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ABSTRACT 
The data reliability has become an 

important issue in most communication and storage 

systems for high speed operation and mass data 
process. Various error correction code are provided 
for improving data reliability. A Reed-Solomon code 
is quite suitable for burst errors, but in case of 

random errors, it has some difficulty. For MLC 
NAND flash memories, Bose- Chaudhuri-
Hocquenghem (BCH) codes are frequently used. 

BCH codes provide flexible code length and 
variable range of error correcting capability. 
However, NAND flash memory systems process with 
the large size of data such as a page or a block unit. 

Hence, BCH codes may not be appropriate for a 
NAND flash controller. 
We propose product Reed- Solomon (RS) code for 

non-volatile NAND flash memory systems. Reed-
Solomon codes are the most diversely used in data 
storage systems, but powerful for burst errors only. 
In order to correct multiple random errors and 

burst errors, another efficient decoding algorithm is 
required. The product code composing of column-
wise Reed-Solomon codes and row-wise Reed-

Solomon codes may allow decoding multiple errors 
beyond their error correction capability. The 
proposed code consists of two shortened Reed-
Solomon codes and a conventional Reed- Solomon 

code. We implement the proposed coding scheme on 
a FPGA-based simulator with using an FPGA 
device. The proposed code can correct 16 symbol 

errors.  
 

KEY WORDS: Bose-Chaudhuri-Hocquenghem 
(BCH), Reed-Solomon codes, Berlekamp-Massey 
Algorithm, flipped, Euclid's Algorithm, mass data 
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I. INTRODUCTION 
The data reliability has become an important 

issue in most communication and storage systems for 
high speed operation and mass data process. Various 
error correction code are provided for improving data 
reliability. A Reed-Solomon code is quite suitable for 
burst errors, but in case of random errors, it has some 
difficulty. For MLC NAND flash memories, Bose- 
Chaudhuri-Hocquenghem (BCH) codes are 
frequently used. BCH codes provide flexible code 
length and variable range of error correcting  

 

capability. However, NAND flash memory systems 
process with the large size of data such as a page or a 
block unit. Hence, BCH codes may not be 
appropriate for a NAND flash controller. 

The Reed- Solomon (RS) code for non-
volatile NAND flash memory systems. Reed-
Solomon codes are the most diversely used in data 
storage systems, but powerful for burst errors only. In 
order to correct multiple random errors and burst 
errors, another efficient decoding algorithm is 
required. The product code composing of column-
wise Reed-Solomon codes and row-wise Reed-
Solomon codes may allow to decoding multiple 
errors beyond their error correction capability. The 
proposed code consists of two shortened Reed-
Solomon codes and a conventional Reed- Solomon 
code. We implement the proposed coding scheme on 
a FPGA-based simulator with using an FPGA device. 
The proposed code can correct 16 symbol errors. 

 
Fig.1 Concept of forward error correction 

 

II. Reed Solomon Encoder 
The encoder is the easy bit. Since the code is 

systematic, the whole of the block can be read into the 
encoder, and then output the other side without 
alteration. Once the kith data symbol has been read in, 
the parity symbol calculation is finished, and the 
parity symbols can be output to give the full n 
symbols. Gross simplification coming up. The idea of 
the parity words is to create a long polynomial (n 
coefficients long it contains the message and the 
parity) which can be divided exactly by the RS 
generator polynomial. That way, at the decoder the 
received message block can be divided by the RS 
generator polynomial. If the remainder of the division 
is zero, then no errors are detected.  

If there is a remainder, then there are errors. 
Dividing a polynomial by another is not conceptually 
easy, but if you follow the maths in some of the 
references its not too hard to understand. The encoder 
acts to divide the polynomial represented by the k 
message symbols d(x) by the RS generator 
polynomial g(x). This generator polynomial is not the 
same as the Galois Field generator polynomial, but is 
derived from it 
x(n-k).d(x)/g(x) = q(x) + r(x)/g(x)                           (1) 

The term x(n-k) is a constant power of x, 
which is simply a shift upwards n-k places of all the 
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polynomial coefficients in d(x). It happens as part  of 
the shifting process in the architecture below. The 
remainder after the division r(x) becomes the parity. 
By concatenating the parity symbols on to the end of 
the k message symbols, an n coefficient polynomial is 
created which is exactly divisible by g(x).  

The encoder is a 2t tap shift register, where 
each register is m bits wide. The multiplier 
coefficients g0 to g (2t-1) are coefficients of the RS 
generator polynomial. The coefficients are fixed, 
which can be used to simplify the multipliers if 
required. The only hard bit is working out the 
coefficients, and for hardware implementations the 
values can often be hard coded. 

At the beginning of a block all the registers 
are set to zero. From then on, at each clock cycle the 
symbol in each register is added to the product of the 
feedback symbol and the fixed coefficient for that tap, 
and passed on to the next register. The symbol in the 
last register becomes the feedback value on the next 
cycle. When all n input symbols have been read in, 
the parity symbols are sitting in the register, and it just 
remains to shift them out one by one. 

Equation(2),expresses the most conventional 
form of Reed-Solomon (R-S) codes in terms of the 
parameters n, k, t, and any positive integer m > 2.  

(n, k) = (2
m
 - 1, 2

m
 - 1 - 2t)                                (2) 

where n - k = 2t is the number of parity symbols, and 
t is the symbol-error correcting capability of the code. 
The generating polynomial for an R-S code takes the 
following form 
g(X ) = g0 + g1 X + g2 X

2
 + … + g2t - 1 X

2t - 1
 + X

2t    
(3) 

The degree of the generator polynomial is 
equal to the number of parity symbols. R-S codes are 
a subset of the Bose, Chaudhuri, and Hocquenghem 
(BCH) codes; hence, it should be no surprise that this 
relationship between the degree of the generator 
polynomial and the number of parity symbols holds, 
just as for BCH codes.  

Since the generator polynomial is of degree 
2t, there must be precisely 2t successive powers of α 
that are roots of the polynomial. We designate the 
roots of g(X) as α, α2

, …, α2t
. It is not necessary to 

start with the root α; starting with any power of α is 
possible. Consider as an example the (7, 3) double-
symbol-error correcting R-S code. We describe the 
generator polynomial in terms of its 2t = n - k = 4 
roots, as follows 
  g(X) = ( X – α ) ( X – α2

) ( X – α3
 )( X – α4 

)                                                                           
= ( X

2
 - ( α + α2

 ) X + α3
 ) ( X

2
 - ( α3

 + α4
 ) X + α7

 ) 
     = ( X

2
 – α4

 X + α3
 ) ( X

2
 -  α6

 X + α0
 ) 

      = X
4
 - ( α4

 + α6
 ) X

3
 + ( α3

 + α10
 + α0

 ) X
2
 - ( α4

 + 
α9

 ) X + α3
 

     = X
4
 – α3

 X
3
 + α0

 X
2
 – α1

 X + α3
 

Following the low order to high order 
format, and changing negative signs to positive, since 
in the binary field +1 = –1, g(X ) can be expressed as 
follows: 
g(X ) = α3

 + α1
 X + α0 

X
2
 + α3 X

3
 + X

4
          (4) 

III. Encoding in Systematic Form 

Since R-S codes are cyclic codes, encoding 
in systematic form is analogous to the binary 
encoding procedure. We can think of shifting a 
message polynomial, m(X ), into the rightmost k 
stages of a codeword register and then appending a 
parity polynomial, p(X ), by placing it in the leftmost 
n - k stages. Therefore we multiply m(X ) by X

n-k
, 

thereby manipulating the message polynomial 
algebraically so that it is right-shifted n - k positions. 
Next, we divide X

n-k
 m(X ) by the generator 

polynomial g(X ), which is written in the following 
form 
X

n-k
 m(X ) = q(X ) g(X ) + p(X )                        (5) 

where q(X ) and p(X ) are quotient and remainder 
polynomials, respectively. As in the binary case, the 
remainder is the parity. Equation (23) can also be 
expressed as follows 

p(X ) = X
n-k

 m(X ) modulo g(X )                         (6) 
The resulting codeword polynomial, U(X ) can be 
written as 

U(X ) = p(X ) + X
n-k

 m(X )                               (7) 
We demonstrate the steps implied by Equations (5) 
and (6) by encoding the following three-symbol 
message: 

 
with the (7, 3) R-S code whose generator polynomial 
is given in Equation (5). We first multiply (upshift) 
the message polynomial α1

 + α3
 X + α5

 X
2
 by X n - k 

= X
4
, yielding α1

 X
4
 + α3

 X
5
 + α5

 X
6
. We next divide 

this upshifted message polynomial by the generator 
polynomial in Equation (5), α3

 + α1
X + α0

 X
2
 + α3

 X
3
 

+ X
4
. Polynomial division with nonbinary 

coefficients is more tedious than its binary 
counterpart, because the required operations of 
addition (subtraction) and multiplication (division). It 
is left as an exercise for the reader to verify that this 
polynomial division results in the following 
remainder (parity) polynomial.  

p(X ) = α0
 + α2

 X + α4
 X

2
 + α6

 X
3                         

(8) 
Then, from Equation (7), the codeword polynomial 
can be written as follows 

U(X ) = α0
 + α2

 X + α4
 X

2
 + α6

 X
3
+ α1

 X
4
 + α3

 X
5
 + 

α5
 X

6
                                                                (9) 
Systematic Encoding with an (n - k)–Stage 

Shift Register Using circuitry to encode a three-
symbol sequence in systematic form with the (7, 3) 
R-S code described by g(X ) in Equation (4) requires 
the implementation of a linear feedback shift register 
(LFSR) circuit, as shown in Figure 6. It can easily be 
verified that the multiplier terms in Figure 6, taken 
from left to right, correspond to the coefficients of 
the polynomial in Equation (4) (low order to high 
order). This encoding process is the nonbinary 
equivalent of cyclic encoding. Here,the (7, 3) R-S 
nonzero codewords are made up of 2m - 1 = 7 
symbols, and each symbol is made up of m = 3 bits. 
 
 

 

IV. Reed Solomon Decoder 
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Earlier, a test message encoded in 
systematic form using a (7, 3) R-S code resulted in a 
codeword polynomial described by Equation (7). 
Now, assume that during transmission this codeword 
becomes corrupted so that two symbols are received 
in error. (This number of errors corresponds to the 
maximum error-correcting capability of the code.) 
For this seven-symbol codeword example, the error 
pattern, e(X), can be described in polynomial form as 
follows 

 
Fig2. Encoder with LFSR 

 
e( X ) = ∑ en X

n
,    (10) Where n = 0, 1, 2, 3, 4, 5, 6  

For this example, let the double-symbol error be such 
that 
e ( X ) = 0 + 0X + 0X

2
 + α2

X
3
 + α5

X
4
 + 0X

5
  + 0X

6 

=  (0 0 0)+(0 0 0)X+(0 0 0)X
2
+(0 0 1)X

3
+(1 1 

1)X
4
+(0 0 0)X

5
+(0 0 0)X

6                                            
(11) 

In other words, one parity symbol has been corrupted 
with a 1-bit error (seen as α2

), and one data symbol 
has been corrupted with a 3-bit error (seen as α5

). The 
received corrupted-codeword polynomial, r(X), is 
then represented by the sum of the transmitted-
codeword polynomial and the error-pattern 
polynomial as follows 
r(X) = U(X) + e(X)                     (12) 

Following Equation (12), we add U(X ) from 
Equation (11) to e(X ) and  r(X ), as follows 
r(X) = (100) + (001)X + (011)X

2
 + (100)X

3
 + 

(101)X
4
 + (110)X

5
 + (111)X

6 

α α2
Xα4

X
2α0

X
3α6

X
4α3

X
5α5

X
6
                                               

(13) 
In this example, there are four unknowns—two error 
locations and two error values. Notice an important 
difference between the non binary decoding of r(X ) 
that we are faced with in Equation (13) and binary 
decoding; in binary decoding, the decoder only needs 
to find the error locations. Knowledge that there is an 
error at a particular location dictates that the bit must 
be “flipped” from 1 to 0 or vice versa. But here, the 
nonbinary symbols require that we not only learn the 
error locations, but also determine the correct symbol 
values at those locations. Since there are four 
unknowns in this example, four equations are 
required for their solution. 
Decoding is a far harder task than encoding. Typically 
about ten times more resources (be it logic, memory 
or processor cycles) are required to decode and 

correct the corrupted data The decode operation takes 
several stages. There are plenty of sources available 
for software implementations of the various 
algorithms required. Hardware implementations 
(FPGA or ASIC) are a little harder to come by, 
especially those with parameterised specifications. 
Texas Instruments give their software decoder away 
for free, whilst by comparison FPGA manufacturers 
such as Xilinx or Altera can charge many thousands 
of  dollars for their hardware implementation. 
 

V. Berlekamp-Massey 
The second step is to find the error 

polynomial lambda. This requires solving 2t 
simultaneous equations, one for each syndrome. The 
2t syndromes form a simultaneous equation with t 
unknowns. The unknowns are the locations of the 
errors. In general there are many possible solutions to 
the set of equations, but we assume that the one with 
the least number of errors is the correct one.  
This assumption is the reason that more than t errors 
can actually cause the decoder to corrupt the received 
signal further (if allowed to). If more than t errors 
occur, then there will exist a possible solution to the 
equations with less than t errors. Unfortunately this 
solution is unlikely to correct the right symbols. The 
process of solving the simultaneous equations is 
usually split into two stages. First, an error location 
polynomial is found.  

This Polynomial has roots which give the 
error locations. Then the roots of the error polynomial 
are found. There are several methods of finding the 
error polynomial lambda, the two most popular are 
Euclid's Algorithm (easier to implement) and the 
Berlekamp-Massey Algorithm (more efficient use of 
hardware resources). The algorithm iteratively solves 
the error locator polynomial by solving one equation 
after another and updating the error locator 
polynomial. If it turns out that it cannot solve the 
equation at some step, then it computes the error and 
weights it, increases the size of the error polynomial, 
and does another iteration.  

 
Fig3.Flow chart for Reed Solomon Decoder 
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A maximum of 2t iterations are required. 
For n symbol errors, the algorithm gives a 
polynomial with n coefficients. At this point the 
decoder fails if there are more than t errors, and no 
corrections can be made. Doing so might actually 
introduce more errors than there were originally  

Suppose there are ν errors in the codeword 
at location X j1 , X j2 , ... , X j. Then, the error 
polynomial e(X ) shown in Equations (10) and (11) 
can be written as follows 
e(X) = ej1X

j1
 + ej2X

j2
+ … + ejvX

jv
                      (14) 

The indices 1, 2, … ν refer to the first, second, …, νth 
errors, and the index j refers to the error location. To 
correct the corrupted codeword, each error value ejl 
and its location X

jl
 , where l = 1, 2, ..., ν, must be 

determined. We define an error locator number as jl l. 
Next, we obtain the n - k = 2t syndrome symbols by 
substituting αi into the received polynomial for i = 1, 
2, … 2t. 
S1 = r(α) = ej1β1 + ej2β2 + … + ejvβv 

S2 = r(α2
) = ej1β1

2
 + ej2β2

2
 + … + ejvβv

2 

S2t = r(α2t
) = ej1β1

2t
 + ej2β2

2t
 + … + ejvβv

2t 
             (15)         

            There are 2t unknowns (t error values 
and t locations), and 2t simultaneous equations. 
However, these 2t simultaneous equations cannot be 
solved in the usual way because they are nonlinear 
(as some of the unknowns have exponents). Next, it 
is necessary to learn the location of the error or 
errors. An error-locator polynomial, σ(X ), can be 
defined as follows 
σ(X) = ( 1 + β1X ) ( 1 + β2X ) . . . ( 1 + βvX) 
         = 1 + σ1X + σ2X

2
 + . . . + σvX

v
   (16)  

 The roots of σ(X ) are 1/β1, 1/β2, … ,1/βν. 
The reciprocal of the roots of σ(X) are the error-
location numbers of the error pattern e(X). Then, 
using autoregressive modeling techniques, we form a 
matrix from the syndromes, where the first t 
syndromes are used to predict the next syndrome. 
That is, 

        (17) 
 
We apply the autoregressive model of Equation (17) 
by using the largest dimensioned matrix that has a 
nonzero determinant. For the (7, 3) double-symbol 
error correcting R-S code, the matrix size is 2 × 2, 
and the model is written as follows 

 

          (18) 

To solve for the coefficients σ1 and σ2 and 
of the error-locator polynomial, σ(X ), we first take 
the inverse of the matrix in Equation (18). The 
inverse of a matrix [A] is found as follows 

 
 

 
Fig4. Berlekamp-Massey Algorithm 

 
Therefore

Cofactor                        (19) 

 

                                                                              (20) 

VI. Design Summery Report 
Number of errors:      0 
Number of warnings:  257 

1. Number of Slice 
Registers 

4,737 out of  
28,800   16% 

2. Number of Slice 
LUTs 

6,302 out of  
28,800   21% 

3. Number used as 
logic 

6,261 out of  
28,800   21% 

4. Number of route-
thrus 

53 out of  57,600    
1% 
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Table 5.2 Logic Utilization 

1. Number of occupied 
Slices 

2,502 out of   7,200   
34% 

2. Number with an unused 
Flip Flop 

2,949 out of   7,686   
38% 

3. Number with an unused 
LUT 

1,384 out of   7,686   
18% 

4. Number of fully used 
LUT-FF pairs 

3,353 out of   7,686   
43% 

Table5.3 Logic Distribution 

 

VII. 6. RESULTS 

 
Fig5. Generation Of code words 
 

 
Fig6. Generation Of Parity Bits 

 

 
Fig 7. Adding Noise 

 
Fig8. Detection of Error Values 

 

 
Fig8.Decoded Symbols 

 

VIII. Conclusion 
This paper proposes a product Reed-

Solomon code for multiple random errors and burst 
errors. The proposed code takes two dimensional 
array data consisted of two shortened Reed-Solomon 
codes in a column-wise and a conventional Reed-
Solomon code in a row-wise. The proposed code 
becomes powerful against multiple random errors 
and burst errors. The proposed code can corrects 16 
symbol errors. The code has the coding gain of 1.8 
dB and the bandwidth of 1.07 Gbps when operated at 
290 MHz with the power consumption of 26.4 mW. 
Future Scope of the project is to provide effective 
code for detecting 20 error symbols in 255 code 
words. Code can implement with low area and low 
power 
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