
 Korra Tulasi Bai, J. E. N. Abhilash / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1801-1804

1801 | P a g e

A New Novel Low Power Floating Point Multiplier

Implementation Using Vedic Multiplication Techniques

Korra Tulasi Bai, J. E. N. Abhilash
Dept. Of Electronics & C communication SCET, Narsapur, W. G. Dist

Associate. Professor, Dept of E.C.E SCET, Narsapur, W. G. Dist

Abstract
In this paper, Vedic Multiplication

Technique is used to implement IEEE 754

Floating point multiplier. The Urdhva-triyak

bhyam sutra is used for the multiplication of

Mantissa. The underflow and over flow cases are

handled. The inputs to the multiplier are provided

in IEEE 754, 32 bit format. The multiplier is

implemented in VHDL and Virtex-5 FPGA is

used.

Keywords: Vedic Mathematics, Urdhva-

triyakbhyam sutra,Floating Point multiplier, Field

Programmable Gate Araay (FPGA).

I. INTRODUCTION
DSP applications essentially require the

multiplication of binary floating point numbers. The

IEEE 754 standard provides the format for

representation of Binary Floating point numbers [1,

2]. The Binary Floating point numbers are

represented in Single and Double formats. The Single

consist of 32 bits and the Double consist of 64 bits.

The formats are composed of 3 fields; Sign,

Exponent and Mantissa. The Figure 1 shows the

structure of Single and Double formats of IEEE 754

standard. In case of Single, the Mantissa is

represented in 23 bits and 1bit is added to the MSB

for normalization, Exponent is represented in 8 bits

which is biased to 127, actually the Exponent is

represented in excess 127 bit format and MSB of

Single is reserved for Sign bit. When the sign bit is 1

that means the number is negative and when the sign

bit is 0 that means the number is positive. In 64 bits

format the Mantissa is represented in 52 bits, the

Exponent is represented in 11 bits which is biased to

1023 and the MSB of Double is reserved for sign bit

Multiplication of two floating point numbers

represented in IEEE 754 format is done by

multiplying the normalized 24 bit mantissa, adding

the biased 8 bit exponent and resultant is converted in

excess 127 bit format, for the sign calculation the

input sign bits are XORed. In this paper, we propose

the Vedic Multiplication algorithm [3] for

multiplication of 24 bit mantissa. The details of

Vedic Multiplication with their advantages over the

conventional multiplication method are discussed in

the section III.

The paper describes the implementation and

design of IEEE 754 Floating Point Multiplier based

on Vedic Multiplication Technique. Section II

explores the basics of IEEE 754 floating point

representation and implementation of floating point

multiplier using Vedic multiplication technique.

Section III describes the idea behind Vedic

multiplication. Section IV comprises of result and

conclusion.

II. FLOATING POINT

MULTIPLICATION
The multiplier for the floating point numbers

represented in IEEE 754 format can be divided in

four different units:

Mantissa Calculation Unit

Exponent Calculation Unit

Sign Calculation Unit

Control Unit

Fig 2. Proposed architecture for Floating point

Multiplier

The standard format for representation of

floating point number is (−1)
S
 2

E
(b0 · b1b2 … bp−1)

The biased exponent e =E+127, and the fraction

f = b1b2 ----bp−1.

 Korra Tulasi Bai, J. E. N. Abhilash / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1801-1804

1802 | P a g e

 The Mantissa Calculation Unit requires a 24

bit multiplier if 32 bit single IEEE 754 format is

considered [4]. In this paper we propose the efficient

use of Vedic Multiplication Technique for this 24 bit

multiplier. The Exponent Calculation Unit is

implemented in this paper using 8 BIT Ripple Carry

Adder [5, 6].The advantages of ripple carry adder in

addition to its implementation ease are low area and

simple layout [7]. The Control Unit raises the flag

when NaN, Infinity, zero,underflow and overflow

cases are detected. The control unit raises appropriate

flag accordingly when the cases occurs. The various

cases and its constituent flags are:

If e = 255 and f ≠ 0, then NaN

If e = 255 and f = 0, then Infinity

If 0 < e < 255, then Number is (-1) s 2e-127(1 · f)

If e = 0 and f ≠ 0, then (-1)s 2-126(0 · f) (demoralized

numbers)

If e = 0 and f = 0, then zero.

Figure 2 shows the proposed architecture for the

Floating point multiplier. Consider the multiplication

of two floating point numbers A and B, where A = -

19.0 and B = 9.5. The normalized binary

representation are A=-1.0011x24 and B =

1.0011x23. IEEE representations of operands are:

 Sign Exponent Mantissa

A = 1 10000011 00110000000000000000000

B = 0 10000010 00110000000000000000000

 Here, MSB of the 32 bit operand shows the

sign bit, the exponents are expressed in excess 127

bit and the mantissa is represented in 23 bit. Sign of

the result is calculated by XORing sign bits of both

the operands A and B [8]. In this case sign bit

obtained after XORing is 1. Exponents of A and B

are added to get the resultant exponent. Addition of

exponent is done using 8 bit ripple carry adder Figure

3.

After addition the result is again biased to

excess 127 bit Code. For this purpose 127 is

subtracted from the result. Two’s complement

subtraction using addition is incorporated for this

purpose. If ER is the final resultant exponent then,

ER = EA + EB – 127 where EA and EB are the

exponent parts of operands A and B respectively. In

this case ER = 10000110. Mantissa multiplication is

done using the 24 bit Vedic Multiplier. The mantissa

is expressed in 23 bit which is normalized to 24 BIT

by adding a 1 at MSB.

The normalized 24 bit mantissas are

 100110000000000000000000

 100110000000000000000000

Multiplication of two, 24 bit mantissa is done using

the Vedic Multiplier. In this case 48 bit result

obtained after the multiplication of mantissa is

1011010010000000000000000000000000000000000

0000 Now setting up three intermediate results the

final result (normalizing the mantissa by eliminating

most significant 1) we obtained is:

1 10000110 01101001000000000000000

This result is deduced as

AxB = -19.0 x 9.5 = -180.5 = -1.01101001x2134-127

= (-10110100.1) 2 = (-180.5) 10

III. MULTIPLIER DESIGN
The performance of Mantissa calculation

Unit dominates overall performance of the Floating

Point Multiplier. This unit requires unsigned

multiplier for multiplication of 24x24 BITs. The

Vedic Multiplication technique is chosen for the

implementation of this unit. This technique gives

promising result in terms of speed and power [9].The

Vedic multiplication system is based on 16 Vedic

sutras or aphorisms, which describes natural ways of

solving a whole range of mathematical problems. Out

of these 16 Vedic Sutras the Urdhva-triyakbhyam

sutra is suitable for this purpose. In this method the

partial products are generated simultaneously which

itself reduces delay and makes this method fast. The

method for multiplication of two, 3 BITs number is

shown Figure 4. Consider the numbers A and B

where A = a2a1a0 and B = b2b1b0. The LSB of A is

multiplied with the LSB of B:

 s0=a0b0;

Then a0 is multiplied with b1, and b0 is multiplied

with a1 and the results are added together as:

 c1s1=a1b0+a0b1;

 Here c1 is carry and s1 is sum. Next step is to add c1

with the multiplication results of a0 with b2, a1 with

b1 and a2 with

b0. c2s2=c1+a2b0+a1b1 + a0b2;

 Next step is to add c3 with the multiplication results

of a1 with b2 and a2 with b1.

c3s3=c2+a1b2+a2b1;

Similarly the last step

c4s4=c3+a2b2;

Now the final result of multiplication of A

and B is c4s4s3s2s1s0.

 Korra Tulasi Bai, J. E. N. Abhilash / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1801-1804

1803 | P a g e

 The block diagram of 24x24 BIT multiplier is

shown in Figure 5.This multiplier is modelled using

structural style of modelling using VHDL. In this

paper first a 3x3 Vedic multiplier is implemented

using the above mentioned method. The 6x6 is

designed using four 3x3 multipliers. After that the

12x12 is implemented using four 6x6 BIT multiplier.

Finally the 24x24 BIT multiplier is made using four

12x12 BIT multipliers. The 24x24 BIT multiplier

requires four 12x12 BIT multipliers and two 24 BIT

ripple carry adders and 36 BIT ripple carry adders.

Fig 5. Block diagram of 24x24 BIT Vedic

multiplier.

 A 24*24 Vedic multiplier is design by using

four 12*12 Vedic multipliers based urdhva

triyakbhyam.

Here first block 12X12 multiplier consists of

lower 12 bits of x i.e. x(11 down to 0) and y(11 down

to 0), second block 12*12 Vedic multiplier inputs

are x(23 down to 12) and y(11 down to 0) out off 24

bit output of first block lower adder 12 bits are

separated and higher order bits are appended as 12

lower bits infront augmented with “000000000000”

now second block 24 bits and above 24 generate bits

are added and 24 bits sum is generated using 24 bit

ripple carry adder.

Higher order 12 bit of y(23 down to 12) and

lower order 12 bits of x i.e x(11 down to 0) are

multiplier and appended infront with

“000000000000” to make 36 data similarly both

higher order 12 bits of x and y i.e x(23 downto 12)

and y(23 downto 12) are multiplier and 36 bit data is

formed by appending “000000000000”.

The above two 36 bits are added to generate

a 36 bit data in the right side resultant 36 bits are

added to generate final 36 bits the resultant of 24*24

multiplier is 48 bits consists of 36 higher bits from 36

bit adder output and lower order 12 bits 36+12=48

bits

 The number of LUTs and slices required for

the Vedic Multiplier is less and due to which the

power consumption is reduced [9]. Also the repetitive

and regular structure of the multiplier makes it easier

to design. And the time required for computing

multiplication is less than the other multiplication

techniques.

 An Overflow or Underflow case occurs when the

result Exponent is higher than the 8 BIT or lower

than 8 BIT respectively. Overflow may occur during

the addition of two Exponents which can be

compensated at the time of subtracting the bias from

the exponent result. When overflow occurs the

overflow flag goes up. The under flow can occur

after the subtraction of bias from the exponent, it is

the case when the number goes below 0 and this

situation can be handled by adding 1 at the time of

normalization. When the underflow case occur the

under flow flag goes high.

IV. RESULT AND CONCLUSION
The multiplier is designed in VHDL and

simulated using Modelsim Simulator. The design was

synthesized using Xilinx ISE 10.1 tool targeting the

Xilinx Virtex 5 xc5vlx30-3-ff324 FPGA. A test

bench is used to generate the stimulus and the

multiplier operation is verified. The over flow and

under flow flags are incorporated in the design in

order to show the over flow and under flow cases.

The paper shows the efficient use of Vedic

multiplication method in order to multiply two

floating point numbers. The lesser number of LUTs

verifies that the hardware requirement is reduced,

thereby reducing the power consumption. The power

is reduced affectively still not compromising delay so

much. The Table 1 shows the summary of the

multiplier tested.

Table:1 Comparisons of results

V. SIMULATION RESULTS:
 1.9 bit Ripple carry adder

2. 24 bit Ripple carry adder

Parameters
This

work
[10]

Device virtex5 vertex2p

Power consumption 29.72mW 55mW

Time delay 5.246ns 3.070ns

Number of LUT’S 1032 1316

Number of I/O’S 99 100

Power delay product 155.92pJ 168.85pJ

 Korra Tulasi Bai, J. E. N. Abhilash / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1801-1804

1804 | P a g e

3. 36 bit Ripple carry adder

4. 3*3 Vedic multiplier

5. 24*24 Vedic multiplier

REFERENCES
[1] IEEE 754-2008, IEEE Standard for

Floating-Point Arithmetic, 2008.

[2] Brian Hickmann, Andrew Krioukov, and

Michael Schulte, Mark Erle,”A Parallel

IEEE 754 Decimal Floating-Point

Multiplier,” In 25
th

 International Conference

on Computer Design ICCD, Oct. 2007

[3] Jagadguru Swami Sri Bharati Krisna Tirthaji

Maharaja, “Vedic Mathematics Sixteen

Simple Mathematical Formulae from the

Veda,”1965.

[4] Metin Mete ÖZBLEN, Mustafa GÖK, “A

Single/Double Precision Floating-Point

Multiplier Design for Multimedia

Applications,” Journal

