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ABSTRACT 
Cable supported Bridge structures have 

distinctive dynamic behavior compared to any 

other type of bridge, especially the dynamic 

behavior. Support excitations sets structure to 

vibrate; cable excitations can be caused by rain, 

wind or stochastical vibration due to plying 

vehicles or due to vibration of deck. In modern 

cable-stayed / Extradosed bridges, the stay cables 

are often closely spaced, with the cable lengths 

and tensions gradually varying from position to 

position. The natural frequencies of their self-

vibrations are therefore likely to be rather closely 

placed as well. Such boundary-induced vibrations 

of the stay cables are likely to complicate the 

overall dynamic behavior of the bridge. The paper 

focuses on dynamic behavior of Extradosed 

Bridges, dynamic behavior of Extradosed cables 

and possible interaction resulting into coupled 

mode of vibrations. 
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I. INTRODUCTION 
A) Extradosed Bridge 

The recent research has shown that a 

Extradosed bridge, variant of cable stayed bride 

where cables add substantial prestress to the deck 

because of the shallow pylon, are found to be 

economical for spans upto 250m.  Figure 1 shows the 

arrangement of cable for Girder, Extradosed and 

cable-stayed bridge. 

The intrados is defined as the interior curve 

of an arch, or in the case of cantilever-constructed 

girder bridge, the soffit of the girder. Similarly, the 

extrados is defined as the uppermost surface of the 

arch. The term ‘Extradosed’ was coined by Jacques 

Mathivat (1988) to appropriately describe an 

innovative cabling concept he developed for the 

Arrêt-Darré Viaduct, in which external tendons were 

placed above the deck instead of within the cross-

section as would be the case in a girder bridge. To 

differentiate these shallow external tendons, which 

define the uppermost surface of the Bridge, from the 

stay cables found in a cable-stayed bridge, Mathivat 

called them ‘Extradosed’ prestressing. 

Some features of Extradosed Bridge as given below; 

 

 

 External appearance resembles cable-stayed 

bridge – but structural characteristics are 

comparable to those of conventional girder 

bridge 

 The Girder Depth are lesser than that of 

conventional girder bridges 

 The stay cables (prestressing tendons outside 

the girder) need no tension adjustment 

necessary for cable-stayed bridges, and can be 

treated as usual tendons as in girder bridges 

 The height of pylon is half as that of cable-

stayed bridge and hence easier to construct 

 With small stress fluctuation under live load 

the anchorage method for stay cables can be 

same as that of tendons inside girder and 

thereby achieve economy 

 
Fig. 1 Cable arrangements in Girder Bridge, 

Extradosed Bridge and Cable stayed bridge 

 

B) Dynamic response 

Vibrations caused of support excitations has 

been matter research with some failures (For example 

Aratsu Bridge, Tenzopan bridge, Erasmus Bridge etc) 

underlining the importance and need of study of 

dynamic behavior bridge vibrations as well as cables 

vibrations.  With the rapid increase in span length, 

combined trend and also trend of using high strength 

materials have resulted in slender structures and a 

concern is being raised over dynamic behavior of 

such structures, in case of cable supported structures 

it is more pronounced as this further includes 

vibrations of structure and cable elements also. An 

accurate analysis of natural frequencies is 

fundamental to the solution of its dynamic responses. 

In modern cable-stayed / Extradosed bridges, the stay 

cables are often closely spaced, with the cable lengths 

and tensions gradually varying from position to 
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position. The natural frequencies of their self-

vibrations are therefore likely to be rather closely 

placed as well. Such boundary-induced vibrations of 

the stay cables are likely to complicate the overall 

dynamic behavior of the bridge. Although there is no 

universal agreement about the causes of vibration, 

possible explanations essentially follow two different 

ways of thinking. According to the first rationale, 

vibrations are due to external environmental actions 

acting directly on the stays. In particular, the wind-

tunnel experiments by Hikami and Shiraishi (1988) 

have shown that it is the combination of rain and 

wind, rather than their separate action that provokes 

aerodynamic instability. The excitation is due to the 

change in shape of the stay-sheath profile, produced 

by the wind-induced formation of a water rill at the 

extrados of the cable. A completely different 

explanation points instead to an interaction between 

the vibrations of the stays and the oscillations of their 

extremities anchored to girder and pylons. If some 

resonance conditions get satisfied, energy can flow to 

the stays and provoke their large-amplitude 

oscillations. 

 

II. GOVERNING EQUATIONS 
A) Vibration of structure 

When finite element is used, each stay cable 

is modeled as either a single truss element with an 

equivalent modulus or number of cable elements with 

the original modulus. The deck and tower are 

modeled as Bernoulli-Euler beam elements with axial 

forces due to prestress imparted by horizontal 

component of cable force due to its shallow cables. 

 

I. STIFFNESS AND MASS MATRIX FORMULATION FOR 

EXTRADOSED BRIDGE 

Consider a typical Extradosed bridge as 

shown in figure 1; let us take a small section as 

shown in the figure 2 below. The boundary 

conditions for this element can be considered as that 

of beam on elastic the provided by cable. Further this 

beam will be subjected to prestressing force due to 

horizontal component of cable forces, as shown in 

figure 2 foundation to relate effect of elastic support 

below; 

 

Fig.2 Beam on elastic foundation 

Now, consider an element i-j of length L of a beam 

on an elastic foundation as shown in Figure.7 having 

a uniform width b and a linearly varying thickness 

h(x) It will be a simple matter to consider an element 

having a linearly varying width if the need arises. 

Neglecting axial deformations this beam on an elastic 

foundation element has two degrees of freedom per 

node a lateral translation and a rotation about an axis 

normal to the plane of the paper and thus possesses a 

total of four degrees of freedom. The (4x4) stiffness 

matrix k of the element is obtained by adding the 

(4x4) stiffness matrices kB, kF and kQ pertaining to the 

usual beam bending stiffness and foundation stiffness 

and stiffness due to prestressing force (Q) 

respectively Since, there are four end displacements 

or degrees of freedom a cubic variation in 

displacement is assumed in the form 

Aav      Eq. (1) 

Where, A= (1 x x
2
 x

3
) and a

T
= (a1 a2 a3 a4) 

(Displacement variation within element) 

The four degrees of freedom corresponding to the 

displacements v1, v3 and the rotations v2 v4 at the 

longitudinal nodes are given by 

q=Ca (Nodal displacements)  Eq. (2) 

Where q
T
= (v0 v1 v2 v3) and C is the connectivity 

matrix for an element ij between x=0 and x=L as 

given in Figure 2 

From equations (Eq.1) and (Eq.2) 

V=AC
-1

q    Eq. (3) 

If E is the Young|s modulus and I=bh(x)
3
 /12 is the 

second moment of area of the beam Cross-section 

about an axis normal to the plane of the paper the 

bending moment M in the element is given by 

qDBC
x

v
DM 1

2

2





   Eq. (4) 

Where D=EI(x) and B=d
2
A/dx

2
=(0, 0, 2, 6x) 

a. Stiffness due to bending 

The potential energy UB due to bending is  

Mdx
dx

vd
U

l

B 
0

2

2

2

1
       Eq. (5) 

And the stiffness is given by 

2

2

d

U
kb B




                        Eq. (6) 

From equations (Eq.5) and (Eq.6) we get, 

DBdxBbk

l

T


0

 (Elemental)                  Eq. (7) 

11)(  CbkCKb T
(Assmebled)

                           
Eq. (8) 

b. Stiffness due to elastic foundation 

The potential energy of foundation stiffness is given 

by, 

kfVdxVU

l

T

f 
0

2

1
                        Eq. (9) 

and then the stiffness is given by, 

Q Q 
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2

2

d

U
kf

f




                 Eq. (10) 

From equations (Eq.3) in (Eq.10) we get, 

kfAdxAfk

l

T


0

 (Elemental)                 Eq. (11) 

11)(  CfkCKf T
(Assembled)                Eq. (12) 

c. Stiffness due to prestressing force 

The potential energy of prestressing force is given by, 

dx
x

v
QU

l

Q

2

0
2

1












                      Eq. (13) 

Then the stiffness is given by, 

2

2

d

U
k

Q

Q



               Eq. (14) 

Substituting equation (3) in (14) we get, 

AdxkAk Q

l

T

Q 
0

               Eq. (15) 

11)(  CkCK Q

T

Q
               Eq. (16) 

 

Finally complete stiffness is given by, 

QfB KKKK                Eq. (17) 

 

Element mass matrix is the equivalent nodal mass 

that dynamically represents the actual distributed 

mass of the element. This is kinetic energy of the 

element. 

  vdVvT

l
T  

0
2

1
            Eq. (18) 

Where, v = Lateral velocity and  = mass density 

      qChxAdxACqT

l

TTT 1

0

1

2


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
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                  Eq. (19) 

Then, the mass matrix is given by, 

  11  CmCm
T

                             Eq. (20) 

and dxhxAAm

l

T


0

    Eq. (21) 

for free vibration of this beam, 

         0 qKqCqM    Eq. (22) 

and for forced vibration, 

             0

1
fNfqKqCqM


   

        Eq. (23) 

For Extradosed bridge, since the cable are shallower 

and the effect of prestressing force is more the 

effecting of prestress shall be taken in to account as 

shown in the equation above. 

 

B) Vibration of Cables 

i) With equivalent modulus 

In global analysis of cable stayed / 

Extradosed bridges, one common practice is to model 

each cable as a single truss element with an 

equivalent modulus to allow for sag. The element 

stiffness matrix in local coordinates for such a cable 

element can be written as, 


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  Eq. (24) 

The equivalent modulus of elasticity is given be 

32 12/)(1 TEAwH

E
E

ccc

c
eq


   Eq. (25) 

Where,  cl is chord length, cH  is the horizontal 

projection length, cA  is the cross-sectional area, cE  

is the effective material modulus of elasticity, w  is 

the weight per unit length and T  is the updated cable 

tension of the cable. A certain cable profile has been 

assumed to account for the effect of cable sag. 

However, once the equivalent modulus has been 

obtained, the profile will not have a role to play in the 

final analysis, and hence the method cannot model 

transverse vibrations of the cable. 

 

ii) With original modulus 

Another approach for accounting for the 

transverse vibrations of cables is to model each cable 

by number of cables elements with the original 

modulus. Following the sign conventions adopted by 

Broughton and Ndumbara (1994), the element 

incremental stiffness matrix in local coordinates can 

be written as 
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      Eq. (26) 

Where the updated element basic tension T and the 

element extension e along the deformed element 

longitudinal axis are given, respectively, by 

eLAETT cc 00 /    Eq. (27) 

0

22

0 )( LvuLe cc    Eq. (28) 
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0T  is the original cable element pre-tension, 0L  is 

the original cable element length, and cu  and cv  are, 

respectively, the relative displacements of one node 

acting along and perpendicular to the cable chord 

with respect to the other node. 

 

iii) Mass matrix for cable 

The cable element mass matrix is the same for both 

the single-element and multiple-element modeling 

methods. The mass matrix is given as follows, 
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In which ccm is the total mass of the cable element 

 

C) Vibration of stay cables 

To demonstrate the abilities of various 

methods in predicting local cable vibrations, each 

stay cable was analyzed as an inclined stay cable 

fixed/pinned at both ends to evaluate the natural 

frequencies of local vibrations. It is noted however 

that the real situation is slightly different, as the end 

anchorages themselves are movable. The first 

symmetric and anti-symmetric in-plane transverse 

vibration frequencies   in radians per second can be 

computed, respectively, as 

m
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and, 
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Where l denotes the chord length, T  is static cable 

tension, m is the cable mass per unit length 

Resonance instability occurs when one of 

the parameters that influence the systems natural 

vibrations varies with time due to the action of 

external causes. This phenomenon has been 

suspected to cause large amplitude oscillations of the 

stays, in which it is the variation of their axial stress 

due to girder movements that provokes the instability 

i.e. the frequency of pulsating load and natural 

frequency of cable coincides. In general, 

environmental or traffic loads may provoke large-

amplitude oscillations only when in resonance with 

the cable vibration modes.  

 

III. STRUCTURAL DESCRIPTION AND 

IDEALIZATION 

A) Dynamic behaviour of Extradosed Bridge 

Since, Extradosed bridges take part in an 

intermediate zone between prestressed bridges and 

cable-stayed bridges, their structural behavior may be 

similar to these kinds of typologies, depending on 

design criteria adopted during the project stage. 

Generally a rigid deck Extradosed bridge shall have a 

similar behavior to the prestressed bridges, thus 

avoiding high stress oscillations of stay cables and, 

consequently, avoiding fatigue conditions associated 

with anchorages and tendons present in a slender 

deck Extradosed bridge, which behavior is quite 

close to the cable-stayed bridge. In order to 

analytically study dynamic structural behavior with 

respect to ground acceleration numerical studies were 

conducted for free vibration on typical Extradosed 

Bridge.  

Nonlinear static analysis of a Extradosed 

Bridge is first performed to get the internal forces in 

the bridge deck, towers and stay cables. Non-

linearities such as those arising from the sag of stay 

cables, beam-column behaviour of the bridge deck 

and towers, and geometrical large displacements can 

be taken into account in the static analysis. The 

global stiffness matrix and global mass matrix are 

then available following the nonlinear static analysis. 

The subspace iteration algorithm or similar may 

therefore be employed to determine the natural 

frequencies and their corresponding mode shapes.  

Two arrangement of Extradosed Bridge structures are 

considered for numerical studies, the details of which 

are as given in table-1. Software SAP-2000 has been 

used for dynamic analysis of Bridge as well as stay 

cables. The mode shapes and natural frequency are 

found out. The Type-1 model represents typical 

Extradosed  Bridge with span to pylon height ratio of 

10 and the deck thickness is considered to be L/35 at 

support and L/55 at midspan as given by H. Otsuka et 

al. (2002), the angle of inclination of cables is 

between 16 to 27 degrees , the type-2 model 

represent a hybrid type Extradosed bridge with some 

of the cables having angle of inclination more than 27 

degrees and with flexible steel deck expected to 

behave like those of cable stayed bridge.  

Table-1:- Details of models used for numerical study 

Span 

arrangement 

Pylon 

height 

above 

deck 

Span 

to 

pylon 

height 

ratio 

Cable 

arrangement 

type 

Type-1 

48+120+48m 

Concrete 

12m 

Up to 

CG of 

cable 

10 
Radiating 

(Figure-3) 

Type-2 

110+260+110m 

Steel 

20m 

Up to 

CG of 

cable 

8 
Harp 

(Figure-4) 

 



M V Sardesai, Dr A K Desai / International Journal of Engineering Research and Applications 

(IJERA)          ISSN: 2248-9622     www.ijera.com 

Vol. 3, Issue 4, Jul-Aug 2013, pp.1424-1429 

1428 | P a g e  

 
Fig-3 3-D Model  48+120+48 Extradosed Bridge 

 
Fig.4. 3-D Model  110+260+110  Extradosed Bridge 

Each stay cable is modelled as single truss element 

with equivalent modulus of elasticity. Two type of 

boundary conditions are considered i.e. both ends 

pinned and both ends fixed the actual boundary 

condition is likely to vary in between these two. No 

effect of damper is considered in this numerical 

study. 

 
Graph-1- Mode no Vs Time period for type-1 and 

type-2 structure 

Similarly the results are plotted for free vibrations of 

cables also and then in order to investigate the 

possible resonance the graphs are superimposed to 

find intersections. 

 
Graph-2- Mode shapes vs time period for 

48+120+48m Extradosed (structure and cable) 

 
Graph-3- Mode shapes vs time period for 

110+260+110m Extradosed (structure and cable) 

 

IV. DISCUSSIONS & CONCLUSION 
An accurate analysis of natural frequencies 

and mode shapes of cable supported structures such 

as Extradosed Bridge is fundamental to the solution 

of its dynamic responses due to seismic, wind and 

traffic loads. Now days, from economic 

considerations, the stay cables are often closely 

spaced, with the cable lengths and tensions gradually 

varying from position to position. The natural 

frequencies of their self-vibrations are therefore 

rather closely spaced. This may cause boundary-

induced vibrations of the stay cables. This 

complicates the overall dynamic behavior of cable 

stayed structures. In addition to pure local vibrations 

of stay cables, some new frequencies are also present 

indicating strongly the existence of coupled vibration 

modes, these coupled vibration modes cannot be 

predicted by equations. The frequencies of cables 

with actual boundary conditions are expected to lie 

in-between those of with fixed and pinned ends. The 

effect damper is not considered in this study and may 

be considered separately when desired.  For 

investigating the possibility of coupled mode of 

vibration the time periods for various modes of 
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vibration are superimposed for structure and cables. 

The intersection zone (intersection of stay cable 

vibrations and bridge vibrations) suggests the 

possibility of coupled vibrations. 
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