
V. Satyanarayana, S. Srividya, U. Yedukondalu / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1946-1949

1946 | P a g e

High Throughput Two- Dimensional Median Filters On FPGA

for Image Processing Applications

V. Satyanarayana
1
, S. Srividya

2
, U. Yedukondalu

3

1
Senior Assistant Professor, (Department of Electronics and Communication Engineering, Aditya Engineering

College, Surampalem, Andhra Pradesh
2
Assistant Professor, (Department of Electronics and Communication Engineering, Aditya Engineering College,

Surampalem, Andhra Pradesh
3
Associate Professor, (Department of Electronics and Communication Engineering, Aditya Engineering College,

Surampalem, Andhra Pradesh

ABSTRACT

An efficient hardware implementation of

a median filter is presented. Input samples are

used to construct a cumulative histogram, which is

then used to find the median. The resource usage

of the design is independent of window size, but

rather, dependent on the number of bits in each

input sample. This offers a realizable way of

efficiently implementing large-windowed median

filtering, as required by transforms such as the

Trace Transform. The method is then extended to

weighted median filtering. The Median filter is an

effective method for the removal of impulse-based

noise from the images. This paper suggests an

optimized architecture for filter implementation

on FPGA. A 3x3 sliding window algorithm is used

as the base for filter operation. Partial

implementation is done via soft core processor.

The designs are synthesized for a Xilinx Spartan-3

EDK.

Keywords—FPGA, Median Filter, Soft Processor

Core, Parallelism, Pipelining

I. Introduction
Digital image processing is an ever

expanding and dynamic area with applications

reaching out into our everyday life such as medicine,

space exploration, surveillance, authentication,

automated industry inspection and many more areas.

In most of the cases captured images from image

sensors are affected by noise. The impulse noise is

the most frequently referred type of noise. This noise,

commonly also known as salt & pepper noise, is

caused by malfunctioning pixels in camera sensors,

faulty memory locations in hardware, or errors in the

data transmission.

Median filtering is considered a popular

method to remove impulse noise from images. This

non-linear technique is a good alternative to linear

filtering as it can effectively suppress impulse noise

while preserving edge information. The median filter

operates for each pixel of the image and assures it fits

with the pixels around it. It filters out samples that

are not representative of their surroundings; in other

words the impulses. Therefore, it is very useful in

filtering out missing or damaged pixels of the image.

The complexity in implementation of

median filter is due to the large amount of data

involved in representing image information in digital

format. General purpose processor as an

implementation option is easier to implement on but

not time-efficient due to additional constraints on

memory, I/O bandwidth and other peripheral devices.

Full custom hardware designs like Application

Specific Integrated Circuits (ASICs) provide the

highest speed to application but at the same time they

have very less scope for flexibility.

Digital Signal Processors (DSPs) and Field

Programmable Gate arrays (FPGAs) are two choices

under the category of semi custom hardware devices.

These devices give a balanced solution for

performance, flexibility and design complexity. DSPs

are best suited to computationally intensive

applications. FPGA has been chosen for our

application because of its various properties. FPGAs

are reconfigurable devices, which enables rapid

prototyping, simplifies debugging and verification.

Its parallel processing characteristic increases the

speed of implementation.

In section 2 details of median filter algorithm are

presented. In section 3 FPGA implementation of the

algorithm is discussed. In section 5 we provide the

simulation results. The discussion of the

implementation is concluded in the last section

II. Filter Algorithm

An image is stored in the form of 2D matrix

of pixel values. We have referred sliding window

algorithm described by R. Maheshwari and S.P.Rao

[2]. The median is defined as the middle of a group

of numbers when the numbers are sorted. The group

should contain odd number of elements. For the 2D

image, a standard median operation is implemented

by sliding a window of odd size (e.g. 3x3 windows)

over an image. A 3x3 window size is chosen which is

considered effective for most commonly used image

sizes. At each position of the window, the nine pixels

values inside that window are copied and sorted. The

value of the central pixel of the window is replaced

V. Satyanarayana, S. Srividya, U. Yedukondalu / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1946-1949

1947 | P a g e

with the median value of the nine pixels in the

window. When applied on Grayscale images, pixels

are ranked for their brightness. When applied on

Color scale images, the pixel whose red, green, and

blue components have the smallest sum of squared

differences from the color coordinates of its

neighbors is then chosen to replace the central pixel

of the neighborhood. The window shifts right by one

column after every clock cycle. Window-I is read in

three clock cycles. To read window-II, only the

fourth column has to be accessed and column two

and three can be retained from the previous window.

Fig.1 block diagram

III. Architecture
To build an embedded system on Xilinx

FPGAs, the embedded development kit (EDK) is

used to complete the reconfigurable design. Figure 1

shows the design flow.

Fig.2 design flow of EDK

Unlike the design flow in the traditional

software design using C/C++ language or hardware

design using hardware description languages, the

EDK enables the integration of both hardware and

software components of an embedded system. For the

hardware side, the design entry from VHDL/Verilog

is first synthesized into a gate-level netlist, and then

translated into the primitives, mapped on the specific

device resources such as Look-up tables, flip-flops,

and block memories. The location and

interconnections of these device resources are then

placed and routed to meet with the timing

Constraints. A downloadable .bit file is created for

the whole hardware platform. The software side

follows the standard embedded software flow to

compile the source codes into an executable and

linkable file (ELF) format. Meanwhile, a

microprocessor software specification (MSS) file and

a microprocessor hardware specification (MHS) file

are used to define software structure and hardware

connection of the system. The EDK uses these files

to control the design flow and eventually merge the

system into a single downloadable file. The whole

design runs on a real-time operating system (RTOS).

IV. Filtering Co−Processor
There are different ways to include

processors inside Xilinx FPGA for System-on-a-Chip

(SoC): PowerPC hard processor core, or Xilinx

MicroBlaze soft processor core, or user-defined soft

processor core in VHDL/Verilog. In this work, The

32-bit MicroBlaze processor is chosen because of the

flexibility. The user can tailor the processor with or

without advance features, based on the budget of

hardware. The advance features include memory

management unit, floating processing unit, hardware

multiplier, hardware divider, instruction and data

cache links etc. The architecture overview of the

system is shown in Figure 2. It can be seen that there

are two different buses (i.e., processor local bus

(PLB) and fast simplex link (FSLbus) used in the

system [5-6]. PLB follows IBM Core connect bus

architecture, which supports high bandwidth master

and slave devices, provides up to 128- bit data bus,

up to 64-bit address bus and centralized

busArbitration. It is a type of shared bus. Besides the

access overhead, PLB potentially has the risk of

hardware/software incoherent due to bus arbitration.

On the other hand, FSL supports point-to-point

unidirectional communication. A pair of FSL buses

(from processor to peripheral and from peripheral to

processor) can form a dedicated high speed bus

without arbitration mechanism. Xilinx provides C

and assembly language support for easy access.

Therefore, most of peripherals are connected to the

processor through PLB; the DWT coprocessor is

connected through FSL instead.

V. Satyanarayana, S. Srividya, U. Yedukondalu / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1946-1949

1948 | P a g e

Fig.3 system overview

The current system offers several methods

for distributing the data. These methods are a UART,

and VGA, and Ethernet controllers. The UART is

used for providing an interface to a host computer,

allowing user interaction with the system and

facilitating data transfer. The VGA core produces a

standalone real-time display. The Ethernet

connection allows a convenient way to export the

data for use and analysis on other systems. In our

work, to validate the DWT coprocessor, an image

data stream is formed using VISUAL BASIC, then

transmitted from the host computer to FPGA board

through UART port.

V. Experimental Results
Experiments are performed on gray level

images to verify the proposed method. These images

are represented by 8 bits/pixel and size is 128 x 128.

Image used for experiments are shown in below

figure.

Fig.4 input image

The measurands used for proposed method

are as follows:

The entropy (E) is defined as Where s is the

set of processed coefficients and p (e) is the

probability of processed coefficients. By using

entropy, number of bits required for compressed

image is calculated. An often used global objective

quality measure is the mean square error (MSE)

defined as

Where, nxm is the number of total pixels. f

(i,j) and f(i,j)’ are the pixel values in the original and

reconstructed image. The peak to peak signal to noise

ratio (PSNR in dB) [11-13] is calculated as

Fig.5 output image

Other Example:

Fig.6 input image

Fig.7: output image

V. Satyanarayana, S. Srividya, U. Yedukondalu / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1946-1949

1949 | P a g e

And the synthesis report is below

Fig.8 synthesis report

VI. Conclusion
In this paper, We have presented an

alternative implementation of median filtering for

arbitrarily large windows. The architecture is immune

to changes in window size, the area being determined

solely by the bit width. This allows for a flexible

window-size that can change from one calculation to

another and we finally presented the results which are

implemented on the Spartan-3 EDK evolution board.

References
[1] M. Karaman, L. Onural, and A. Atalar,

Design and implementation of a general-

purpose median filter unit in CMOS VLSI,

IEEE Journal of Solid-State Circuits, vol.

25, no. 2, pp. 505–13, 1990.

 [2] D. Richards, VLSI median filters, IEEE

Transactions on Acoustics, Speech and

Signal Processing, vol. 38, no. 1, pp. 145–

53, 1990.

[3] G. Angelopoulos and I. Pitas, A fast

implementation of twodimensional weighted

median filters, in Proceedings of 12
th

International Conference on Pattern

Recognition, 9-13 Oct. 1994, vol. vol.3.

Jerusalem, Israel: IEEE Comput. Soc. Press,

1994, pp. 140–2.

[4] L. Hayat, M. Fleury, and A. Clark, Two-

dimensional median filter algorithm for

parallel reconfigurable computers, IEE Proc.

Vision, Image and Signal Processing, vol.

142, no. 6, pp. 345–50, 1995.

 [5] C.-T. Chen, L.-G. Chen, and J.-H. Hsiao,

VLSI implementation of a selective median

filter, IEEE Transactions on Consumer

Electronics, vol. 42, no. 1, pp. 33–42, 1996.

[6] G. Bates and S. Nooshabadi, FPGA

implementation of a median filter, in

Proceedings of IEEE TENCON ’97 IEEE

Region 10 Annual Conference. Speech and

Image Technologies for Computing and

Telecommunications, 2-4 Dec. 1997, vol.

vol.2. Brisbane, Qld., Australia: IEEE,

1997, pp. 437–40.

[7] H.-S. Yu, J.-Y. Lee, and J.-D. Cho, A fast

VLSI implementation of sorting algorithm

for standard median filters, in Twelfth

Annual IEEE International ASIC/SOC

Conference, 15-18 Sept. 1999. Washington,

DC, USA: IEEE, 1999, pp. 387–90.

 [8] A. Kadyrov and M. Petrou, The Trace

Transform

and its applications, IEEE Transactions on

Pattern Analysis and Machine Intelligence,

vol. 23, no. 8, pp. 811–828, 2001.

[9] L. Breveglieri and V. Piuri, Digital median

filters, Journal of VLSI Signal Processing

Systems for Signal, Image, andVideo

Technology, vol. 31, no. 3, pp. 191–206,

2002.

 [10] M. Petrou and A. Kadyrov, Affine invariant

features from the Trace Transform, IEEE

Transactions on Pattern Analysis and

Machine Intelligence., vol. 26, no. 1, pp. 30–

44, 2004.

 [11] A. Burian and J. Takala, VLSI-efficient

implementation of full adder-based median

filter, in 2004 IEEE International

Symposium on Circuits and Systems, 23-26

May 2004, vol. Vol.2. Vancouver, BC,

Canada: IEEE, 2004, pp. 817–20.

