
 Md. Taj, P Srinivas, S. Nagaraju / International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1607-1612

1607 | P a g e

Design and Implementation of FPGA System to Reduce Reed-
Solomon Errors

 Md. Taj
1
, P Srinivas

2
, S. Nagaraju

3

 1
Dept.of ECE Nimra College of Engineering & Technology, Jupudi, Vijayawada-India.

 2
Assistant Professor Dept.of ECE Nimra College of Engineering & Technology, Vijayawada, India.

 3
Assistant Professor Dept.of ECE VLITS Vadlamdui Guntur, India.

ABSTRACT
The data reliability has become an

important issue in most communication and storage

systems for high speed operation and mass data
process. Various error correction code are provided
for improving data reliability. A Reed-Solomon code
is quite suitable for burst errors, but in case of

random errors, it has some difficulty. For MLC
NAND flash memories, Bose- Chaudhuri-
Hocquenghem (BCH) codes are frequently used.

BCH codes provide flexible code length and
variable range of error correcting capability.
However, NAND flash memory systems process with
the large size of data such as a page or a block unit.

Hence, BCH codes may not be appropriate for a
NAND flash controller.
We propose product Reed- Solomon (RS) code for

non-volatile NAND flash memory systems. Reed-
Solomon codes are the most diversely used in data
storage systems, but powerful for burst errors only.
In order to correct multiple random errors and

burst errors, another efficient decoding algorithm is
required. The product code composing of column-
wise Reed-Solomon codes and row-wise Reed-

Solomon codes may allow decoding multiple errors
beyond their error correction capability. The
proposed code consists of two shortened Reed-
Solomon codes and a conventional Reed- Solomon

code. We implement the proposed coding scheme on
a FPGA-based simulator with using an FPGA
device. The proposed code can correct 16 symbol

errors.

KEY WORDS: Bose-Chaudhuri-Hocquenghem
(BCH), Reed-Solomon codes, Berlekamp-Massey
Algorithm, flipped, Euclid's Algorithm, mass data
process, decoding, FPGA-based simulator, NAND
flash controller, and Altera.

I. INTRODUCTION
The data reliability has become an important

issue in most communication and storage systems for
high speed operation and mass data process. Various
error correction code are provided for improving data
reliability. A Reed-Solomon code is quite suitable for
burst errors, but in case of random errors, it has some
difficulty. For MLC NAND flash memories, Bose-
Chaudhuri-Hocquenghem (BCH) codes are
frequently used. BCH codes provide flexible code
length and variable range of error correcting

capability. However, NAND flash memory systems
process with the large size of data such as a page or a
block unit. Hence, BCH codes may not be
appropriate for a NAND flash controller.

The Reed- Solomon (RS) code for non-
volatile NAND flash memory systems. Reed-
Solomon codes are the most diversely used in data
storage systems, but powerful for burst errors only. In
order to correct multiple random errors and burst
errors, another efficient decoding algorithm is
required. The product code composing of column-
wise Reed-Solomon codes and row-wise Reed-
Solomon codes may allow to decoding multiple
errors beyond their error correction capability. The
proposed code consists of two shortened Reed-
Solomon codes and a conventional Reed- Solomon
code. We implement the proposed coding scheme on
a FPGA-based simulator with using an FPGA device.
The proposed code can correct 16 symbol errors.

Fig.1 Concept of forward error correction

II. Reed Solomon Encoder
The encoder is the easy bit. Since the code is

systematic, the whole of the block can be read into the
encoder, and then output the other side without
alteration. Once the kith data symbol has been read in,
the parity symbol calculation is finished, and the
parity symbols can be output to give the full n
symbols. Gross simplification coming up. The idea of
the parity words is to create a long polynomial (n
coefficients long it contains the message and the
parity) which can be divided exactly by the RS
generator polynomial. That way, at the decoder the
received message block can be divided by the RS
generator polynomial. If the remainder of the division
is zero, then no errors are detected.

If there is a remainder, then there are errors.
Dividing a polynomial by another is not conceptually
easy, but if you follow the maths in some of the
references its not too hard to understand. The encoder
acts to divide the polynomial represented by the k
message symbols d(x) by the RS generator
polynomial g(x). This generator polynomial is not the
same as the Galois Field generator polynomial, but is
derived from it
x(n-k).d(x)/g(x) = q(x) + r(x)/g(x) (1)

The term x(n-k) is a constant power of x,
which is simply a shift upwards n-k places of all the

Received
Data

 Md. Taj, P Srinivas, S. Nagaraju / International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1607-1612

1608 | P a g e

polynomial coefficients in d(x). It happens as part of
the shifting process in the architecture below. The
remainder after the division r(x) becomes the parity.
By concatenating the parity symbols on to the end of
the k message symbols, an n coefficient polynomial is
created which is exactly divisible by g(x).

The encoder is a 2t tap shift register, where
each register is m bits wide. The multiplier
coefficients g0 to g (2t-1) are coefficients of the RS
generator polynomial. The coefficients are fixed,
which can be used to simplify the multipliers if
required. The only hard bit is working out the
coefficients, and for hardware implementations the
values can often be hard coded.

At the beginning of a block all the registers
are set to zero. From then on, at each clock cycle the
symbol in each register is added to the product of the
feedback symbol and the fixed coefficient for that tap,
and passed on to the next register. The symbol in the
last register becomes the feedback value on the next
cycle. When all n input symbols have been read in,
the parity symbols are sitting in the register, and it just
remains to shift them out one by one.

Equation(2),expresses the most conventional
form of Reed-Solomon (R-S) codes in terms of the
parameters n, k, t, and any positive integer m > 2.

(n, k) = (2
m
 - 1, 2

m
 - 1 - 2t) (2)

where n - k = 2t is the number of parity symbols, and
t is the symbol-error correcting capability of the code.
The generating polynomial for an R-S code takes the
following form
g(X) = g0 + g1 X + g2 X

2
 + … + g2t - 1 X

2t - 1
 + X

2t
(3)

The degree of the generator polynomial is
equal to the number of parity symbols. R-S codes are
a subset of the Bose, Chaudhuri, and Hocquenghem
(BCH) codes; hence, it should be no surprise that this
relationship between the degree of the generator
polynomial and the number of parity symbols holds,
just as for BCH codes.

Since the generator polynomial is of degree
2t, there must be precisely 2t successive powers of α
that are roots of the polynomial. We designate the
roots of g(X) as α, α2

, …, α2t
. It is not necessary to

start with the root α; starting with any power of α is
possible. Consider as an example the (7, 3) double-
symbol-error correcting R-S code. We describe the
generator polynomial in terms of its 2t = n - k = 4
roots, as follows
 g(X) = (X – α) (X – α2

) (X – α3
)(X – α4

)
= (X

2
 - (α + α2

) X + α3
) (X

2
 - (α3

 + α4
) X + α7

)
 = (X

2
 – α4

 X + α3
) (X

2
 - α6

 X + α0
)

 = X
4
 - (α4

 + α6
) X

3
 + (α3

 + α10
 + α0

) X
2
 - (α4

 +
α9

) X + α3

 = X
4
 – α3

 X
3
 + α0

 X
2
 – α1

 X + α3

Following the low order to high order
format, and changing negative signs to positive, since
in the binary field +1 = –1, g(X) can be expressed as
follows:
g(X) = α3

 + α1
 X + α0

X
2
 + α3 X

3
 + X

4
 (4)

III. Encoding in Systematic Form

Since R-S codes are cyclic codes, encoding
in systematic form is analogous to the binary
encoding procedure. We can think of shifting a
message polynomial, m(X), into the rightmost k
stages of a codeword register and then appending a
parity polynomial, p(X), by placing it in the leftmost
n - k stages. Therefore we multiply m(X) by X

n-k
,

thereby manipulating the message polynomial
algebraically so that it is right-shifted n - k positions.
Next, we divide X

n-k
 m(X) by the generator

polynomial g(X), which is written in the following
form
X

n-k
 m(X) = q(X) g(X) + p(X) (5)

where q(X) and p(X) are quotient and remainder
polynomials, respectively. As in the binary case, the
remainder is the parity. Equation (23) can also be
expressed as follows

p(X) = X
n-k

 m(X) modulo g(X) (6)
The resulting codeword polynomial, U(X) can be
written as

U(X) = p(X) + X
n-k

 m(X) (7)
We demonstrate the steps implied by Equations (5)
and (6) by encoding the following three-symbol
message:

with the (7, 3) R-S code whose generator polynomial
is given in Equation (5). We first multiply (upshift)
the message polynomial α1

 + α3
 X + α5

 X
2
 by X n - k

= X
4
, yielding α1

 X
4
 + α3

 X
5
 + α5

 X
6
. We next divide

this upshifted message polynomial by the generator
polynomial in Equation (5), α3

 + α1
X + α0

 X
2
 + α3

 X
3

+ X
4
. Polynomial division with nonbinary

coefficients is more tedious than its binary
counterpart, because the required operations of
addition (subtraction) and multiplication (division). It
is left as an exercise for the reader to verify that this
polynomial division results in the following
remainder (parity) polynomial.

p(X) = α0
 + α2

 X + α4
 X

2
 + α6

 X
3

(8)
Then, from Equation (7), the codeword polynomial
can be written as follows

U(X) = α0
 + α2

 X + α4
 X

2
 + α6

 X
3
+ α1

 X
4
 + α3

 X
5
 +

α5
 X

6
 (9)
Systematic Encoding with an (n - k)–Stage

Shift Register Using circuitry to encode a three-
symbol sequence in systematic form with the (7, 3)
R-S code described by g(X) in Equation (4) requires
the implementation of a linear feedback shift register
(LFSR) circuit, as shown in Figure 6. It can easily be
verified that the multiplier terms in Figure 6, taken
from left to right, correspond to the coefficients of
the polynomial in Equation (4) (low order to high
order). This encoding process is the nonbinary
equivalent of cyclic encoding. Here,the (7, 3) R-S
nonzero codewords are made up of 2m - 1 = 7
symbols, and each symbol is made up of m = 3 bits.

IV. Reed Solomon Decoder

 Md. Taj, P Srinivas, S. Nagaraju / International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1607-1612

1609 | P a g e

Earlier, a test message encoded in
systematic form using a (7, 3) R-S code resulted in a
codeword polynomial described by Equation (7).
Now, assume that during transmission this codeword
becomes corrupted so that two symbols are received
in error. (This number of errors corresponds to the
maximum error-correcting capability of the code.)
For this seven-symbol codeword example, the error
pattern, e(X), can be described in polynomial form as
follows

Fig2. Encoder with LFSR

e(X) = ∑ en X

n
, (10) Where n = 0, 1, 2, 3, 4, 5, 6

For this example, let the double-symbol error be such
that
e (X) = 0 + 0X + 0X

2
 + α2

X
3
 + α5

X
4
 + 0X

5
 + 0X

6

= (0 0 0)+(0 0 0)X+(0 0 0)X
2
+(0 0 1)X

3
+(1 1

1)X
4
+(0 0 0)X

5
+(0 0 0)X

6
(11)

In other words, one parity symbol has been corrupted
with a 1-bit error (seen as α2

), and one data symbol
has been corrupted with a 3-bit error (seen as α5

). The
received corrupted-codeword polynomial, r(X), is
then represented by the sum of the transmitted-
codeword polynomial and the error-pattern
polynomial as follows
r(X) = U(X) + e(X) (12)

Following Equation (12), we add U(X) from
Equation (11) to e(X) and r(X), as follows
r(X) = (100) + (001)X + (011)X

2
 + (100)X

3
 +

(101)X
4
 + (110)X

5
 + (111)X

6

α α2
Xα4

X
2α0

X
3α6

X
4α3

X
5α5

X
6

(13)
In this example, there are four unknowns—two error
locations and two error values. Notice an important
difference between the non binary decoding of r(X)
that we are faced with in Equation (13) and binary
decoding; in binary decoding, the decoder only needs
to find the error locations. Knowledge that there is an
error at a particular location dictates that the bit must
be “flipped” from 1 to 0 or vice versa. But here, the
nonbinary symbols require that we not only learn the
error locations, but also determine the correct symbol
values at those locations. Since there are four
unknowns in this example, four equations are
required for their solution.
Decoding is a far harder task than encoding. Typically
about ten times more resources (be it logic, memory
or processor cycles) are required to decode and

correct the corrupted data The decode operation takes
several stages. There are plenty of sources available
for software implementations of the various
algorithms required. Hardware implementations
(FPGA or ASIC) are a little harder to come by,
especially those with parameterised specifications.
Texas Instruments give their software decoder away
for free, whilst by comparison FPGA manufacturers
such as Xilinx or Altera can charge many thousands
of dollars for their hardware implementation.

V. Berlekamp-Massey
The second step is to find the error

polynomial lambda. This requires solving 2t
simultaneous equations, one for each syndrome. The
2t syndromes form a simultaneous equation with t
unknowns. The unknowns are the locations of the
errors. In general there are many possible solutions to
the set of equations, but we assume that the one with
the least number of errors is the correct one.
This assumption is the reason that more than t errors
can actually cause the decoder to corrupt the received
signal further (if allowed to). If more than t errors
occur, then there will exist a possible solution to the
equations with less than t errors. Unfortunately this
solution is unlikely to correct the right symbols. The
process of solving the simultaneous equations is
usually split into two stages. First, an error location
polynomial is found.

This Polynomial has roots which give the
error locations. Then the roots of the error polynomial
are found. There are several methods of finding the
error polynomial lambda, the two most popular are
Euclid's Algorithm (easier to implement) and the
Berlekamp-Massey Algorithm (more efficient use of
hardware resources). The algorithm iteratively solves
the error locator polynomial by solving one equation
after another and updating the error locator
polynomial. If it turns out that it cannot solve the
equation at some step, then it computes the error and
weights it, increases the size of the error polynomial,
and does another iteration.

Fig3.Flow chart for Reed Solomon Decoder

 Md. Taj, P Srinivas, S. Nagaraju / International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1607-1612

1610 | P a g e

A maximum of 2t iterations are required.
For n symbol errors, the algorithm gives a
polynomial with n coefficients. At this point the
decoder fails if there are more than t errors, and no
corrections can be made. Doing so might actually
introduce more errors than there were originally

Suppose there are ν errors in the codeword
at location X j1 , X j2 , ... , X j. Then, the error
polynomial e(X) shown in Equations (10) and (11)
can be written as follows
e(X) = ej1X

j1
 + ej2X

j2
+ … + ejvX

jv
 (14)

The indices 1, 2, … ν refer to the first, second, …, νth
errors, and the index j refers to the error location. To
correct the corrupted codeword, each error value ejl
and its location X

jl
 , where l = 1, 2, ..., ν, must be

determined. We define an error locator number as jl l.
Next, we obtain the n - k = 2t syndrome symbols by
substituting αi into the received polynomial for i = 1,
2, … 2t.
S1 = r(α) = ej1β1 + ej2β2 + … + ejvβv

S2 = r(α2
) = ej1β1

2
 + ej2β2

2
 + … + ejvβv

2

S2t = r(α2t
) = ej1β1

2t
 + ej2β2

2t
 + … + ejvβv

2t
 (15)

 There are 2t unknowns (t error values
and t locations), and 2t simultaneous equations.
However, these 2t simultaneous equations cannot be
solved in the usual way because they are nonlinear
(as some of the unknowns have exponents). Next, it
is necessary to learn the location of the error or
errors. An error-locator polynomial, σ(X), can be
defined as follows
σ(X) = (1 + β1X) (1 + β2X) . . . (1 + βvX)
 = 1 + σ1X + σ2X

2
 + . . . + σvX

v
 (16)

 The roots of σ(X) are 1/β1, 1/β2, … ,1/βν.
The reciprocal of the roots of σ(X) are the error-
location numbers of the error pattern e(X). Then,
using autoregressive modeling techniques, we form a
matrix from the syndromes, where the first t
syndromes are used to predict the next syndrome.
That is,

 (17)

We apply the autoregressive model of Equation (17)
by using the largest dimensioned matrix that has a
nonzero determinant. For the (7, 3) double-symbol
error correcting R-S code, the matrix size is 2 × 2,
and the model is written as follows

 (18)

To solve for the coefficients σ1 and σ2 and
of the error-locator polynomial, σ(X), we first take
the inverse of the matrix in Equation (18). The
inverse of a matrix [A] is found as follows

Fig4. Berlekamp-Massey Algorithm

Therefore

Cofactor (19)

 (20)

VI. Design Summery Report
Number of errors: 0
Number of warnings: 257

1. Number of Slice
Registers

4,737 out of
28,800 16%

2. Number of Slice
LUTs

6,302 out of
28,800 21%

3. Number used as
logic

6,261 out of
28,800 21%

4. Number of route-
thrus

53 out of 57,600
1%

 Md. Taj, P Srinivas, S. Nagaraju / International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1607-1612

1611 | P a g e

Table 5.2 Logic Utilization

1. Number of occupied
Slices

2,502 out of 7,200
34%

2. Number with an unused
Flip Flop

2,949 out of 7,686
38%

3. Number with an unused
LUT

1,384 out of 7,686
18%

4. Number of fully used
LUT-FF pairs

3,353 out of 7,686
43%

Table5.3 Logic Distribution

VII. 6. RESULTS

Fig5. Generation Of code words

Fig6. Generation Of Parity Bits

Fig 7. Adding Noise

Fig8. Detection of Error Values

Fig8.Decoded Symbols

VIII. Conclusion
This paper proposes a product Reed-

Solomon code for multiple random errors and burst
errors. The proposed code takes two dimensional
array data consisted of two shortened Reed-Solomon
codes in a column-wise and a conventional Reed-
Solomon code in a row-wise. The proposed code
becomes powerful against multiple random errors
and burst errors. The proposed code can corrects 16
symbol errors. The code has the coding gain of 1.8
dB and the bandwidth of 1.07 Gbps when operated at
290 MHz with the power consumption of 26.4 mW.
Future Scope of the project is to provide effective
code for detecting 20 error symbols in 255 code
words. Code can implement with low area and low
power

References
[1] Polynomial Codes Over Certain Finite

Fields by Reed, I. S. and Solomon, G.
SIAM Journal of Applied Math.

[2] Information Theory and Reliable
Communication by Gallager, R. G.

[3] Digital Communications: Fundamentals and
Applications, Second Edition by Sklar, B.

[4] The Application of Error Control to
Communications by Berlekamp, E. R., Peile,
R. E., and Pope, S. P.

[5] Forward Error Correction Coding for Fading
Compensation in Mobile Satellite Channels
by Hagenauer, J., and Lutz, E.

 Md. Taj, P Srinivas, S. Nagaraju / International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1607-1612

1612 | P a g e

[6] Theory and Practice of Error Control Codes
by Blahut, R. E.

[7] Reed-Solomon Codes and Their
Applications by Wicker, S. B. and
Bhargava, V. K.

[8] ASIC Implementation of Reed-Solomon
Error Correction Circuits for Low Area
Overhead on Memory System by S. P.
Kang, C. G. Kim, S. W. Rhee, and Y. Jee.

[9] X., Yang, “Industrial Data Communication
and Control Networks”, Beijing: TUP,
2003.6[9] B. Zeidman, “Designing with
FPGAs & CPLDs”, CMP Books, 2002

[10] C. E. Cummings, “Simulation and Synthesis
Techniques for Asynchronous FIFO Design
with Asynchronous Pointer Comparisons”,
SNUG San Jose 2002

