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 Abstract 
We consider the problem of multiple- 

target estimation using a collocated multiple-input 

multiple-output (MIMO) radar system. We 

employ sparse modeling to estimate the un-

known target parameters (delay, Doppler) using 

a MIMO radar system that transmits frequency-

hopping waveforms. We formulate the 

measurement model using a block sparse 

representation. We adaptively design the 

transmit waveform parameters (frequencies, 

amplitudes) to improve the estimation 

performance. Firstly, we derive   analytical 

expressions for the correlations between the 

different blocks of columns of the sensing 

matrix. Using these expressions, we compute the 

block coherence measure of the dictionary. We 

use this measure to optimally design the sensing 

matrix by selecting the hopping frequencies for 

all the transmitters. Secondly, we adaptively 

design the amplitudes of the transmitted 

waveforms during each hopping interval to 

improve the estimation performance. Further, we 

employ compressive sensing to conduct 

accurate estimation from far fewer samples than 

the Nyquist rate.   

 

Key words:      Multiple input multiple output 

RADAR, Multiple targets, Compressive sensing and 

frequency-hopping codes. 

 

I. INTRODUCTION 
CONVENTIONAL monostatic single-input 

single- output (SISO) radar transmits an electro-

magnetic (EM) wave from the transmitter.  The 

properties of this wave are altered while reflecting 

from the surfaces of the targets towards the 

receiver. The altered properties of the wave enable 

estimation of unknown target parameters like range, 

Doppler, and attenuation. However, such systems 

offer limited degrees of freedom.  Multiple-input  

multiple-output   (MIMO)  radar systems have 

attracted much attention in the recent past due to the 

additional degrees of freedom they offer MIMO 

radar is commonly used in two different antenna 

con- figurations: widely-separated (distributed) and 

collocated. Distribute MIMO radar exploits spatial 

diversity by utilizing multiple uncorrelated l o o k s  

of the target. Collocated MIMO radar systems 

offer performance improvement by exploiting Wave 

form diversity. Each antenna has the freedom to  

 

transmit a waveform that is different from the wave- 

forms of the other transmitters. 

In this paper, MIMO radar refers to collocated 

MIMO radar.  

Sparse modeling and compressive sensing 

have been a hot research topic as they enable accurate 

estimation from sub- 

Nyquist rates. Since most real-world systems have 

sparsity in some basis representation, these tools have 

been used in many fields, such as engineering and 

medicine. 

Also, there has been recent interest in 

applying them to the field of radar by exploiting 

sparsity in the target delay-Doppler space. In this 

paper, we employ sparse modeling to estimate the 

unknown target parameters using a pulsed MIMO 

radar system that transmits frequency-hopping 

waveforms. More specifically, we formulate the 

measurement model using a block sparse 

representation. Further, we adaptively design the 

parameters of the transmitted waveforms to achieve 

improved performance. First, we derive analytical 

expressions for the correlations between the different 

columns of the sensing matrix. Next, we use this 

result for optimal design by computing the block 

coherence measure of the sensing matrix and 

selecting the hopping frequencies of all the 

transmitters. Finally, we transmit constant modulus 

waveforms using these selected frequencies to 

estimate the radar cross section (RCS) values of all 

the targets. We use these RCS estimates to adaptively 

design the amplitudes of the transmitted waveforms 

during each hopping interval for achieving improved 

sparse recovery performance.  
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II. SYSTEM MODEL 
Once some knowledge of radar theory had 

been gained, we began the task of designing a radar 

signal processor. First, the type of waveform to be 

used in the system had to be chosen. An impulse 

would be optimum for range resolution, but, aside 

from being impractical, it would also fail to yield any 

range rate resolution. A complex exponential, on the 

other hand, would yield optimum range rate 

resolution while leaving a great deal of ambiguity in 

the range resolution. A compromise between the two 

was needed. A good test of potential waveforms is to 

examine the nature of the ambiguity function. The 

ambiguity function is essentially an autocorrelation 

of a waveform with a delayed and/or phase-shifted 

version of itself. Plotting this function versus delay 

and phase shift yields a convenient visual gauge of a 

waveform's potential performance in a radar system. 

It turned out that a linear FM chirp offered acceptable 

resolution in range and in range rate. A 

program, dtFMchirp , was written to generate a 

discrete LFM chirp for a given time-bandwidth 

product (TW) and oversampling factor (p). Thus the 

output was essentially a continuous-time chirp 

sampled at a rate of p*W. An LFM chirp has a 

constant magnitude of one, but its phase varies 

quadratically with respect to its displacement from 

the time origin. After becoming familiar with the 

characteristics of the LFM chirp, we worked on range 

processing. In order to get good range resolution, a 

high signal-to-noise ratio is needed. Thus, large time-

bandwidth chirps were used to increase the energy 

initially in the signal. This alone is not enough to 

make target detection possible. Some filtering of the 

signal must also be done. By examining the equation 

for the SNR, it is clear that to maximize SNR, the 

numerator must be maximized. The Cauchy-

Schwartz inequality defines the upper bound of the 

numerator. The equality holds if the filter is the 

conjugate of the output signal with a reversed time 

axis. This type of filter is referred to as a matched 

filter and results in the optimum SNR. Another 

property of the matched filter is that it compresses the 

pulse into a narrow peak. As a result, radar systems 

using matched filtering are often referred to as pulse-

compression radar. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.Transmit – Receive Antenna 

Some chirps were generated and white 

Gaussian noise was added to test our ability to detect 

and resolve a target in noise. The matched filter 

results in a large peak in the time domain at the point 

where the entire pulse has returned. The location of 

the output peak from the matched filter is used to 

calculate the range by the following formula: 

   range = (peak location - length of chirp)*(c / 2) / 

(p*W) 

The length of the chirp must be subtracted 

from the peak location in order to get the delay from 

the time the signal was sent out until the time the 

return signal was received since the peak location 

indicates the time at which the entire signal has been 

received, not the time at which it first started to 

arrive. Once the accuracy of this algorithm was 

confirmed, modifications were made in order to 

handle multiple targets. This requires the ability to 

locate multiple peaks in the filtered signal. For this, 

the program pkpicker , taken from CBESP, was used. 

Given a signal, a threshold, and a maximum number 

of peaks, pkpicker returns two vectors, one 

containing the peak values and the other containing 

the corresponding indices of the peaks. After 

experimenting with the threshold, it was determined 

that a threshold of .6 times the length of the chirp 

would be adequate. The length of the chirp is equal to 

the maximum peak in an autocorrelation of a chirp 

and so corresponds to the energy of a target in the 

absence of interference such as noise and clutter. The 

factor of .6 was found through trial and error to be 

the largest factor that would not result in a failure to 

detect a target. Experiments with multiple targets also 

gave us some notion of the degree of resolution that 

could be obtained with multiple targets (ie, how close 

could targets be before they could no longer be 

resolved separately. Having established an accurate 

target detection and range finding algorithm, we were 

ready to attempt range rate processing. Unless the 

target is moving at an extremely high speed relative 

to the speed of light, the Doppler shift will be small 

and very difficult to detect from one pulse. The 

solution to this problem is to transmit a burst 

waveform containing repeated pulses. Initially, for 

simplicity, boxcars were used as the pulse so that 

some insight into how the parameters of the pulse 

affect the Doppler shift might be gained. It was 

determined that the inter pulse period affected the 

width of the main lobe of the DTFT, the height of the 

main lobe was related to the number of pulses, and 

the magnitude of the side lobes depended upon the 

pulse length. Next, measurement of the Doppler shift 

from samples of the bursts was attempted. 

This allows range rate processing with 

significantly less data and thus faster computation. 

The sampling was done as follows. Range processing 

is done with the first burst alone since the additional 

bursts do not provide any extra range information. 

For each of the targets detected, each filtered burst is 

θ 

Tx Driving Circuit / Rx Processing Unit 

. . . . . . . . . . . .  . . . . 

Plane Wave 

dT/dR 

http://www.clear.rice.edu/elec431/projects95/radar/dtFMchirp.m
http://www.clear.rice.edu/elec431/projects95/radar/pkpicker.m
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sampled at the location corresponding to the peak 

location of that target. The Doppler shift for each 

target is then measured from the peak location of the 

DTFT of the corresponding sampled waveform. 

Range rate is then determined by the following 

formula: 

(fd / fc)*(c / 2) 

where fd is the Doppler shift in Hz and fc is the center 

frequency of the radar in Hz. Range rate calculations 

will obviously be limited since shifts of the peak that 

are greater than pi will wrap around, resulting in 

incorrect calculations. Adjusting the center frequency 

allows the range of velocities that can be correctly 

calculated to change. As fc is decreased, larger speeds 

can be calculated, but accuracy of these velocities 

suffers somewhat. Conversely, as fc increased, 

accuracy increased, but high velocities could not be 

detected due to aliasing. Next, LFM chirps were used 

as pulses and our ability to detect Doppler shifts of 

these waveforms was tested. Finally, a complete 

range and range rate analysis was performed. Once 

we were satisfied with the performance of this 

algorithm, it was time to try and analyze a signal that 

was not arbitrarily generated. 

 

III. SPARSE RECONSTRUCTION 
In this section, we present a reconstruction 

algorithm to recover the sparse vector from the noisy 

measurement vector. Ideally, in a noiseless scenario, 

we need to solve the following optimization problem 

to recover the sparse vector 

   
 
            

However, this problem is NP hard. 

Therefore, this problem is relaxed to one that 

involves the norm, and several approaches have been 

proposed in the literature to solve it. In  a heuristic  

iterative approach called matching pursuit (MP) is 

presented. Approaches such as basis pursuit (BP) 

and basis pursuit denoising (BPDN) are popular 

in this category. 

However, these algorithms do not exploit 

the fact that the non-zero entries of the sparse 

vector appear in blocks. Using the knowledge of 

block sparsity will improve recovery performance. 

This algorithm is a direct extension of the 

conventional MP, and is used when the columns 

within the blocks of the dictionary matrix are 

orthogonal.  

Note that in the above expressions for 

sparse support recovery, we assumed that all the 

columns of   have unit norm. When all of them are 

scaled by the same constant factor (non-unit norm), 

the update equations change by an appropriate scale 

factor corresponding to this norm.  

 

IV. COMPRESSIVE SENSING 
In this section, we use compressive sensing 

to accurately reconstruct the sparse vector from far 

fewer samples when compared with the Nyquist rate. 

The theory of compressive sensing says that this is 

possible when the sensing matrix has minimal 

coherence with the dictionary matrix. Since random 

matrices to give a low coherence measure, we will 

generate the entries of the sensing matrix as 

realizations of independent and identically distributed 

(i.i.d.) Gaussian random variables. Let  denote an 

       dimensional random Gaussian sensing 

matrix, where        . Define      as the 

measurement vector after compressive sensing. Then, 

the measurement model in changes to 

            
The sensors receive continuous data across 

all the pulses. This data is projected onto a finite 

lower dimensional space spanned by random 

continuous Gaussian noise sequences. The 

dimensions of this space are much smaller than the 

Nyquist rate. Therefore, we are actually sampling 

directly at a reduced rate. The above equation is just 

an equivalent way of representing the signal 

processing involved in this procedure. Now we need 

to recover   from the compressedmeasurement vector 

   . The reconstruction algorithm and design 

schemes presented in the earlier sections of the paper 

are also valid for compressive sensing. We define the 

percentage of compression as 

  
   
   

      

 
Fig.2. compressive sensing of  frequency hopping 

signals 

V. SIMULATION RESULTS 
      In this section, we present numerical 

simulations to demonstrate the performance of our 

proposed radar system.  
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Fig.3. Pulses Emitted from 3-Transmitters 

The above figure shows the pulses that are 

emitted from 3 transmitters. Each transmitter emits 

10 pulses. Based on the returned signal we are 

calculating drift, velocity, Doppler shift, round trip 

time. 

For transmitter1 

round trip time 

   5.3300e-007 

target range 

    79.9500 

For transmitter2 

round trip time 

   7.3300e-007 

target range 

   109.9500 

For transmitter 3 

round trip time 

   1.2670e-006 

target range 

   190.0500 

 

VI. CONCLUDING REMARKS 
We proposed a sparsity-based colocated 

MIMO radar system using frequency-hopping 

waveforms. We estimated the unknown target 

parameters using sparse support recovery algorithm. 

We derived an analytical expression for the block 

coherence measure of the dictionary matrix and, 

hence, studied the problem of selecting the hopping 

frequencies.We presented an iterative algorithm for 

designing an optimal code matrix. Further, we 

proposed an approach to optimally design the 

amplitudes of the transmitted waveforms during each 

hopping interval using the estimates of the target 

returns. We demonstrated the performance 

improvement due to the optimal design. 
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