set of face 

images is represented by a subspace (or linear 

manifold) and recognition is carried out by subspace 

to subspace matching.  

 Jiwen Lu and Yap-Peng Tan propose in 

their paper [19] a parametric regularized locality 

preserving projections (LPP) method for face 

recognition. The proposed method is designed to 

regulate LPP features corresponding to small and 

zero eigen values, i.e., the noise space and null 

space, and exploit the discriminant information from 

the whole space. In [20], a semi-supervised 

dimensionality reduction method called sparsity 

preserving discriminant analysis (SPDA) was 

developed by Lishan Qiao, Songcan Chen and 

Xiaoyang Tan. This algorithm models the ‘‘locality” 

and improves the performance of typical LDA.     

Sang-Ki Kim, Youn Jung Park, Kar-Ann Toh and 

Sangyoun Lee [21], proposed a feature extraction 

algorithm called SVM-based discriminant analysis 

(SVM-DA). Through his approach, the author aims 

at overcoming the limitations of LDA. Bidirectional 

principal component analysis (BDPCA) has been 

used for face recognition in [22] by Chuan-Xian 
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Ren and Dao-Qing Dai attempt to solve the small 

sample size problem of PCA.       

In [23], Yong Wang and Yi Wu used Complete 

Neighborhood preserving embedding (CNPE) for 

the purpose of face recognition. CNPE aims at 

removing the singularity problem of eigen matrix 

suffered by Neighborhood preserving embedding 

(NPE).  

 

III. DATABASE AND 

NORMALIZATION  
In the presented work, standard ORL database is 

used. It consists of images of 40 subjects. There are 

10 images of each subject in different orientations. 

This makes a total of 400 images. These images are 

in gray scale and consist of pixel values ranging 

from 0 to 255. The size of each image is 92 X 112 

pixels. The subjects in the database are shown in Fig 

1. 

 
Figure 1: Subjects of the ORL database 

 

The orientations of each subject are like: 

 
Figure 2: Different orientations of a particular 

subject in ORL database 

 

Before proceeding with the method, image 

normalization is done. For normalizing an image, its 

pixel values are divided by the maximum pixel 

value contained in that image.  

 

IV. FEATURE EXTRACTION 
 In image processing, feature extraction is a 

special form of dimensionality reduction. It involves 

simplifying the amount of resources required to 

describe a large set of data accurately. In the 

presented work, features are extracted from images 

using four methods: Hu moments, Zernike 

moments, Legendre moments and cumulants.  

 

4.1 Hu moments 

 Hu moments have been derived from the 

geometric moments. Geometric moments are also 

known as regular or raw moments. These are 

nonnegative integers, which can be computed by 

equation (1): 

 

( , )p q
pqm x y f x y dxdy

 

 

  
              (1) 

where p,q = 0,1,2,3…… 

 

In equation (1), mpq is the moment of order (p+q) 

and f(x,y) is a two dimensional, real and continuous 

density function of which the moment has to be 

calculated. For digital image we need a discrete 

version of the above equation represented as in 

equation (2): 

1 1

( , )
M N

p q
pq

x y

m x y f x y
 


                   (2) 

Here, M×N is the size of the image. For the 

database used in the presented work, the values of 

M and N will be 92 and 112 respectively. 
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The central moment of order (p+q) of the image is 

defined by equation (3): 

( ) ( ) ( , )p q

pq x x y y f x y dxdy
 

 

   
              

                                                                  

(3) 

Here, x  and y  are the centroids of the image and 

are defined by: 

1,0

0,0

m
x

m
  and 

0,1

0,0

m
y

m


                                 

(4) 

Now, if f(x, y) is the density function for a digital 

image, equation (3) in discrete format becomes: 

1 1

( ) ( ) ( , )
M N

p q

pq

x y

x x y y f x y
 

  
 

                                                             

(5) 

 The above defined central moments are 

origin independent and therefore they are translation 

invariant. But these moments are not invariant to 

scale or rotation in their original form. 

Moments of order two or more can be constructed to 

be invariant to both translation and scale. Scale 

invariance can be achieved by dividing the 

corresponding central moment by the scaled energy 

of the original i.e. the 00
th

 moment as shown in 

equation (6): 

1
2

ij

ij i j

oo






 
 

 



                                               (6)

 

 

                                                

Hu, in 1962 introduced ‘Hu moments’ which are 

invariant to translation, scale as well as rotation. Hu 

moments are a set of seven moments which are 

nonlinear combinations of normalized central 

moments up to order three. The seven Hu moments 

are shown by equation (7): 
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 The first moment, M1, is analogous to 

the moment of inertia around the image's centroid, 

where the pixels' intensities are equivalent to 

physical density. The last one, M7, is skew 

invariance. It enables it to distinguish mirror images 

of otherwise identical images. In our experiment 

conducted using Hu moments, all the seven Hu 

moments are calculated for each facial image.  

Table 1 consists of 10 feature vectors for 10 

orientations of subject 2 in the database.  

Table 1: Hu moments of subject 2 

  

Image no M1 M2 M3 M4 M5 M6 M7 

2-1 0.0012 1.1145 1.7522 2.7004 1.0397 2.354 -2.9259 

2-2 0.0012 0.9822 1.6067 1.7262 -0.6716 1.909 0.1064 

2-3 0.0012 0.9967 2.451 3.2528 -2.0731 2.449 -0.4848 

2-4 0.0012 1.0766 1.7206 1.4823 -1.1005 0.287 0.4849 

2-5 0.0012 0.8636 0.2311 1.3562 -0.2185 -4.34 -0.0452 

2-6 0.0012 0.9797 2.0262 1.8414 -2.2178 -1.646 1.6047 

2-7 0.0012 1.1682 3.7579 4.4563 5.4096 13.215 1.0396 

2-8 0.0012 1.0005 2.2362 2.5456 0.842 5.723 0.0691 

2-9 0.0012 1.5421 2.3615 2.0594 -3.0265 -3.042 2.1438 

2-10 0.0012 0.9115 2.5089 2.6352 -2.7682 1.922 0.2446 

In the above table, we see that the first moment i.e. 

M1 is same for all the orientations of the subject. Also, 

the variations in the lower order moments are less but 

in the higher order moments the variations are high. In 

M5, M6 and M7, there are certain values which are 

negative also and hence the variation is too large. This 

affects the performance of the classifier and results in 

poor classification. The feature vector is formed using 

the calculated moment values which makes the length 

of the feature vector seven. 

4.2 Zernike moments 
Zernike in 1934 introduced a set of complex 

polynomials called the Zernike polynomials.  These 

polynomials form a complete orthogonal basis set 

defined on the interior of the unit disc, i.e., x
2
 + y

2
 = 

1. Let us denote the set of these polynomials by 

Vnm(x,y). In polar coordinates, these are then 

represented as in equation (8): 

http://en.wikipedia.org/wiki/Moment_of_inertia
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       , , expnm nm nmV x y V r R r jm  
                                               
                                                                                 

(8) 

Where: 

‘n’ is positive integer or zero 

‘m’ is positive and negative integer subject to       

constraint  ( n-│m│) is even and │m│≤ n  

‘r’ is length of vector from origin to ( x , y) pixel  

‘θ’ is angle between vector ρ and x axis in counter 

clockwise direction 

In the above equation, Rmn is the Radial 

polynomial. It is orthogonal and is defined as in 

equation (9): 

 
    /2 2
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1 !

! ! !
2 2
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n s r
R r
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

 


    
    

   



 

(9) 

It is to be noted that  n m nmR r       R ( r)  . 

 Complex Zernike moments are 

constructed using the set of Zernike polynomials. 

Zernike moments are the projection of the image 

density function on these orthogonal basis 

functions. The two dimensional Zernike moment 

for a continuous image function f (x, y) that 

disappears outside the unit circle is defined as in 

equation (10): 

 *

unit disk

1
( , ) ,nm nm

n
Z f x y V x y dxdy




      

(10) 

Since in our case, the image is digital, so the 

integrals are replaced by summations as shown in 

equation (11): 

   *1
, ,nm nm

x y

n
A f x y V x y




 

 

(11) 

Here, 
2 2 1x y   

To calculate the Zernike moments of a particular 

image, we first take the centre of image as the 

origin and map the region of interest to the range of 

unit disc. Those image pixels which do not fall 

inside the unit disc are not used for computation. 

Thereafter, the image coordinates are described in 

terms of the length of the vector from the origin, 

the angle from the axis to the vector etc.  

 In the experiment conducted by us, 

Zernike moments of different orders (2 to 8) are 

calculated.  

Table 2 consists of 10 feature vectors for 10 

orientations of subject 2 in the database. 

 

Table 2: Zernike moments of subject 2 

 

Image no Z20 Z31 Z42 Z40 Z51 Z53 Z62 

2-1 -1.102 -6.4727 -1.3869 -7.4029 -3.2025 3.3126 -0.4755 

2-2 -1.099 -6.6799 -1.1644 -7.2521 -3.5483 2.2785 0.078 

2-3 -1.0975 -6.825 -1.3694 -7.1614 -3.6634 2.586 -0.0683 

2-4 -1.0854 -6.7228 -1.2138 -7.1546 -3.5915 2.2853 0.046 

2-5 -1.1187 -6.7846 -0.9088 -7.494 -3.6191 2.7186 0.4117 

2-6 -1.1037 -6.9002 -1.3914 -7.3231 -3.8162 2.0686 -0.2327 

2-7 -1.1259 -7.0017 -2.4854 -7.3039 -3.4261 2.067 -1.2901 

2-8 -1.1072 -7.0425 -1.7104 -7.2503 -3.7064 2.4051 -0.3873 

2-9 -1.1033 -7.0592 -1.9559 -7.0575 -3.772 1.2888 -0.687 

2-10 -1.142 -7.1451 -1.7801 -7.4172 -3.7097 2.1011 -0.3757 

 

 The results using Zernike moments are 

better than those using Hu moments. This is 

because we can see in the table above that the 

variations in the Zernike moments are less as 

compared to those in the Hu moments. Here again, 

the variations in lower order moments are less but 

those in higher order moments are large. We also 

calculated moments of order higher than 8 but they 

only degraded the performance of the classifier. 

The feature vector is formed using these calculated 

moments. The size of the feature vector is 7.  

 

4.3 Legendre Moments 
Legendre moments were derived from Legendre 

polynomials as kernel function. Legendre 

polynomials were first proposed by Teague. These 

are orthogonal moments which can represent an  

 

image with minimum information redundancy. 

Thus the moments represent the independent 

characteristics of an image.  

 

The two-dimensional Legendre moments of order 

(p+q), are defined as in equation (12):

   
   

1 1

1 1

2 1 2 1
( , )

4
pq p q

p q
L P x P y f x y dxdy

 

 
  

                                                                             

(12) 

where p,q = 0,1,2,3…….∞ and x,y   [-1,1]. 

Pp and Pq are Legendre polynomials and f(x, y) is 

the continuous image function. These Legendre 

polynomials define a complete orthogonal basis set 

over the interval [-1, 1]. In order to maintain 

orthogonality in the moments as well, the image 
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function is also defined over the same interval i.e. 

[-1, 1]. The Legendre polynomial of order ‘n’ is 

defined as in equation (13): 

   
 

2

0

!1
1

2
! ! !

2 2

kn n k

n n
k

n k x
P x

n k n k
k





 
  

  
     

   
     



  

(13) 

In the above definition, (n-k) should be even. Now, 

the Legendre moments for a discrete image 

consisting of pixels MN with intensity function 

f(i, j) are defined as in equation (14):  

     
1 1

0 0

,
M N

pq pq p i q j

i j

L P x P y f i j
 

 

 
         

(14) 

where pq  is called the normalizing constant and 

is defined as in equation (15): 

  2 1 2 1
pq

p q

MN


 


  

                       (15) 

Where,  0 1P x  and  1P x x . 

The image is scaled in the region [-1, 1] since the 

definition of Legendre polynomials exists in this 

region only. So, xi and yj can be normalized as in 

equation (16): 

 
2

1
1

i

i
x

M
 


  

and   
 

2
1

1
j

j
y

N
 


     

(16) 

 Legendre moments are orthogonal 

moments and can be used to represent an image 

with minimum redundancy.  

In the experiment conducted using Legendre 

moments, moments of different orders (2 to 4) are 

calculated. Table 3 shows the values of Legendre 

moments calculated for subject 2 in the database. 

 

 

 

Table 3: Legendre moments subject 2 

 

Ima

ge 

no 

L02 L20 L11 L21 L12 L30 L03 L22 L40 L04 L31 L13 

2-1 -233.06 -234.63 3.79 -0.42 5.59 12.5533 19.38 368.88 273.13 279.06 -4.08 2.32 

2-2 -230.32 -239.42 -2.10 -13.65 4.43 10.4496 14.48 364.07 277.42 277.39 0.632 0.50 

2-3 -236.67 -242.65 0.74 -1.77 5.21 12.2524 18.89 376.32 281.02 284.91 -2.59 0.96 

2-4 -226.34 -236.17 -2.81 -13.22 1.64 11.1439 15.09 355.67 273.73 277.14 1.585 0.18 

2-5 -234.10 -240.16 0.74 -9.22 5.77 12.5979 9.798 365.07 281.92 278.91 -2.87 1.59 

2-6 -228.53 -235.15 -5.08 -23.25 3.69 9.8463 17.82 353.84 281.71 276.22 3.230 -0.11 

2-7 -246.27 -250.07 1.91 8.76 5.21 14.7457 27.45 387.81 296.92 307.27 -1.36 3.082 

2-8 -237.68 -242.04 0.33 0.23 3.06 13.5121 22.09 375.32 283.58 290.96 -0.79 2.924 

2-9 -235.63 -251.38 -5.90 -13.74 9.56 8.7386 24.65 377.40 295.51 299.23 4.193 -0.67 

2-10 -250.66 -252.53 1.08 2.03 8.07 14.0975 23.26 389.54 304.00 305.08 -1.71 2.035 

 

 The results using Legendre moments are 

better than those using Hu moments and 

comparable to those of Zernike moments. We can 

see in the table above that the variations are less. 

Here again, the variations in lower order moments 

are less but those in higher order moments are 

large. The variations in higher order moments were 

large which degraded the performance of the 

classifier. Hence, for the construction of feature 

vectors we have calculated only lower order 

moments (up to four). The feature vector is formed 

using these calculated moments. The size of the 

feature vector is 12. 

 

4.4 Cumulants 
 Cumulants are quantities that are similar 

to moments and can be used to extract the inherent 

features of images. Cumulants can extract features 

which are otherwise very difficult to extract. 

  

 

 

Simple moments are used to derive cumulants. The 

r
th

 moment of a real valued continuous random 

variable X with probability density function f(x) can 

be defined as shown in equation (17):  

   r r

r E X x f x dx




  
                   

(17) 

where r is a finite integer i.e. r = 0,1, . . . . 

All the moments can be represented with a single 

expression if the moment generating function has a 

Taylor expansion about the origin which is defined 

as in equation (18): 

     
0

1 ........ / ! ..... / !X r r r

r

r

M E e E X X r r    




      

                                                                            

(18) 

 The r
th

 derivative is the r
th

 moment of M at 

the origin.  

Similarly, the cumulants represented as 
r  are the 

coefficients of the Taylor expansion of the 
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cumulants generating function about the origin 

defined as in equation (19):

     log / !r

r

r

K M r    
              (19)

 

 The second and third order cumulants of a 

zero-mean stationary process u (n) are defined as in 

equation (20): 

      2 E u n u n     

        3 1 2 1 2, E u n u n u n      
   

(20) 

 The first-order cumulant of a stationary 

process is the mean of the process and the second 

order cumulant is its variance. The higher-order 

cumulants are equivalent to the central moments; 

they are invariant to the mean shift and hence 

defined under the assumption of zero mean.  

4.4.1 Polyspectra 

 The k
th

 order polyspectrum or the k
th

 order 

cumulants spectrum is the Fourier transform of the 

corresponding cumulants.  

A polyspectrum exists when the corresponding k
th

 

order cumulants are absolutely summable. Special 

cases of the k
th

 order polyspectrum are the power 

spectrum, bispectrum and the trispectrum [24]. 

For k = 2, we have the ordinary power spectrum 

defined by: 

     
1

2 1 2 1 1 1expC j


   




 
           

(21) 

For k = 3, we have the bispectrum, defined by: 

     
1 2

3 1 2 3 1 2 1 1 2 2, , expC j
 

       
 

 

     

                                                              

(22) 

 While the power spectrum is real-valued, 

bispectrum, and other higher order polyspectra are 

complex in nature.     

 For this experiment using cumulants, we 

first find the third order cumulant of the image and 

then take its Fourier transform to get the 

bispectrum. On calculating the bispectrum of the 

different facial images, we find that the patterns 

obtained are similar for the images of the same 

person (in different orientations) and different for 

the images of different persons. Few orientations of 

subject 1 are shown in Fig 3: 

 

 
Figure 3: Four orientations of subject 1 

 

Fig 4 shows the bispectrum patterns of the subject 

in Fig 3.   
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Figure 4: Bispectrum patterns of some orientations 

of subject 1 

 

 All the above patterns are similar to each 

other since they belong to the images of same 

person with different orientations. Fig 6 shows the 

bispectrum patterns of subject 4 in Fig 5. 
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Figure 5: Four orientations of subject 4 
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Figure 6: Bispectrum patterns of some orientations 

of subject 4 

 

Again we notice that all the above patterns are 

similar to each other since they belong to the 

images of same person with different orientations. 

Also, the patterns of subject 1 are different from 

those of subject 4, which shows that they can be 

classified easily.  

To ensure that the bispectrum patterns for all the 

subjects are different, we present below one more 

example. 

 

 
Figure 7: Four orientations of subject 10 

 

Fig 8 shows the bispectrum patterns of the 

orientations of subject shown in Fig 7. 
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Figure 8: Bispectrum patterns of some orientations 

of subject 10 

 

Again we see that the orientation patterns of 

subject 10 are different both from subject 1 and 

subject 4. Hence, we can conclude that these 

patterns of different orientations of same subjects 

are similar while those of different subjects are 

different. This fact can be used to classify the 

different subjects. For classification, we will form 

the biwavelant of the above patterns. 

 

4.4.2  Biwavelant 

For using bispectra for face recognition, the 

redundant information i.e. the high frequency 

components have to be removed and only the low 

pass information which corresponds to the 

significant features are retained. The two 

dimensional bispectrum matrix is converted into 

one dimensional matrix by concatenating the rows 

horizontally. The frequency response is given as: 
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Figure 9: One dimensional frequency response of 

bispectrum 

 

 The frequency response above consists of 

very large number of values. To reduce the amount 

of computation, we try to find out its envelope (by 

removing the high frequency components). For 

this, we need to carry out low pass filtering which 

can be done using wavelets. Smoothing filters can 

also be used but they are not able to protect the 

precious details while removing the high pass 

information.   

 Wavelet transform was explained in [25] 

and [26]. It is the integral transform defined as in 

equation (23). 

   
1

,f

x b
W a b f x dx

aa
 





 
  

 


        

(23)

 

where f(x) is the signal being transformed and 

 x  is the ‘analyzing wavelet’  x  satisfies the 

admissibility condition  
2 d

x





  which is 

equivalent to   0t dt   i.e. a wavelet has zero 

mean.     

  

 The wavelet coefficients are given by 

equation (24): 

 2 , 2j j

jk fc W k

 
   

(24) 

Here, 2 ja    is called the binary dilation or 

dyadic dilation, and 2 jb k   is the binary or 

dyadic position.    

   

 When we use the continuous wavelet 

transform, we can detect a signal buried in 

Gaussian noise. This fact has been used in the 

concept of wavelants. Before understanding 

wavelants, we need to know two properties of 

cumulants [27]: 

1) The third order cumulant of a Gaussian (or any 

symmetrically distributed) random process is 

zero. 

2) If a subset of random variables  ix is 

independent of the rest, then the third-order 

cumulants is zero. 

 The above formulation exhibits properties 

closely related to those of cumulants [28]. The 

ideas from the two preceding topics have led to the 

motivation for the development of wavelants which 

is a combination of wavelet and cumulant theory. 

In the following section we shall consider only the 

third order wavelant which is defined as in 

equation (25): 

   3 1 2
1 1 2 2

1 21 2

1
, ; ,xxx

t b t b
W b a b a x t x x dt

a aa a

    
    

   
 

                                 

(25) 

   3 1 2
1 1 2 2

1 21 2

1
, ; ,xyz

t b t b
W b a b a x t y z dt

a aa a

    
    

   
 

                                 

(26) 

Equation (25) represents the third order auto 

wavelant while equation (26) represents the third 

order cross wavelant. Now we apply the 

wavelet transform (db4) at different levels on the 

frequency response obtained earlier (example of 

which is shown in Fig 9). The result of applying the 

transform on an image of subject 1 is shown in 

Figure 10. 
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Figure 10: waveforms for subject 1 at various 

approximations] 

 

 We notice from the above figure, that we 

obtain a nice envelope at Level 7 approximation. 

This seems to be the most appropriate 

approximation level for classification because in 

further approximations, details are being lost. The 

similar waveforms for subjects 4 and 10 are shown 

below.  
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Figure 11: waveforms for subject 4 at various 

approximations 
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Figure 12: waveforms for subject 10 at various 

approximations 

 

 In all the above waveforms, level 7 

approximation is most appropriate and also at this 

level all the three waveforms can easily be 

distinguished from one another. Let us now have a 

closer look at the level seven approximation of the 

frequency response for few orientations of all the 

three subjects. 
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Figure 13: Level 7 approximations of subject 1 

 

All the above waveforms belong to subject 1 and 

are similar to each other.  
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Figure 14: Level 7 approximation of subject 4 

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14
x 10

6

 

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14
x 10

6

 

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14
x 10

6

 

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14
x 10

6

 
Figure 15: Level 7 approximations of subject 10 

 

We notice from the above figures, that the 

waveforms for different orientations of one subject 

are similar while for different subjects they are 

different. Hence it is possible to classify them. 

 

V. CLASSIFICATION 
 Image classification involves analyzing 

the numerical properties of various image features 

and organizing the data into categories. In this 

paper, we have used three classifiers for classifying 

the data: minimum distance classifier, support 

vector machine and k nearest neighbor. In all the 

three methods, out of the ten orientations of each 

subject, eight were used for training the classifier 

and two were used as test cases. 

 

5.1 Minimum distance classifier 

 The classification was done using the 

minimum distance classifier. Euclidean distance 

has been used for calculating the distance. Since 

the total number of subjects is 40, there were 40 

classes. After classification, following results were 

obtained: 
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Table 4: Classification accuracy using minimum 

distance classifier 

Sr. 

No 

Feature 

extraction method 

Classification 

accuracy 

1. Hu moments 60% 

2. Zernike moments 90% 

3. Legendre moments 90% 

 

The results of Hu moments are not as good as those 

of Zernike and Legendre moments as can be seen 

from the table. 

 

5.2 Support Vector Machine 

 Classification using non linear SVM was 

done using the following parameters: 

 

Table 5: Various parameters used to design the 

support vector machine 

Sr. No. Parameters Parameter value 

1. Classifier 

Type 

Nonlinear multi class 

SVM 

2. Kernel Poly 

3. C 1000 

 

The results of various feature extraction methods 

using SVM are shown below: 

 

Table 6: Classification accuracy SVM 

Sr. 

No 

Feature extraction 

method 

Classification 

accuracy 

1. Hu moments 60% 

2. Zernike moments 85% 

3. Legendre moments 95% 

 

Here again, the results of Hu moments are the 

poorest. Also, the results of Legendre moments 

improved as compared to the ones from minimum 

distance classifier, while those of Zernike moments 

have degraded. 

 

5.3 K Nearest Neighbor 

 When classified using the k nearest 

neighbor algorithm, most accurate results were 

obtained when the value of k = 3. The following 

figure shows the classification results obtained for 

face recognition using the nearest neighbor 

classifier for Hu moments: 
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Figure 16: Classification results obtained using Hu 

moments 

 

 Each point in Fig 16 represents the feature 

vector corresponding to an image. Each sample is 

classified and associated to one of the ten clusters 

(subjects) i.e. to a particular subject. The clusters 

are shown with different colors and markers for 

easy understanding. In the above figure we see that 

the classes are not very distinct and kind of 

overlap. Hence the performance of Hu moments is 

not very good. Figure 17 shows the classification 

results obtained for face recognition using the 

nearest neighbor classifier for Zernike moments: 
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Figure 17: Classification results obtained using 

Zernike moments 

 

 In above figure, the cluster formation is 

better than that obtained from Hu moments. Hence 

the classification is better.  Fig 18 shows the results 

obtained for face recognition using nearest 

neighbor classifier for Legendre moments: 
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Figure 18: Classification results obtained using 

Legendre moments 
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Here also the cluster formation is good. The results 

of using k nearest neighbor classifier on the three 

feature extraction methods are shown in Table 7: 

 

Table 7: Classification accuracy of the feature 

extraction methods using KNN 

Sr. No Feature extraction 

method 

Classification 

accuracy 

1. Hu moments 44% 

2. Zernike moments 85% 

3. Legendre moments 95% 

 

Once again the performance of Hu moments is the 

poorest. The results of Zernike and Legendre are 

same as those obtained from SVM. 

 

VI. RESULTS 
 Four experiments were performed for 

extracting the features using four approaches: Hu 

moments, Legendre moments, Zernike moments 

and cumulants. The feature vectors obtained using 

these moments were classified using three 

methods: minimum distance classifier, SVM and k 

nearest neighbor. The average performance of the 

feature extraction methods can be tabulated as 

below: 

 

Table 8: Average performance of the feature 

extraction methods 

Sr. 

No 

Feature extraction 

method 

Classification 

accuracy 

1. Hu moments 53.33% 

2. Zernike moments 86.66% 

3. Legendre moments 93.33% 

  

        From the above table, we can infer that the 

performance of Hu moments was not satisfactory 

and hence they cannot be used for the purpose of 

face recognition using complex facial images. On 

the other hand, the results obtained using Zernike 

and Legendre moments are good.  

For the experiment performed using cumulants, we 

have obtained waveforms which are similar for 

different orientations of same subject and different 

for different subjects. These waveforms can be 

classified using any suitable method. 

Many techniques have been used for face 

recognition like LDA (Linear Discriminant 

Analysis), BLD (Bayesian logistic discriminant) 

etc. While the results of these techniques on ORL 

database are 87% and 91.9% respectively. The 

results of orthogonal moments like Zernike and 

Legendre are better than these (95%).  

 

VII. CONCLUSION 
 In this paper a novel method for face 

recognition using moments and cumulants has been 

presented. Four experiments were conducted using 

Hu moments, Zernike moments, Legendre 

moments and cumulants. Features were extracted 

using the above mentioned moments and feature 

vectors were formed. The size of the feature vector 

for Hu moment was 7, for Zernike 7 and for 

Legendre moments it was 12. In all the 

experiments, three different classifiers were used 

for classification: minimum distance classifier, 

SVM and k nearest neighbor. From the 

experimental results it was observed that the 

feature representation using Hu moments provides 

a maximum recognition rate of 60%.  Orthogonal 

moments like Zernike and Legendre which are also 

invariant in nature are capable of representing the 

image features with minimum number of 

coefficients and the percentage of accuracy is also 

superior. Hence these moments have been found 

very much suitable for feature representation of 

complex face images which are almost similar with 

respect to variations in size, pose, illumination and 

orientation within a smaller area. In this paper, we 

also worked with cumulants and used them for face 

recognition. The method can be used to 

successfully identify different faces. The proposed 

technique using cumulants is sensitive to the 

structural changes in the images and is able to 

distinguish them successfully. But, the same 

sensitivity makes the method vulnerable to noise in 

the samples, so the images have to be noise free for 

expected results.  
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