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ABSTRACT 
Sheet metal forming problems are typical 

in nature since they involve geometry, boundary 

and material non-linearity. Cup drawings involves 

many parameters like punch and die radius, 

clearance, lubrication, blank holding force and its 

trajectories etc. So designing the tools for cup 

drawing involves a lot of trial and error 

procedure. To reduce number of costly trial error 

steps, the process can be simulated by using finite 

element packages. Even the finite element package 

gives an approximation towards the solution. The 

experimentation is inevitable. The aim is to study 

analysis of optimization of blank holding force 

developed for cup drawing operation by using 

explicit finite element package LS DYNA. One of 

the basic problems in deep drawing is wrinkling. 

Wrinkling can be avoided by using blank holding 

force. But higher the blank holding force (BHF), 

higher is the frictional force, so more will be 

tensile stresses in cup wall there by promote 

tearing failure at the punch corner. Hence BHF 

needs to optimized so as to prevent the wrinkling 

and at the same time to prevent tearing failure. In 

this work die design is done for a cup of 30mm 

diameter and deep with 1 mm thickness. For the 

same blank holding force is calculated from the 

empirical formula. The same is simulated on an 

explicit finite element package LS DYNA. By an 

iterative procedure the optimum blank holding 

force is obtained and presented. B H F in deep 

drawing is an essential parameter to be 

determined optimally to avoid formation of 

wrinkles. It is also necessary to at the same time to 

determine the force in drawing operation and 

failure of the cup. Higher the B H F, higher is the 

frictional forces between the blank and blank 

holder, so higher the loads required for drawing 

operation and higher the strains developed in the 

cup walls between the die and punch, thereby 

reducing thickness of the section. In this thesis 

optimum blank holding force has been found out 

by checking the condition of nonformation of 

wrinkles at different coefficient of friction at 

(0.045, 0.06, 0.1, 0.13, and 0.15) and at different 

die radius (2, 3, 4, 5,6mm) and the values of blank 

holding force has been taken where no wrinkles 

has been formed for different coefficient of 

friction and for different die radius and the 

graphs are plotted and the results are studied. h- 

Method is used for mesh convergence stability of  

 

max vonmises stress is taken as a parameter to 

check the convergence. 

 

Keywords – Deep Drawing by Using LS DYNA, 

Blank Holding and blank holding force (BHF). 

 

I. INTRODUCTION 
Sheet metal forming is one of the most 

widely used manufacturing processes for the 

fabrication of a wide range of products in many 

industries. The reason behind sheet metal forming 

gaining a lot of attention in modern technology is due 

to the ease with which metal may be formed into 

useful shapes by plastic deformation processes in 

which the volume and mass of the metal are 

conserved and metal is displaced from one location to 

another. Deep drawing is one of the extensively used 

sheet metal forming processes in the industries to 

have mass production of cup shaped components in a 

very short time. In deep drawing, a flat blank of sheet 

metal is shaped by the action of a punch forcing the 

metal into a die cavity Sheet metal forming is one of 

the most common manufacturing processes to 

plastically deform a material into a desired shape. 

Products include hundreds of automotive 

components, beverage cans, consumer appliances, 

submarine hulls, and air craft frames. Based on the 

geometry, the volume and the material, sheet metal 

forming can be divided into various categories such 

as stamping, deep drawing, stretch forming, rubber 

forming, and super plastic forming. Among these, 

Stamping and deep drawing are the most common 

operations. 

Deep drawing products in modern industries 

usually have a complicated shape, so these have to 

undergo several successive operations to obtain a 

final desired shape. Trimming of the flange is one of 

those operations and that is used to remove the ears 

i.e. to have uniform shape of the flange on all the 

sides of the final product. These are formed due to 

uneven metal flow in different directions, which is 

primarily due to the presence of the planar anisotropy 

in the sheet.  

 The main concern of the deep drawing 

industry is to optimize the process parameters in 

order to get a complete deep drawn product with least 

effects and high limiting drawing ratio. In order to 

achieve this optimization objective a large number of 

solution runs need to be performed in order to search 

for the optimum solution. Furthermore, the quality of 
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the products can be increased. With reference to an 

economical success it is very important to put better 

and cheaper products faster on the market than other 

competitor‟s. A substantial aid for this is the 

numerical simulation. Costs and time for tool 

adapting could play an outstanding roll. Furthermore, 

changes in design while fabricating a prototype are 

usual. By means of numerical simulation, potential 

forming problems can be recognized during 

fabricating a first tool. Despite many advantages of 

the numerical simulation, it must be said, that there 

are costs for hardware, software, training and for the 

simulation itself. However, it is an effective means 

for making forming processes and new products 

cheaper. Tool loads can be computed and overloads 

can be predicted by means of FEM, which is very 

difficult in practical experiments.  

The depth of draw may be hallow, moderate 

or deep. If the depth of the formed cup is more than 

its diameter, the process is called Deep Drawing. 

Parts of various geometric and sizes are made by 

drawing operation, two extreme example being bottle 

caps, automobiles panels etc. the simplest example is 

the drawing of a flat bottom cylindrical cup. 

In the drawing of a cylindrical cup, a round 

sheet metal blank, is placed over a circular die 

opening and is held in place with a blank holder. The 

punch travels downward and forces the blank into the 

die cavity, forming a cup. The important variables in 

deep drawing are the properties of sheet metal, the 

ratio of blank diameter to punch diameter, the 

clearance between the punch and die, the punch 

corner radius and die corner radius, the blank holder 

force, friction and lubrication. The forces occurring 

during drawing are bending at the radii, friction 

between blank holder and sheet metal, die and sheet 

metal, punch and sheet metal and compression at 

flange area or extremity of cup. Usually Drawing is a 

process of forming a flat, pre-cut, metal blank into a 

hollow shape, either cylindrical or box-shaped, by 

pressing it into a die cavity without excessive 

wrinkling, thinning, or fracturing. Typical parts 

produced by drawing include beverage cans, 

containers of all shapes and sizes, and automobile 

and aircraft panels. Deep drawing process is 

influenced by some parameters like residual stresses, 

Blank holding force etc.     

 Residual stresses also play a very important 

role in how a formed part in a deep drawn cup. These 

stresses can become so large in a deep drawn cup that 

cracks are formed in the cup wall. These residual 

stresses can be removed by annealing the cup right 

after the deep drawing. However in most cases it is 

desire to avoid the annealing process. This process 

increases the production costs, and can lead to an 

inexpedient production flow and can give problems 

with regard to maintaining close tolerances due to 

distortion during annealing process. 

 B H F is an important parameter in deep 

drawing process. It is used to suppress the formation 

of wrinkles that can appear n the flange of the drawn 

part.  When increasing the B H F, stress normal to the 

thickness increases which restrains any formation of 

wrinkles.                       However, the large value of 

the B H F will cause fracture at the cup wall and 

punch profile. So, the B H F must be set to a value 

that avoids both process limits of wrinkling and 

fracture. Avoid wrinkling and tearing such that at ach 

punch travel (L), the following relations must be 

satisfied:  

FBH >F wrinkling and FBH <F Tearing 

A given technical problem must be expressed by 

physical terms so that it can be formulated 

mathematically, what means modeling. The model 

should reflect the reality as exactly as possible. 

However, it should also be as simple as possible. 

Furthermore, the model must be described this way 

that it can be implemented in computers. Numerical 

problems like divisions by extremely low numbers 

or poor convergences of iterations, respectively, 

have to be mastered or to be avoided. Trial runs of 

the computational simulations and a subsequent 

check of the results by comparison with reality or 

physical experiments are a must. A special attention 

has to be directed to the boundary and initial 

conditions during modeling because they have a 

decisive influence on the extent of the model as well 

as on its reliability. If the results do not coincide 

with reality or with the expectations close to reality, 

the model must be checked and possibly modified, 

whereby it will become bigger and more 

complicated. 
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II. OBJECTIVE 

The main objective of the proposed research 

is to find the optimal blank holding force that is to be 

used in the deep drawing process to produce a cup of 

required shape and size without wrinkles at different 

coefficient of friction and at different die radius. For 

general deep drawing operations, most people define 

the optimal blank shape as that blank profile which 

can be deformed into a cup with either a uniform 

flange profile or uniform rim height i.e. cup free from 

ears. However it is not easy to find an optimal blank 

holding force because of complexity of deformation 

behavior and there are couple of process parameters 

like die radius, punch radius, punch speed, blank 

holder force and amount of friction which affects the 

result of the process i.e. tearing, wrinkling, spring 

back and surface conditions such as earing. Even a 

slight variation in one of these parameters can result 

in defects. Until now, the optimal blank holding force 

along with the input of optimal process parameters is 

performed by a trial and error method based on the 

expertise of the engineer. But recently, in order to 

address the change of demand from mass production 

to batch production for higher quality products in 

ever shorter time, this experimental trial and error 

technique has turned out to be very expensive and 

time consuming. Therefore, numerical simulations of 

sheet metal forming processes based on the finite 

element method (FEM) represent a powerful tool for 

prediction of forming processes.   

 

III. LITERATURE SURVEY: 
3.1 Sheet Metal Forming: 

In metal forming, a piece of material is 

plastically deformed between tools to obtain the 

desired product. A special class of metal forming 

concerns the case where the thickness of the piece of 

material is small compared to the other dimensions, 

i.e. sheet metal forming. Sheet metal forming is a 

widely used production process: in 1998, 265 million 

tons of steel sheet and 9 million tons of aluminum 

sheet was produced worldwide which was 

approximately 35% of the total steel and aluminum 

production [Langerak, 1999a][1]. Sheet metal 

forming is characterized by a stress state in which the 

component normal to the sheet plane is generally 

much smaller than the stresses in the sheet plane. A 

commonly used sheet metal forming process is the 

deep drawing process. The principle of deep drawing 

is schematically represented in Figure 3.1. 

 
Fig. 3.1 Schematic of deep drawing process 

 

Haar and carleer [2] mentioned the material 

flow into the die cavity is controlled by the blank 

holder; a restraining force is created by friction 

between the tools and the blank. The friction between 

the tools and the blank is influenced by the blank 

holder force, lubrication or by coatings on the blank 

or tools. The work as described is this thesis is 

implemented in the implicit finite element code 

DiekA. The finite element code DiekA developed at 

the University of Twente, is a multi-purpose package 

which is able to simulate various forming processes 

such as rolling, deep drawing, extrusion, cutting and 

slitting. The deep drawing part of this code was 

developed in close cooperation with Hoogovens 

Research and Development, a part of the Corus 

Group PLC since October 6, 1999. The development 

of the deep drawing part of DiekA was started in 

1987. In 1992, Vreede[3] presented deep drawing 

simulation results of axi-symmetric products, 
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rectangular products and a simple automotive 

product, making use of a 3-node triangular element 

based on membrane theory (i.e. only incorporating 

stretching energy) [Vreede, 1992]. The material 

behavior was described by rigid plastic constitutive 

relations and the planar isotropic Hill yield criterion. 

The contact behavior was described by special 

contact elements and Coulomb friction. Finally, the 

tools were numerically described by a collection of 

measurement points or by elements. In 1992, the 

work of Vreede was continued by Carleer. The new 

developments were focused on improving the 

existing code in order to better satisfy the 

requirements for industrial application. In the 

subsequent five years, the following improvements 

were implemented [Carleer, 1997]: two new 3-node 

triangular element types, i.e. an element based on 

Kirchhoff theory (incorporates membrane and 

bending stresses) and an element based on Mindlin 

theory (incorporates membrane, bending and shear 

stresses). The anisotropic behavior of the material 

was taken into account by implementing the 

anisotropic Hill‟48 yield criterion and the Vegter[4] 

yield criterion based on multiaxial stress states 

[Vegter, 1999]. An elastoplastic constitutive relation 

was implemented in order to predict the springback 

behavior after deep drawing. The contact description 

was improved by a fast contact search algorithm and 

a more sophisticated friction model. Finally, an 

equivalent draw bead model was developed to 

efficiently incorporate draw beads in a finite element 

simulation. Sheet metal forming is characterized by 

large relative displacements between the sheet and 

the tooling, spatial and temporal strain variations in 

the part and complex boundary conditions. Robust 

and accurate analysis is needed to simulate forming 

process and defects, with the ultimate goal to 

eliminate costly die-tryouts, particularly when 

introducing new materials and processes. Finite 

element models must be computationally efficient for 

practical use with today‟s computers and those in 

foreseeable future. Wang and budiansky[5] 

introduced the membrane element formulation based 

on a theory of shells presented by budiansky[6]. 

When compared to large strain, large displacement, 

and elastoplastic shell formulations {7-9}, membrane 

formulations have been reported to be 5 times faster 

[10-12]. Earlier research in our group showed of 5x 

to 20x for shell simulations versus membrane ones. 

3-D continuums are seldom applied to general 

forming because of limited computation time [10-11]. 

The computational efficiency of membrane elements, 

make them attractive for arbitrary 3D  geometries, 

but they fail to produce a convergent solution for 

bending-dominated forming problems, or to 

reproduce bending effects such as flange/ wall 

wrinkling or spring back.                                                                                                 

              Hybrid methods based on empirical results 

introducing bending effects into membrane sheet 

forming programs have been proposed. Stoughton 

[10] reduced the terms of tangent stiffness matrix 

using a draw bead model of Wang [14]. Good results 

were reported for R/t ratios ranging from 3.1 to 18.4 

with minimal increase in computer time, 

approximately 6%. Pourboghart and chandorkar [15] 

used the contact conditions, stress and strain states 

and curvatures of the tooling to adjust the membrane 

solution (after computation), and to calculate spring 

back and side wall curl. Although both approaches 

were computationally efficient, they have proven 

difficult to generalize to arbitrary geometries. For 

linear-elastic problems, corrections to the membrane 

residual vector and corresponding stiffness matrix 

have been formulated [16-119]. Inter element 

bending was evaluated from the relative rotations of 

adjacent two elements; the bending stiffness is being 

represented by torsional springs of a specified 

stiffness.              Similar approaches have been 

developed for non linear sheet forming problems, 

where the sheet is discretized into two superimposed 

meshes accounting for bending and stretching [20-

26]. Keum [20] introduced this concept without the 

mechanical formulation for FE implementation. Huh 

et al. [21-23] derived a family of „Bending Energy 

Augmented Membrane‟ (BEAM) elements with 

rotational springs at nodes or at element edges. The 

bending stiffness of this matrix for these elements 

were assumed as constant during a time step and 

updated at the end of time step. Six-noded patches of 

four constants strain triangular elements have been 

used to compute the inter-element bending forces for 

dynamic explicit programs based on an elastic 

constitutive law [24] and elastic plastic constitutive 

law [25].         

  

3.1.1 TYPES OF FORMING 

Many forming operations are complex, but 

all consists of combinations or sequences of the basic 

forming operations bending, stretching and drawing. 

3.1.1.1 Bending: 

Bending is the metal working process by which a 

straight length is transformed into a curved length it 

is a very common forming process for changing sheet 

and plate into channels, drums tanks etc. during the 

bending operations, the outer surface of the material 

is in tension and the inside surface in compression. 

The strain in the bent material is increases with 

decreasing radius of curvature. The stretching of the 

bend causes the neutral axis of the section to move 

towards the inner surface. In most cases, the distance 

of the neutral axis from the inside of the bend is 0.3t 

to 0.5t, where “t” is the thickness of the part. 

 

3.1.1.2 Stretch forming: 

Stretch forming is the process of forming by 

the application of primarily tensile forces in such a 

way as to stretch the material over a tool or form 

block. Stretching is caused by tensile stresses in 



Gyadari Ramesh, Dr.G.Chandra Mohan Reddy / International Journal Of Engineering 

Research and Applications (IJERA)          ISSN: 2248-9622     www.ijera.com 

Vol. 3, Issue 4, Jul-Aug 2013, pp.1975-1995 

1979 | P a g e  

excess of the yield stress. When they are applied in 

perpendicular directions in the plane of the sheet, 

these courses produce biaxial stretching. When the 

perpendicular forces are equally balanced biaxial 

stretching occurs. Much higher levels of deformation 

as measured by an increase in area can be reached in 

balanced biaxial stretching than in any other forming 

mode. Many forming operations involve stretching of 

some means within the stamping. Automotive outer 

body panels are typical examples of parts formed 

primarily by stretching. Parts with regions containing 

domes (microwave reflectors), ribs and embossments 

also involve stretching. 

3.1.2  Theory of sheet metal drawing operation 

 Many irregular shaped parts are drawn, and 

the theories of metal flow in these parts are 

complicated. The drawing of cups is the simplest 

drawing operation and more easily illustrated. 

Therefore the remaining discussion refers to the 

operation known as cupping. The blank required for 

cupping is round. An analysis should be made of 

what happens as the punch and die first starts to draw 

the blank. The blank edge is forced down to a smaller 

circumference; such a reduction means that a 

compressive force is being applied to the metal. 

3.1.2.1 Metal flow: 

 Drawing operation consists of metal flow 

rather than metal movement. These terms were 

described in the theory of forming sheet metal. 

During cupping, the metal flows into the cup shape, 

the metal follows itself into the cup shape. There is 

no movement of metal through space as there is 

during a forming operation, the metal flows through 

the opening provided by the clearance between the 

punch and die and blank holder. Since the punch 

exerts the force on the cup bottom to cause the 

drawing action, considerable stretching of metal 

occurs in the cup side wall near the cup bottom. Fig 

3.2  

 

Fig 3.2 Forces during Cupping 

 
Fig 3.3  Metal flow During Cupping 

 

shows metal flow in cupping die. Figure3.3 shows 

the forces involved on the outer edge of the blank, 

this metal tends to thicken. The thinning and 

thickening of metal in the cupping operation also 

may be referred to as metal flow. 

1.2.2 Forces during drawing: 

The forces occurring during drawing are: 

1. Bending at the radius 

2. Friction between 

a. Blank holder and sheet metal 

b. Die and sheet metal 

c. Punch and sheet metal 

3. Compression at flange area or extremity of 

cup. 

The punch exerts a force on the cup bottom 

of sufficient magnitude to overcome the sliding and 

stationary friction, to bend force it at the radii and to 

compress the metal at the cup extremity. Therefore 

the punch force is the sum of the other three. The 

punch force is the applied force and the other three 

are totaled to obtain the equal and opposite reaction 

force. 

Wrinkles are formed due to improper design 

of the die. The die has to given a taper in order to 

increasing the load force. This may also happen due 

to the improper lubrication. The force is transmitted 

by the cup side wall. The wall is placed under tension 

at a point near the cup bottom. If the punch force or 

the total of the other three forces exceeds the ultimate 

tensile strength of the metal, the wall will break. The 

final analysis of force is as follows: 
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 Friction + compression + bending = 

punch force 

The punch force must be less than the ultimate 

strength of the metal or failure will occur. 

3.1.3 Characteristic cupping force curve:  

The curve representing the force required 

during cupping reveals many characteristics of 

drawing. The maximum force occurs at the first 

instant of cupping. Therefore, cupping consists of 

high instantaneous force, which immediately reduces 

after metal flow has been started. The base of the 

cupping force curve represents the depth of the cup. 

The graph shown in figure 3.4 between punch force 

and punch stroke for drawing operation gives the 

total punch force, friction, ideal deformation and 

ironing. 

 
Fig 3.4  Punch force vs. punch stroke for drawing 

operation 

The main conclusion that can be made from 

the curve is that the initial contact of the punch steel 

with the metal blank is the point of severest stress or 

strain. If wrinkles occur, they start while this high 

force is applied. If the cup breaks, failure occurs 

while this high force is applied. Once metal flow has 

started and the force is reduced, the chances of 

wrinkles or cup breaking are limited. If cup failure 

occurs after this point, the failure can usually be 

attributed to inclusions or defects in the sheet metal. 

As long as blank size and punch diameter are being 

used. Whether or not a flange is left on the cup has no 

effect on the severity of the operation. This condition 

is illustrated in figure 3.5. The measure of the 

severity of drawn is found by comparing the punch 

diameter. For irregular shaped drawing, a comparison 

of the blank area will the initial contact area of the 

punch would be an indicator of 

severity.

 
Fig 3.5 Severity of drawing 

Drawing severity is determined by the relationship 

between the punch diameter and blank diameter. The 

larger the difference in diameter the greater the 

severity in drawing. Greater severity means there is 

more tendencies for wrinkling and tearing. When the 

punch diameter and blank diameter are constant, the 

severity of drawing is not reduced because a flange is 

left on the cup. If no flange is left on the cup, the 

severity of draw is not appreciably increased. This is 

because of small difference in force requirements as 

illustrated above. 

3.1.4 Reducing severity of draw: 

 Several methods may be employed to reduce 

the severity of draw. Any method that increases the 

relative punch contact area will reduce the severity. It 

is assumed that a drawing lubricant or compound is 

being used to permit free metal flow. The blank 

holding pressure must also be correct. 

The severity of the draw may be reducing by the 

following methods: 

1. Increase draw radii 

2. Change blank holding surface to an angle 

3.  Provide lead in or chamfer on die 

4. Pre fold the blank with the blank holder 

wrap 

5. Pre fold the blank before placing it in the 

draw die 

6. Use redrawing to obtain final size 

 

3.1.4.1 Draw radii: 

 If possible the radius on the punch is made 

the same as the part print radius. The same is true of 

the radius on the die. Many times, however, these 

radii are too small and increase the severity of the 

drawing operation. A small radius restricts the flow 
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of metal over the radius. When metal flow is retarded 

in such manner, a higher force is required to start the 

flow. This higher force is converted to greater tension 

on the cup side wall and may cause failure. This 

failure may occur before the cup is completely 

drawn. 

Therefore to reduce the severity of drawing 

and reduce metal failure, the radius on the punch and 

die is increased. Because more metal flow occurs 

over the die radius this is the most critical radius. 

3.1.4.2 Redrawing: 

When simpler methods fail, the redraw operation is 

used to reduce severity. The diameter of the draw 

punch is increased to reduce the draw severity. The 

difference between the blank and punch diameter is 

reducing. The draw punch diameter is increased to a 

point where successful draws can be made. This 

means that the cup produced is too large in diameter 

and too short in height when compared to the part 

print. Therefore, secondary operation called 

„redraws‟ are necessary to reduce the diameter to part 

print specification. One or more draws may require. 

Drawing, then, is converting cups from flat blanks. 

Redrawing is reducing a cup or drawn part to a 

smaller diameter with resulting increase in height. 

After drawing, the metal is in a work hardened state. 

Therefore redrawing must be consecutively less 

severe in reduction to prevent failure of the metal. 

Often it is necessary to anneal parts before or 

between redrawing operations. 

 

3.1.4.3 Restricting metal flow: 

 On irregular shaped blanks and panels it is 

often desirable to restrict the flow of metal into the 

die. Metal flow must be restricted when an access of 

metal is flowing into an area. Adding draw beads or 

spleens on the blank holding surface restricts flow. 

When metal flow must be stopped altogether, the 

lock bean may be employed. The bead restricts metal 

flow by causing the metal to bend and unbend. 

Varying the bead contour and height may alter the 

degree of bead restriction. The bead leaves a 

depression in the scrap area of the metal, which is 

subsequently trimmed off. Decreasing the draw 

radius can also restrict metal flow and using a 

horizontal blank holding surface can also restricts 

metal flow. Serrations in the blank holding surface 

will also restrict metal flow. Varying lubricant 

consistency on using no lubricant at all may also 

control metal flow. 

 

3.1.4.4 Trimming: 

Because the blank must be gripped to 

prevent wrinkles and because the metal is often 

scratched or scored when moving under the blank 

holder, excess metal is provided in the blank, this 

excess score metal is cut away by the trimming 

operation. Bed depressions are also contained in this 

scrap. 

3.2 Deep drawing 

In a deep drawing process, the blank is 

deformed into its final desired shape by displacing a 

punch into a die and deforming the central region of 

the blank. The punch force deforms the blank by 

straining it against a constraint which is created by 

clamping the blank between a die and a blank holder 

along its periphery. The force used to clamp the 

blank between the die and blank holder is called the 

blank holder force ~BHF!. The blank holder force 

can be varied to achieve many desired objectives, 

from preventing the occurrence of tearing or 

wrinkling, and therefore, increasing the draw depth 

[25–27], to controlling springback [28,29]. The blank 

holder force can also be varied spatially, by 

employing segmented binders, flexible binders and 

local adaptive controllers [30–34]. Variation of blank 

holder force ~BHF! can be determined a-priori, as 

applied in an open-loop manner, or by using a 

feedback loop, as a result of feedback control. One of 

the first examples of work done on blank holder force 

control was that of Hardt and Lee [35]. Using the 

general concept of a safe region between wrinkling 

and tearing, they proposed two closed-loop control 

strategies for a conical cup forming. The first method 

was designed to maintain a constant blank holder 

displacement, allowing a limited amount of flange 

wrinkling. The blank holder force was kept at the 

minimum necessary to prevent buckling in the 

unsupported region and also to prevent tearing. The 

second approach tried to control the binder force by 

regulating the volume of material entering the die 

cavity, through a generalized thickness parameter 

(t*). The conclusion drawn was that the strategies did 

not appreciably increase the maximum cup height, 

but did significantly reduce the sensitivity of this 

maximum value to changes in the blank holder 

control variable. Kergen and Jodogne [36,37] 

performed studies aimed at determining minimum 

BHF curve trajectories for various steels, based on a 

wrinkle detection system that measured the distance 

between the die and the blank holder in a cylindrical 

cup forming. The authors found that the measured 

BHF trajectories and the minimum BHF obtained 

from experiments varied significantly with variations 

in the types and properties of steels being tested. 

Hirose et al. [38] showed the success of an increasing 

linear combination BHF pattern in preventing the 

formation of wrinkles in an automobile panel. The 

authors further concluded that if a decreasing, linear 

combination BHF trajectory is used, body wrinkles 

are not suppressed. 

 Other researchers have reported favorable 

results obtained with decreasing BHF profiles. Kirii 

et al. [39], who also tested different linear 

combination patterns of BHF in panel formation, 

concluded that a decreasing BHF scheme was the 

optimum approach. Ahmetoglu et al. [40] obtained a 

different set of results. The authors employed 



Gyadari Ramesh, Dr.G.Chandra Mohan Reddy / International Journal Of Engineering 

Research and Applications (IJERA)          ISSN: 2248-9622     www.ijera.com 

Vol. 3, Issue 4, Jul-Aug 2013, pp.1975-1995 

1982 | P a g e  

computer simulation in the drawing of a round cup, 

in which three variables ~punch force, radial stress 

and thickness strain! were used to control the blank 

holder force during simulation. The authors smoothed 

the results into a single decreasing BHF trajectory, 

which was then used to draw a cylindrical steel cup. 

This decreasing trajectory was used to successfully 

increase the draw depth over the case of a constant 

binder force. Ahmetoglu et al. [41] further examined 

decreasing binder force trajectories with regard to the 

deep drawing of rectangular parts from aluminum 

alloy 2008-T4. Their experiments indicated that a 

decreasing binder force significantly reduced the 

amplitude of wrinkles, while avoiding the fracture 

associated with high BHF values. The work of Sim 

and Boyce [42]. The authors performed axisymmetric 

cup forming process simulations based on the 

tangential force and normalized average thickness 

trajectories. These models yielded numerical results 

for BHF trajectories that were later employed 

to increase the height to which cups could be drawn. 

Cao and Boyce [27] built upon this work to develop a 

novel approach to determine a variable BHF 

trajectory. The authors performed finite element 

simulations with PI control of the blank holder force. 

They were able to calculate a BHF trajectory having 

a combined upward and downward portion that 

showed a 16% increase in forming height over the 

results obtained by the best constant binder force 

case. Recently, experiments by Siegert and Ziegler 

[43] have shown that the onset of wrinkling in a 

blank drawn with a pulsating BHF occurs at a 

displacement similar to that obtained under a constant 

BHF equal to the maximum force of pulsation. The 

reduction in the friction force achieved due to the 

pulse allows more material flow to take place, thus 

reducing the chances of tearing. Hsu et al. [44] 

proposed an approach for modeling sheet metal 

forming for process controller design. They 

developed a process model for U-channel forming, 

i.e., a mathematical relationship between the blank 

holder force and the punch force was determined and 

validated experimentally. Characterization of model 

uncertainty due to blank size, sheet thickness, 

material properties and tooling shape was also 

studied. The process model was shown to be effective 

in describing the forming process. Blank holder force 

variation has also been used to effectively control 

spring back in sheet metal forming. Using the 

concept of intermediate restraining, Cao et al. [28] 

used a neural network to determine a stepped binder 

force trajectory that was used to minimize springback 

and also obtain consistent results in channel forming, 

despite the presence of material variations and 

different lubricants. The approach was shown to be 

robust and applicable to a wide range of materials 

and process conditions. Liu et al. [29] used a similar 

approach in the forming of U-shaped parts and 

concluded that forming quality was improved when a 

variable binder force trajectory was used. 

The use of segmented tooling and flexible 

binders is an area of sheet metal forming that has also 

been gaining prominence in recent years. The 

advantages of spatial variation of blank holder force 

have been cited in several research endeavors. One of 

the first examples of segmented binder tooling can be 

found in Siegert et al. [30]. The authors discussed a 

deep drawing apparatus developed at the Institute of 

Metal Forming Technology in which the lower binder 

is composed of eight individual segments, four corner 

segments and four straight segments. Each of these 

segments is powered by its own separate hydraulic 

cylinder. This allows an optimal blank holder force to 

be applied to individual regions of the blank. Thus, 

the blank holder force can be varied spatially in such 

a manner that individual segments of the binder can 

apply optimal values of blank holder force as desired. 

Neugebauer et al. [31] performed studies using 

flexible binders and multiple draw pins. Their 

experimental set up consisted of an asymmetric part 

and a binder which had 12 draw pins distributed 

evenly along its periphery. The draw pins could be 

used to apply different values of binder force. They 

studied four cases, a rigid binder ~80 mm thick! with 

a uniform pin force, a rigid binder with a non-

uniform pin force, a flexible binder ~30 mm thick! 

with a uniform pin force and a flexible binder with a 

nonuniform pin force. Although no major difference 

was observed in the two cases where a rigid binder 

was used, the case of a flexible binder with constant 

pin force increased the maximum achievable drawing 

depth from 70 mm to 90 mm. In the case of a flexible 

binder with non-uniform pin force, draw depths up to 

110 mm were achieved. Doege et al. [32] proposed 

an innovative concept in which the blank holder is 

designed as an elastically deformable thin steel plate. 

The authors used FEM analysis to determine the plate 

thickness and the location of support elements 

holding the binder. They performed experiments at 

various binder force values to estimate a „„safe 

working area.‟‟ The authors were able to show that 

the safe working area for a part is larger with a 

pliable blank holder and it moves towards higher 

blank holder force values. Furthermore, it was shown 

that the distribution of pressure on the blank was 

more uniform, thus giving rise to improved part 

quality. Kinsey et al. [33] proposed a novel method 

of forming tailor welded blanks that incorporated a 

segmented die with local adaptive controllers. The 

local adaptive controllers consisted of hydraulic 

cylinders positioned in such a manner as to create an 

additional constraint within the forming area. The 

position of this constraint is selected so as to 

minimize the weld line movement and therefore 

reduce the strain developed in the thinner material. 

Experiments performed on an asymmetric part 
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showed that this method of forming helped increase 

the draw depth by 20% over the conventional case. 

The deep drawing process is applied with 

the intention of manufacturing a product with a 

desired shape and no failures. The tools, the blank 

and the process parameters define deep drawing final 

product shape. An incorrect design of the tools and 

blank shape or an incorrect choice of material and 

process parameters can yield a product with a 

deviating shape or with failures.  

In the deep drawing the most common defects are 

presented in figure 3.6 [45]. In figure 3.6, the 

notations are: 1. flange undulation; 2. side 

undulation; 3. piece wrinkling; 4. circular traces; 5. 

scratches; 6. orange peel; 7. Luders bands; 8. 

cracking of piece flange or piece bottom; 9. edges 

cracking; 10.- disalignment; 11. Contour 

disalignment; 12. festoons; 13. delaminations; 14. 

edge festoons [1]. Some of these are the result of the 

dies (5, 9, 10, 14), another are due to friction 

conditions (1, 4, 13), others are as the result of the 

material composition (6, 13) and of the mechanical 

properties of the material (1, 2, 3, 6, 7, 8, 11) and 

others are as the result of the piece form (12, 14). For 

deep drawing by stretching only defects of types 3, 6 

and 8 are common [46].  

The forming limit curves, FLDs, is one of 

the method in examining the failure potential, which 

include a good representation of material‟s stretch 

ability and the easiness when used for trouble 

shooting. 

  In the design of deep drawing processes, 

many process parameters, e.g. die geometry, initial 

blank shape, blank holding force, and lubrication, 

need to be determined. It is critical to the industry 

that these design variables are optimized for one 

particular forming process.  

The design process has traditionally relied 

on experience and intuition accompanied in many 

cases by physical trial and error approach. With the 

development of computer technology, numerical 

simulations using, for example, incremental finite 

element methods (FEM) have been developed. 

 

 
Fig. 3.6. - Types of defects in deep drawing 

However, the majority of the applications 

using finite element methods has been deterministic, 

in which a set of design parameters is given and 

simulation results are interpreted by users. Additional 

simulations need to be performed if the results are not 

satisfactory. The determination of those design 

parameters is again mainly based on users' experience 

and interpretation. Such design process usually 

requires enormous amount of time and cost to 

determine the optimal process parameters. Since 

metal forming processes are generally highly non-

linear and history dependent, many researchers have 

used the direct di_erentiation method for the 

calculation of sensitivity [46,52]. Badrinarayanan and 

Zabaras [46; 47] calculated the di_erentiation terms 

directly from the weak form of equilibrium equations 

and demonstrated the approach on determining a 

preform shape of an upsetting problem and a die 

profile of an extrusion problem. Alternatively, the 

di_erential terms can be derived from the nite 

element discretized weak form as described in 

Chenot and co-workers [47,48]. They calculated a 

preform shape of an upsetting problem and tool 

shapes of a two-step forging problem. Zhao and 

colleagues [49,50] developed a similar optimization 

scheme to that of Chenot and co-workers. They 

focused on the optimal design of die shapes of 

performs rather than that of preform shapes. Kleiber 

et al. [51,52] derived sensitivity equations by both the 

direct di_erentiation method and the adjoint variable 

method. Joun and Hwang [53] used the adjoint 

variable method to optimize the die pro_le of a three-

dimensional steady-state extrusion problem. Most 

sensitivity analyses for incremental FEM have been 
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applied to simple two-dimensional problems such as 

upsetting, forging, and extrusion. However, there is 

very little practical application to sheet metal forming 

processesand many di_culties still remain in the 

implementation of sensitivity analysis to practical 

and complex bulk forming problems. 

 

3.3 Wrinkling & Tearing  

Wrinkling is one of the major defects in 

sheet metal forming, together with tearing, spring-

back and other geometric and surface defects. Many 

research efforts have been dedicated to predict the 

occurrence, the location, and the shape of the 

wrinkles as evident in the review articles, which 

emphasized the work initiated from Hill‟s general 

theory of uniqueness and bifurcation. Here the 

importances of material models on the prediction 

results have been discussed. In most of the finite 

element analyses (FEA), accumulated computational 

error can be treated as an artificial imperfection in the 

system to initiate the wrinkling, but the necessary 

magnitude to initiate wrinkling is problem dependent. 

This nature determines the uncertainties associated 

with the FEA in practical applications. Cao [54] 

proposed a stress-based wrinkling predictor. Cao et 

al. [54] developed a multi-scale approach with mesh-

free adaptivity to simulate the wrinkling behavior of 

sheet metals, while using the stress-based predictor to 

generate the desired enrichment function. This 

method is now able to capture the wrinkling and post-

buckling behavior in an elastic plate and wedge strip 

examples. With all the numerical work, it is 

necessary to have well-controlled experiments to 

verify the numerical approaches. The experimental 

work can be divided into two categories. The first 

category includes simple tests of special specimens 

designed for simulating the basic mechanism. Sheet 

buckling/wrinkling is one of the critical issues not 

only in sheet metal forming itself but also in the 

numerical simulation of this process. Buckling can 

limit the ability to stretch sheet metal during 

processing and adversely affect final part appearance 

and functionality; severe wrinkling may damage or 

even destroy dies. Due to the complexity of buckling, 

much research on this topic has been carried out case 

by case for a given process by experiment. Yoshida 

et al. [55] investigated the material resistance to 

wrinkling by stretching a square sheet along one of 

its diagonals. A deep drawing of a conical cup and 

square cup was analyzed by Senior , Jalkh et al. [54]. 

Zhang and Yu [56] conducted research on drawing of 

elastic–plastic circular plates using a spherical punch. 

Besides experimental work, analytical investigation 

on the plastic wrinkling initiated from the study on 

columns by Shanley [57], followed by the study on 

plate and shells by Tvergaard [58] and Needleman , 

V.Tyergaard also prosed a similar concept[59]. 

General analytical study of plastic wrinkling began 

with Hill‟s 1958 bifurcation and uniqueness theory 

and was detailed for plates and shell in Hutchinson 

(1974)[60].the theory is essentially an Eigen value of 

the bifurcation function. Hutchinson and Neale 

(1985)[61]later extended Hutchinson‟s 1974 work to 

the conditions needed for the onset of wrinkling in 

doubly curved sheet metal without lateral constraint. 

They found that wrinkling is most likely a local 

instability problem depending on the local curvature 

and local stress states this finding applies to plates 

and shells whose top and bottom surfaces are free of 

contact. The problem differs slightly when we 

consider the effect of a lateral constraint (constraint 

normal to the plane of the sheet) on buckling in the 

case of sheet metal forming, lateral constraints are 

present in the form of binder/sheet/die or 

die/sheet/die interactions where the sheet is 

constrained to some extent between a binder and a 

die or matching dies via force controlled or 

displacement controlled condition. Our previous 

experimental and numerical work (Jalkh et l., 

1993[62]) showed that wrinkling behavior depends 

upon the pressure applied normal to the sheet by the 

binder, as well as the local stress states and curvature. 

The closest analytical solution for this situation is 

given by Triantafyllidies and Needleman(1980)[63]. 

They applied the bifurcation theory to an annular 

plate subjected to axisymmetric radial tension along 

its inner edge. By resting the annular plate on a 

continuous linear elastic foundation, they treated the 

binder as a deformable binder and obtained the effect 

of binder stiffness on a critical buckling stress and the 

wave number. Also they assume small strain 

deformation. Unfortunately, n direct comparison 

between the analytical results and experimental 

results were given. 

 

3.4 Blank holding force  

By understanding the mechanics of metal 

deformation in sheet metal forming and having 

condense in numerical simulations, the next logical 

step is to design the Process using numerical 

simulations. Very early attempts utilized the slip line 

theory [64], upper bound analysis, and lower bound 

analysis. An inverse method using deformation 

theory was developed for designing the initial blank 

shape in [65]. Based on the minimum plastic work 

principle, Chung and Richmond [66] proposed an 

ideal forming theory to design the optimal blank 

shape and forming procedures [67]. With the 

development of data acquisition systems and 

computer hardware, the concept of variable binder 

force was introduced by Hirose et al. [68]. More 

recently, the ability to change the binder force during 

the forming process is no longer limited to a research 

apparatus stamping plants. However, most of the 

work found in the literature utilized a force trajectory 

generated by a trial-and-error approach. Using a 

control element in their FEM model, Cao and Boyce 

[69] monitored the tendency of wrinkling and tearing 
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and thereby, designed a single variable binder force 

trajectory for a conical cup forming using numerical 

simulation. This trajectory was implemented in 

experiments and led to a 16% increase in the 

Ultimate forming height of the cup over the 

traditional processes. 

Fenn and Hardt [70] developed a real-time 

closed-loop control system to alter the binder force 

during the forming process using the actual punch 

force or material draw-in as inputs. They obtained 

consistent forming heights despite the presence of 

variations in the lubricant, blank location and initial 

binder force. This approach was adopted successfully 

by Jalkh et al. [71] for aluminum cup forming. 

Spring back can be reduced through 

modifications to the forming process. Several 

researchers have proposed to use a stepped binder 

force trajectory to accomplish this objective 

(Ayres[72], 1984; Hishida and Wagoner[73], 1993; 

Sunseri[74] et al., 1996). A stepped binder force 

trajectory is an instantaneous jump from a low binder 

force (LBF) value to a high binder force (HBF) at a 

specified percentage of the total punch displacement 

(PD%) . Sunseri et al. (1996) but is also available in 

commercial stamping presses, which can be found in 

all the major automotive companies'  investigated 

springback in the Aluminum channel forming 

process. Their work was conducted through 

experiments and simulations at specific values for 

process and material parameters. 

For the constant binder force (CBF) cases 

there exists an optimal CBF which results in a max 

cup height with out wrinkling or tearing failure. 

However, CBF experiments do not necessarily 

optimize material flow trajectories for forming 

without failure. Hirose[75] et al. (1990) examined 

binder force trajectories containing step changes 

while forming full scale automobile panels .All 

trajectories that did succeed were those that started at 

low binder forces and then increased during the later 

stage of the process. The results obtained were 

successful but were obtained by intensive trail and 

error. Much recent work on sheet metal has focused 

on designing variable binder force (VBF) histories 

with majority papers reports a success in 

experimental trail and error approach. 

Another promising method to determine the optimal 

binder force trajectory in the forward mode was 

presented in Cao and Boyce [76] for a given initial 

blank geometry and tooling geometry. A user-

defined element serves the purpose of closed-loop 

control in the FEM simulation. This Element senses 

the current wrinkling and tearing tendencies and 

alters the binder force so that no Excessive wrinkles 

are present. The optimal binder force history was 

determined in one run of the FEM simulation. 

 

IV. MATHEMATICAL FORMULATION 

In the present formulation the 

BELYTISCHKO Lin Stay shell element from LS 

DYNA IS USED The element has 5 through the 

thickness integration points and it requires 725 

mathematical operations.  

BELYTISCHKO shell element is based on a 

combined rotational and strain formulation the 

efficiency of the element is obtained from the 

mathematical simplifications that result from these 

two kinematical assumptions. The co rotational 

portion of the formulation avoids the complexity of 

non linear mechanics by embedding a coordinate 

system in the element. The choice of velocity strain, 

or rate of deformation, in the formulation facilities 

the constitutive evaluations, since the conjugate stress 

is more familiar Cauchy stress. 

 

4.1 Co rotational coordinates 

The mid surface of quadrilateral shell 

element , or reference surface, is defined by the 

location of elements four corner nodes . An 

embedded element coordinate system  as shown in 

figure  that deforms with the element is defined in 

terms of this local coordinates. Then the procedure 

for constructing the co rotationalco ordinate system 

begins by caliculating a unit vector nrmal to the main 

diagonal of the element 

ê 3  =  
3

3

s

s

                                              (4.1a) 

3s =  2

33

2

32

2

31 sss                          (4.1b) 

          42313 Xrrs                                     (4.1c) 

Where the super script caret(


. ) is used to indicatethe 

local(element) coordinate system.  

It is desired to establish the local  x axis 


x  

approximately along the element edge between nodes 

1 and 2. This definiton is convenient  for interpreting 

the element stresses which are defined in local  


 yx coordinate system.the procedure for 

constructing this unit vector is to define a vector 

1s that is nearly parallel to the vector 21r . 

s .( 21211 rr  ê 3 )ê 3                                        (4.2a) 

ê
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1
1

s

s
                                                            (4.2b) 
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Fig 4.1 construction of element coordinate system 

 

The remaining unit vector is obtained from the vector 

cross product. 

ê 2 =ê 3 X ê 1                                                           (4.3) 

 

If the four nodes of the element are coplanar, then the 

unit vectors 1e and 2e  are tangent to the midplane of 

the shell and 3



e  is in the fiber direction. As the 

element deforms, an angle may develop between the 

actual fiber direction and the unit normal 3



e .  The 

magnitude of this angle may be characterized as 

ê 3 . 1f <δ                                                (4 .4) 

Where f is the unit vector in the fiber direction and 

the magnitude of   depends on the magnitude of the 

strains.  According to Belytschko et al, for most 

engineering applications acceptable values of   are 

on the order of 
210

  and if the condition presented 

in Equation (4.4) is met, then the difference between 

the rotation of the co-rotational coordinates 


e  and 

the material rotation should be small. The global 

components of this co-rotational triad define a 

transformation matrix between the global and local 

element coordinate systems.  This transformation 

operates on vectors with global components A= 

( zyx AAA  ) and element coordinate 

components A=( zyx AAA  ) and is defined as; 
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Where iZiYiX eee ,, the global components 

of the element are coordinate unit vectors .  The 

inverse transformation is defined by the matrix 

transpose, i.e. 

 

   AA
T








 

                                      (4.5b) 

4.2 Velocity-Strain Displacement Relations 

The above small rotation condition s, 

Equation (4.4), does not restrict the magnitude of the 

element‟s rigid body rotations.  Rather the restriction 

is placed on the out-of-plane deformations, and thus 

on the element strain.  Consistent with this restriction 

on the magnitude of the strains, the velocity-strain 

displacement relations used in the Belytschko-Lin-

Stay shall are also restricted to small strains. 

As in the Hughes –Liu shell element, the 

displacement of any point in th4 shell is partitioned 

into a mid surface displacement (nodal translations) 

and a displacement associated with rotations of the 

element‟s fibers (nodal rotations).  The Belytschko-

Lin-Tsay shall element uses the Mindlin (1951) 

theory of plates and shells to pertition the velocity of 

any point in the shell as 

3ezm


  X                                  (4.6) 

Where 
mV is the velocity of themed-surface,   is 

the angular velocity vector, and  


z   is the distance 

along the fiber direction (thickness ) of the shell 

element.  The corresponding co-rotational 

components of the velocity strain (rate of 

deformation) are given by 
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Substitution of Equation (3.6) into the above yields 

the following velocity-strain relations. 
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The above velocity-strain relations need to 

be evaluated at the quadrature points within the Shell.  



Gyadari Ramesh, Dr.G.Chandra Mohan Reddy / International Journal Of Engineering 

Research and Applications (IJERA)          ISSN: 2248-9622     www.ijera.com 

Vol. 3, Issue 4, Jul-Aug 2013, pp.1975-1995 

1987 | P a g e  

Standard bilinear nodal interpolation is used to define 

the mid surface velocity, angular Velocity, and the 

element‟s coordinates (isoperimetric representation). 

These interpolations relations are given by 

  II

m VNV  ,                                          (4.9a) 

  II

m N  ,                                           (4.9b) 

  II

m XNX  ,                                        (4.9c) 

Where the subscript I is summed over all the 

element‟s nodes and the nodal velocities are obtained 

by differentiating the nodal coordinates with respect 

to time, i.e. II x
.

 .  The bilinear shape functions 

are4 

)1)(1(
4

1
1  N                                  (4.10a) 

 

                        (4.10 b) 

 

     

)1)(1(
4

1
3  N                               (4.10c) 

)1)(1(
4

1
4  N                           (4.10d) 

The velocity strains at the center of the 

element, i.e., at  0     and 0        are 

obtained by substitution of the above relations into 

the previously defined velocity-strain displacement 

relations, Equations (4.8a) and (4.8e). After some 

algebra, this yields 

 

yIIxIIx BzBd


  11                            (4.11a) 

xIIyIIy BzBd


  22                           (4.11b) 













xIIyIIyIIxIIxy BBzBBd  12122

                                                                          (4.11c) 

yIIzIIxz NBd


 12                            (4.11d) 

yIIzIIyz NBd


 22                             (4.11e) 

 

Where, 








x

N
B I

1
1                                                     (4.12a) 








y

N
B I

1
2                                                    (4.12b) 

 The shape function derivative aIB  are 

also evaluated at the center of the element i.e. at 

0   and 0  

3.3. Stress Resultants and Nodal Forces. 
              After suitable constitutive evaluations using 

the above velocity strains, the resulting stresses are 

integrated through the thickness of the shell to obtain 

local resultant forces and moments.  The integration 

formula for the resultants is   



 zdf
R


                                            (4.13a) 



 zdzm

R

                                      (4.13b) 

Where the superscript R indicates a resultant 

force or moment and the Greek subscripts emphasize 

the limited range of the indices for plane stress 

plasticity. 

The above element –centered force and 

moment resultants are related to the local nodal 

forces and moments by invoking the principle of 

virtual power and performing a one-point quadrature.  

The relations obtained in this manner are                  
















 R

xyI

R

xxIx fBfBAf 211
             (4.14 a) 
















 R

xyI

R

yyIy fBfBAf 121
             (4.14 b) 
















 R

yzI

R

xzIz
fBfBAkf 211

              (4.14 c) 
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
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












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
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R

xyI

R
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 (4.14 e) 

0


zIm                                                           (4.14 f) 

 

Where A is the area of the element and k is 

the shear factor from the Mindlin theory.  In the 

Belytschko-Lin –T say formulation, k is used as a 

penalty parameter tol enforce the Kirchhoff normality 

condition as the shell becomes thin. 

The above local nodal forces and moments 

are then traansformed to the global coordinate system 

usiing the transformation relations given previously 

as Equation (4.5a) .  The globala nodal forces and 

moments are then appropriately summed over all the 

nodes and the global equation of motion are solved 

for the next increment in nodal accelerations. 

In the present formulation 2 material properties has 

been used  

1. Power Law Isotropic Plasticity 

2. Rigid 

)1)(1(
4

1
2  N
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1. Power Law Isotropic Plasticity: 

            Elastoplastic behavior with isotropic 

hardening is provided by this model.  The yield 

stress, Y , is a function of plastic strain and obeys 

the equation: 

 np

yp

n

y    

Where yp  is the elastic strain to yield and 
p

    is 

the effective plastic strain (logarithmic).  

A parameter, SIGY, in the input governs 

how the strain to yield is identified.  If SIGY is set to 

zero, the strain to yield if found by solving for the 

intersection of the linearly elastic loading equation 

with the strain hardening equation: 

Where SIGY yield stress 

 E  
n   

                     This gives the elastic strain at yield as: 






















1

1

n

yp

E


  

If SIGY yield is non zero and greater than 0.02 then: 






















n
y

yp

1




  

Strain rate is accounted for using the 

Cowper and Symonds model which scale the yield 

stress with the factor 

1+
p

C

1








 
 

Where  is the strain rate.  A fully viscoplastic 

formulation is optional with this model which 

incorporates the Cowper and Symonds formulation 

within the yield surface.  An additional cost is 

incurred but the improvement is results can be 

dramatic. 

2. Rigid: 

The rigid material type provides a 

convenient way of turning one or more parts 

comprised of beams, shells, or soled elements into a 

rigid body.  Approximating a deformable body as 

rigid is a preferred modeling technique in many real 

world applications.   

For example, in sheet metal forming 

problems the tooling can properly and accurately be 

treated as rigid.  In the design of restrain systems the 

occupant can, for the purposes of early design 

studies, also be treated as rigid.  Elements which are 

rigid are bypassed in the element processing and no 

storage is allocated for storing history variables; 

consequently, the rigid material type is very cost 

efficient. 

Two unique rigid part ID‟s may not share 

common nodes unless they are merged together using 

the rigid body merge option.  A rigid body may be 

made up of disjoint finite element meshes, however.  

LS-DYNA assumes this is the case since this is a 

common practice in setting up tooling meshes in 

forming problems. 

All elements which reference a given part 

ID corresponding to the rigid material should be 

contiguous, but this is not a requirement. If two 

disjoint groups of elements on opposite side of a 

model are modeled as rigid, separate part ID‟s should 

be created for each of the contiguous element groups 

if each group is to move independently.  This 

requirement arises from the fact that LS-DYNA 

internally computes the six rigid body degrees-of-

freedom for each rigid body (rigid material or set of 

merged materials), and if disjoint groups of rigid 

elements use the same part ID, the disjoint groups 

will move together as one rigid body. 

Inertial properties for rigid materials may be 

defined in either of two ways.  By default, the inertial 

properties are calculated from the geometry of the 

constituent elements of the rigid material and the 

density specified for the part ID.  Alternatively, the 

inertial properties and initial velocities for a rigid 

body may be directly defined, and this overrides data 

calculated from the material property definition and 

nodal initial velocity definitions. 

Young‟s modulus, E, and Poisson‟s ratio, V, 

are used for determining sliding interface parameters 

if the rigid body interacts in a contact definition.  

Realistic values for these constants should be defined 

since unrealistic values may contribute to numerical 

problem in contact. 

 

V. DESIGN CALCULATIONS 
The material properties assigned to blank are 

shown in table 5.1 and the material properties 

assigned to remaining are considered as rigid and the 

schematic view of the model is shown in fig 5.1 

Table 5.1: Material properties assigned to blank 
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Fig 5.1:   Schematic view 

The following factors may be calculated 

with formulas presented here: 

5.1 Blank diameter 

a. Prepared formula 

b. Method for intricate cups 

5.2 Percent reduction 

a. Drawing 

b. Redrawing 

5.3 drawing force 

a. Drawing force 

b. Blank holding force 

c. Ironing force. 

The formulas presented are applicable to the 

cupping operation only. They may be adjusted, in 

some cases to approximate forces for irregular shaped 

panels. 

 

5.1 Blank diameter 

The first step in preparing for a cupping 

operation is find of blank diameter required. If a 

finished cup is available, it could weight. The blank 

then has the same weight as the cup. A blank of 

correct thickness would be cut to the diameter 

necessary to produce this weight. 

 Several prepared formulas are available for 

calculating the blank diameter required for various 

shapes of cups, as follows: 

 D = blank diameter 

 d = punch diameter 

h = cup height 

D =  = 67.08mm 

 

5.2 Allowances for Trimming 

As described in the theory of drawing, 

additional metal must be providing for trimming. 

Excess metal is needed for gripping. The metal 

becomes scored and scratched and must be removed. 

Therefore, after the blank diameter required for the 

finished cup has been found, the diameter is 

increased an amount sufficient for trimming 

operation. This is called trim allowance. 

The larger the cup being drawn, the larger 

the trim allowances should be. The prediction of 

blank size for larger cups may be less certain. 

Approximate trim allowances are as fallows. 

Table 5.1: Approximate trim allowances 

 
The trim allowance varies with the metal being 

drawn. Since the trim allowance used is directly 

related to the scrap percentage produced, care must 

be taken in setting this allowance.  

The final blank diameter is then as fallows: 

Blank diameter =Development blank diameter + 

Trim allowance  

 

5.3 Percentage reduction: 

When the final blank diameter is known, the 

next step is to determine the percentage of reduction 

necessary to convert the blank into the desired cup. If 

the allowed percent reduction for drawing does not 

produce the final desired cup size, then redraws must 

be made. The allowable percent of reduction for the 

redraw determine how many redraws are required. As 

described in the theory of drawing operation, the 

severity of cupping is determined by the relationship 

between the punch steel diameter and blank diameter. 

The closer these diameters are, the less severe is the 

operation.  

The percentage reduction is an expression of this 

severity, as fallows:                

                                   D-d 

% Reduction =   x 100= 55.27      

                                   D  

5.4 Thickness to diameter ratio: 

Another factor controlling the severity of 

drawing the ratio of the blank thickness to the blank 

diameter. When two blanks of equal diameter are to 

be drawn, the thicker blank can have a higher percent 

reduction without wrinkling or cup failure. The blank 

thickness is found as a percent of the blank diameter, 

as follows:                         

                        t = sheet metal thickness 

              D = blank diameter 

             49.1100
D

t
 

 

5.5 Drawing force: 
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During drawing operation, the side wall is 

placed tension to cause bending at the radii, 

overcome friction and compress the metal in the 

flange. Therefore, the logical way to calculate the 

drawing force would be to use the tensile strength of 

the metal. 

The force needed to draw a cup is equal to 

the product of the cross sectional area and the yield 

strength is in tension of the work material. For a 

cylindrical cup, the drawing force can be determined 

by the formula 

                 F =∏ d t σy (D/d – c) Newtons 

 Where, c= drawing force constant (varies from 0.52 

to 0.7) 

                F = ∏x30 x1x 242 (67.08/30 – 0.7) 

                F = 35015.27 N 

                F = 35.015KN  

Therefore Blank holding force =F/3    =11.671KN 

Clearance: Clearance is usually 7 to 14% greater than 

the sheet thickness i.e. 0.01mm. 

 

VI. FINITE ELEMENT SIMULATIONS 
A finite element explicit solver LS Dyna is 

used for the simulation of effect of various 

parameters on the optimum blank holding force. In 

this work the effect of friction coefficient, die radius, 

clearance, and sheet thickness is studied.  The 

following methodology is applied for the same. 

 Tolling design is carried out for the cup of 30mm 

diameter and 30 mm deep. 

 Blank holding force is calculated empirically. 

 Modeling is done in CATIA, imported the same 

to VPG 3.1, a preprocessor for LS DYNA solver.  

 In the figures 6(a) we can see the wrinkles 

formed at different blank holding force but at 

same coefficient friction. and in fig 6(b) we can 

see that there are no wrinkles on the flange of 

cup this cup is taken at calculated blank holding 

force i.e. 11671 

 The finite element model with different mesh 

sizes are shown in fig 6(c).and the wire frame 

model is shown in fig 6(d). 

 Punch, die and blank holder are selected as rigid 

materials and material model selected for the 

blank is as power law plasticity model ( σ =  K* 

Є
n
) with the properties shown in table 6.1 

 All elements are selected as shell elements. The 

meshing parameters of the die, punch and blank 

holder are shown in table 6.2 

 Optimum mesh size is found out by considering 

stability of one of the out put parameters (max 

von-mise‟s stress) and the selected mesh size is 

used for the analysis. 

Each parameter is varied keeping other three 

parameters constant (incase of thickness, instead of 

clearance, % of clearance is taken as constant) the 

results are presented and compared. 

 
Fig 6(a) Cup with wrinkles at 9500 BHF 

 
Fig 6(b) Cup without wrinkles at 11671 BHF 
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Fig 6(c): Finite element model 

 
Fig 6(d): Wire frame model 

 

The fig 6(a) is taken at 9500 BHF with 0.15 

coefficient friction at 5
th

 time step .and fig 6(b) is 

taken with calculated BHF (11671) at 0.15 

coefficient friction and at same time step i.e.5
th

 those 

are shown at top left corner of those figures. In fig 

6(a) we can se wrinkles where as in case of fig6 (b) 

there are no formation of wrinkles. 

video 1.avi
 

video 2.avi
 

video 3.avi
 

6.1. Selection of optimum mesh size for the blank 

Since a numerical solution is an approximate 

one which may be converged to its true value by 

refining the mesh or by using higher order elements.  

In this work the convergence is checked by refining 

the mesh. It is carried out by studying the stability of 

one of the out put parameters. The out put parameter 

chosen here is Max von-mise‟s stress. Mesh chosen is 

topology mesh with the max size of 3mm initially. 

The simulation is carried out and the max vonmise‟s 

stress is noted at each step and plotted in fig 6.1. It is 

found that the fluctuation is high. Then the mesh size 

is reduced successively in steps of 0.25 mm and the 

corresponding values against the punch stroke are 

plotted (fig 6.1) 

Table 6.1: Meshing parameter 

 

 
Fig 6.1: Max vonmise‟s stress v/s punch stroke for 

various mesh sizes 

 

From the fig 6.1 it is observed that the 

variation of the max von mise‟s stress is almost stable 

for the mesh size of 2mm with the parameters shown 

in table 6.3 

6.2 Selecting optimum blank holding force at 

different coefficient of friction: In this case 

checking of wrinkles has been done at 
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different blank holding force with different 

coefficient of friction. The blank holding 

force in table 6.2 is the one where there is 

no formation of wrinkling at different 

coefficient of friction. 

 

Table 6.2: Optimum Blank Holding Force Vs 

Coefficient Of Friction 

 

 
Fig 6.2: variation of blank Holding Force with 

coefficient of friction 

 

From fig 6.2 it is observed that the Optimum 

B H F decreases with increase of coefficient of 

friction. It is found that up to the friction co efficient 

of 0.05the decrease is less from 0.06 to 0.13 there is 

linear variation .Optimum B H F is inversely 

proportional to coefficient of friction. Either decrease 

is linear beyond that the optimum B H F decreases 

drastically. 

 

6.3 Selecting optimum blank holding force at 

different die radius 

 

 
From fig 6.3 it is evident that the optimum B H F 

decreases drastically with increase of die radius at 

smaller die radius. After that it will not affect 

optimum B H F. 
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6.4 Variations of vonmises stresses with blank 

holding force at   different coefficient of friction:  

Table 6.4:  Variations of vonmises stresses with 

blank holding force at Different coefficient of 

friction. 

 
                                                                     C                                   

 

Fig 6.4:  variation of vonmises stresses with Blank 

Holding Force at Different Coefficient of friction 

 

From fig (6.4) it is observed that the max 

vonmises stress is occurring at the die corner. From 

the fig it is known that the B H F has no effect on the 

max vonmises stresses.  Since its max value is 

observed at the die corner.  Same is evident for 

maximum plastic strain in fig (6.5).  The vonmises 

stress and plastic strain may be compared at side 

walls from fig. (6.6) to it is evident that max plastic 

strain decreases with the die radius and increases 

further.  So there is an optimum die radius where 

plastic strain for a given BHF is minimum.  The same 

trend is observed in max vonmises stress (fig. 6.7). 

Table 6.5:  variation of plastic strain with Blank 

Holding Force at different Coefficient of friction 

 

 
Fig 6.5:  variation of plastic strain with Blank 

Holding Force at Different Coefficient of friction. 
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Table 6.6 variation of vonmises stresses with Blank 

Holding Force at Different Die radius 

              

           
Fig 6.6:  variation of vonmises stresses with Blank 

Holding Force at   Different die radius 

 

 

Table 6.7:  variation of plastic strain with Blank 

Holding Force at Die radius 

 

 
Fig 6.7: variation of plastic strain with Blank Holding 

Force at Die radius 

 

VII. CONCLUSION 
The conclusion of thesis work are 

enumerated and presented as shown. 
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 For a given set of punch die and working 

conditions there exists an optimum blank holding 

force which prevents the wrinkles and at same 

from the stresses induced in the cup is minimum. 

 Blank holding force decreases with increase of 

coefficient of friction for a small range of 

coefficient of friction and a linear relation exists. 

 With the increase of die radius up to a certain 

value Optimum BHF drastically reduces beyond 

that it remains constant. 

There will be an optimum die radius where max 

plastic strain and max vonmises are minimum. 
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