
Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

42 | P a g e

FFT PROCESSOR IMPLEMENTATION & THROUGHPUT

OPTIMIZATION USING DMA & C2H COMPILER

Varsha Adhangale
1
, Dr.R.D.Daruwala

2

1, 2
(Department of Electronics Engineering, Mumbai University)

ABSTRACT
 Discrete Fourier Transform (DFT) is an

important transform in signal analysis and

process, but its time complexity can’t be

accepted under many situations. How to make

DFT more fast and efficient has become an

important theory. According to the algorithm

characteristics of DFT, FFT was brought in and

decreased the time complexity to a very large

extent.

 This paper presents 8-point Fast Fourier

transform (FFT) processor using Altera tool &

devices such as Nios II Soft processor on DE0

board, C2H Compiler & DMA. The NiosII is soft

core processor which is implemented on FPGA

available on Altera DE0 board. C2H Compiler is

a powerful tool that generates hardware

accelerators for software functions. The C2H

Compiler enhances design productivity by

allowing using a compiler to accelerate software

algorithms in hardware. It can quickly prototype

hardware functional changes in C, and explore

hardware-software design tradeoffs in an

efficient, iterative process. Performance was also

increased by allowing accelerating only part of

that software program on hardware. The C2H

Compiler is well suited for improving

computational bandwidth as well as memory

throughput. It also provides a simpler way of

computing complex multiplications, while

decreasing latency time. DMA (Direct memory

Access) is also one of the important concepts

applied to increase the efficiency of implemented

system. So in this paper performance of

implemented FFT Processor is observed by three

different approach & it shows how system will

useful in various signals processing applications.

Keywords - Butterfly, C2H Compiler, DFT, DMA,

FFT

I. INTRODUCTION
 With increasing use of technology in every

field the need for digital signal processing has

increased. Nowadays, there is more demand for

reduced cost, area, power and increased speed;

which motivated the development of more

sophisticated DSP algorithms to enhance the

performance. Discrete Fourier Transform (DFT) is

power tool for performing DSP Functions.

The DFT takes an N-point vector of

complex data sampled in time and transforms it to

an N-point vector of complex data that represents

the input signal in the frequency domain. The DFT

X (k), k =0,…., N-1 of a sequence x (n), n = 0, 1, …,

N-1 is defined as in equation (1),

 The DFTs are almost never computed

directly, but instead are calculated using the Fast

Fourier Transform (FFT), which comprises a

collection of algorithms that efficiently calculate the

DFT of a sequence. FFT produce results identical to

the DFT in far fewer cycles. The Cooley-Turkey

algorithm [1] is a widely used FFT algorithm that

exploits a divide-and-conquer approach to

recursively decomposes the DFT computation into

smaller and smaller DFT computations until the

simplest computation remains. One subset of this

algorithm called Radix-2 Decimation-in-Time (DIT)

breaks each DFT computation into the combination

of two DFTs, one for even-indexed inputs and

another for odd-indexed inputs. The decomposition

continues until a DFT of just two inputs remains.

The 2-point DFT is called a butterfly, and it is the

simplest computational kernel of Radix-2 FFT

algorithms. So In this paper FFT algorithm is

implemented on Soft Core Processor which is Altera

Implemented processor Nios II Soft processor on

Cyclon III FPGA which is available on DE0 board.

This Implemented FFT algorithm on C is hardware

accelerated by using C2H compiler & DMA. By

using this it will increase throughput of system in

terms of no. of clock cycles.

 The rest of this paper is organized as

follows: Section 2, presents basics of Processor

architecture .Section 3, Design of FFT Processor.

Result & Comparison of Proposed method with

Existing Technique in section 4. Finally, the section

5 gives conclusion of this work.

II. PROCESSOR ARCHITECTURE
 FFT Processor Block diagram is as shown

in Fig-1. The Nios II processor is the heart of

implemented system which is Altera Implemented

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

43 | P a g e

Soft-Core Processor. Altera’s Nios II is a soft

processor, defined in a hardware description

language, which can be implemented in Altera’s

FPGA devices by using the Quartus II CAD system.

To implement a useful system it is necessary to add

other functional units such as memories,

input/output interfaces, timers, and communications

interfaces. To facilitate the implementation of such

systems, it is useful to have computer-aided-design

(CAD) software for implementing a system-on-a-

programmable-chip (SOPC). Altera’s SOPC Builder

is the software needed for this task

Figure-1 Processor architecture

2.1 Nios-II Soft core processor

The Nios II soft- processor [2] is a general-purpose

RISC processor core. Soft means the processor core

is not fixed in silicon and can be targeted to any

Altera FPGA family. It provides the following

features:

 Full 32-bit instruction set, data path, and

address space

 32 general-purpose registers

 32 interrupt sourcesNII51001-11.0

 Access to a variety of on-chip peripherals,

and interfaces to off-chip memories and

peripherals.

 Hardware-assisted debug module enabling

processor start, stop, step, and trace under

control of the Nios II software development

tools.

 Nios II processor is very flexible and has

some configurations that can be implemented at the

design Stage. These configurations allow the user to

optimize the processor for various applications. The

most relevant are the clock frequency, the debug

level, the performance level and the user defined

instructions. The performance level configuration

enables the user to choose one of the three

performances available: The NIOSII/f (fast), which

results in a larger processor that uses more logic

elements, but is faster and has more features, such as

multiplication and others; The NIOSII/s (standard),

which creates a processor with balanced relationship

between speed and area, and some special features;

 The NIOSII/e (economic), which generates

a very economic processor in terms of area, but very

simple in terms of data processing capability. The

user-defined instructions allow the user to import

hardware designs and attach them to the processor

hardware, making them accessible by means of

customizable instructions. The NIOS II Processor

arithmetic and logic operations are performed on

operands in the general purpose registers. The

operands are moved from memory to these registers

by means of Load and Store instructions.

2.2 system Interconnect fabric-Avalon Bus

 Nios II processor system consists of a Nios

II processor core, a set of on-chip peripherals, on-

chip memory, and interfaces to off-chip memory, all

implemented on a single Altera device. These

components are interconnected by means of the

interconnection network called the Avalon Switch

Fabric .The Avalon bus is used to connect

processors and peripherals in a system. It is

asynchronous bus interface that specifies the

interface and protocol used between master and

slave components. A master component (e.g. a

processor) can initiate bus transfers, while a slave

component (e.g. memory) only accepts transfers

initiated by the master. Multiple masters and slaves

are allowed on the bus. In case two masters try to

access the same slave at the same time, the bus

arbitration logic determines which master gets

access to the slave based on fixed priorities. The bus

arbitration logic is generated automatically based on

the user defined master-slave connections and

arbitration priorities. The Avalon bus contains

decoding logic that generates a chip-select signal for

each peripheral. The Avalon bus supports dynamic

bus sizing, so the peripherals with different data

widths can be used on a single bus. If a master

attempts to read a slave that is narrower than the

master, the bus logic automatically issues multiple

read transfers to get the requested data.

2.3 SDRAM Controller

 The SDRAM controller core with Avalon

interface provides an Avalon Memory-Mapped

(Avalon-MM) interface to off-chip SDRAM. The

SDRAM controller [3] allows designers to create

custom systems in an Altera device that connect

easily to SDRAM chips. The SDRAM is relatively

inexpensive, control logic is required to perform

refresh operations, open-row management, and other

delays and command sequences. The SDRAM

controller connects to one or more SDRAM chips,

and handles all SDRAM protocol requirements.

Internal SDRAM Core shown in Fig-2.

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

44 | P a g e

Figure-2 SDRAM Controller Core

It is divided into two parts Multi-port front end

(MPFE) & Single-port controller (SPC)

2.3.1 MPEF (Multi-Port front end)

 The MPFE [4] consists of the following

three primary sub-blocks.

 The Command Block accepts read and

write transactions from the FPGA fabric.

For each pending transaction, the command

block calculates the next SDRAM burst

needed to progress on that transaction.

 The write data block transmits data to the

single-port controller. The write data block

informs the command block of the amount

of pending write data for each transaction.

 The read data block receives data from the

single-port controller. In order to prevent

the read FIFO buffer from overflowing, the

read data block informs the command

block of the available buffer area so the

command block can pace read transaction

dispatch.

2.3.2 SPC (Single Port Controller)

 The single-port logic is responsible for

following actions: Queuing the pending SDRAM

bursts, choosing the most efficient burst to send

next, Keeping the SDRAM pipeline full, and

ensuring all SDRAM timing parameters are met .It

consist of following block & their function:

 The command generator accepts commands

from the MPFE and from the internal ECC

logic, and provides those commands to the

timer bank pool.

 The timer bank pool is a parallel queue that

operates with the arbiter to enable data

reordering.

 The arbiter determines the order in which

requests are passed to the memory device.

 The rank timer performs the following

functions: Maintains rank-specific timing

information, Ensures that only four

activates occur within a specified timing

window

 The write data buffer receives write data

from the MPFE and passes the data to the

PHY, on approval of the write request.

 The ECC block consists of an encoder and

a decoder-corrector, which can detect and

correct single-bit errors, and detect double-

bit errors.

2.4 PLL (Phase Lock Loop)

 In synchronous transaction revelent signal

may be valid for small window of time. However

accessing SDRAM involves additional issues. First

since SDRAM controller & SDRAM [3] reside on

two separate devices, timing parameter, such as

clock to q delay, set up time ,hold up time are not

identical. Off chip access introduces additional

delay and has significant impact on controller clock

to output time. Finally clock skew also exist because

rising edge may not be able to arrive at SDRAM

controller & SDRAM devices at the same time. One

way to overcome this problem is to adjust phase

between controller clock and SDRAM devices. The

required clock adjustment is done by FPGA internal

PLL circuit as show on following Fig-3.

Figure-3 PLL Circuit

In above method external 50MHz of clock is fed to

PLL which generates clk_sysclk to drive SDRAM

controller and clk_sdram clk which leds by 3ns to

drive external SDRAM devices.

2.5 JTAG UART

 The JTAG universal asynchronous

receiver/transmitter (UART) core with Avalon

interface implements a method to communicate

serial character streams between a host PC and an

SOPC Builder system on an Altera FPGA. Fig-4

Shows JTAG UART Core.

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

45 | P a g e

Figure-4 JTAG UART Core

 The JTAG UART core consists of two 32-

bit registers, data and control that are accessed

through an Avalon slave port. An Avalon master,

such as a Nios II processor, accesses the registers to

control the core and transfer data over the JTAG

connection. The core operates on 8-bit units of data

at a time; The JTAG UART core provides

bidirectional FIFOs to improve bandwidth over the

JTAG connection. The JTAG controller can connect

to user-defined circuits called ―nodes‖ implemented

in the FPGA. Because there may be several nodes

that need to communicate via the JTAG interface, a

JTAG hub (i.e., a multiplexer) becomes necessary.

2.6 JTAG Module

 The Nios II architecture supports a JTAG

debug module that provides on-chip emulation

features to control the processor remotely from a

host PC. PC-based software debugging tools

communicate with the JTAG debug module and

provide facilities, such as the following features:

 Downloading programs to memory

 Starting and stopping execution

 Setting breakpoints and watch points

 Analyzing registers and memory

 Collecting real-time execution trace data

2.7 Performance Counter

 A performance counter is a block of

counters in the hardware that measures the

execution time of the code sections that user choose.

A performance counter component can track up to

seven code sections. By default, the component

tracks three code sections. A pair of counters tracks

each code section:

 Time—A 64-bit time (clock tick) counter

that counts the number of clock ticks

during code section runs.

 Occurrences—A 32-bit event counter that

counts the number of times the code section

runs.

 The performance counter component occupies a

substantial number of logic elements (LEs) on

device, and requires software implementation to

obtain performance measurements. These counters

enable to measure the execution time of the

designated sections of C/C++ code. Macros enable

us to mark the start and the end of the code sections

in program.

2.8 System ID (SYSID)

 The system ID peripheral safeguards

against accidentally downloading software compiled

for a different Nios II system. If the system includes

the system ID peripheral, can prevent us from

downloading programs compiled for a different

system.

III. IMPLEMENTATION METHODOLOGY
 The proposed method in this paper

implements FFT processor on FPGA using

ALTERA tool & DE0 Development board. With the

help of such tool & SOPC Technology makes it

easier for design the system as per the requirement

with less complexity. ALTERA provides various

range of Development board with different feature

such as Cyclone, Stratix edition, designer can

choose according to the application requirements. In

this performance of implemented system is compare

by three different approaches:

 Software only approach

 Hardware Accelerator approach- Using

C2H compiler

 DMA Approach

 Performance comparison in each approach is done

by no. of clock cycles required to get final output.

3.1 Requirement of tool for complete System

Development

Software:

 Altera Quartus II software version 7.1 or

later.

 Nios II Embedded Design Suite version 7.1

or later

Hardware

 Altera DE0 Development board

The Complete Design Flow is as shown in Fig-5.

Figure-5 Design Flow of System

 After the initial system specification, the

design flow is divided into a hardware and software

development. Processor, memory and peripheral

properties are defined during the hardware

development process. User programs and other

system software are developed and built during the

software development process. The software

development is dependent on the hardware

development results. After the system hardware and

software have been built, the system prototype is

tested on a development board featuring an FPGA

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

46 | P a g e

device and other components useful for prototyping.

If the system meets the specification, the system

design is complete. Otherwise, either hardware or

software needs to be redesigned.

3.2 Hardware Development

 The Development flow is depend on the

application requirement such as, Computational

performance, bandwidth, throughput, types of

interface & software which is implemented on such

system, Based on this requirement user can

determine the system at design stage. Hardware

Development is as shown in following Fig-6

Figure-6 Hardware Development Flow

 Input to a system is a high-level circuit

description, which is typically provided using a

hardware description language (HDL). An HDL

circuit description is converted into a netlist of basic

gates in the synthesis step of the design flow. The

placement algorithm maps logic blocks from the

netlist to physical locations on an FPGA. Once the

placement has been done, the routing algorithm

determines how to interconnect the logic blocks

using the available routing. The routing algorithm

produces a set of programming bits determining the

state of all the interconnection switches inside an

FPGA. The final output produce is the FPGA

programming file, which is a bit stream determining

the state of every programmable element inside an

FPGA. Design flow, including synthesis, placement

and routing is referred to as the design compilation.

 This FPGA Programming is done by using

Quartus-II Tool. Quartus II provides a set of tools

for circuit designs targeting Altera programmable

devices. These tools include design editors,

compilation and simulation tools, and device

programming software. After analysing the system

requirement use SOPC builder tool which is

included in Altera Quartus II software.

3.2.1SOPC Builder

SOPC Builder is a tool for the integration and

configuration of a bus-based system consisting of

library and user components. Library components

include processors, memories, bus arbiters and

bridges, standard peripherals, and other IP cores.

 The SOPC Builder consists of two parts:

graphical user interface (GUI), and a system

generator program. The GUI is used to select system

components, and to set various component and

system parameters. Depending on the peripheral

type, memory mapping and the interrupt priority

may be defined. System components are

automatically interconnected using one of the

available buses. The SOPC Builder supports two

bus types: AMBA–AHB and Avalon, in this we use

Avalon interconnects Bus. The system configuration

defined in the SOPC Builder GUI is stored in a

system PTF file, which is a plain text file that

completely describes the system. The system

generator program uses the information in the

system PTF file to generate HDL code and software

for the system. By using SOPC builder components

are added which are require to implement system.

SOPC builder automatically generates interconnect

logic to integrate component into hardware system.

User can also add custom instruction logic to

system. Final implemented system overview in

SOPC Builder is as shown in Fig-7.

Figure-7 SOPC System Overview

3.2.2 Schematic Design

 The Quartus II Graphic Editor can be used

to specify a circuit in the form of a block diagram or

schematic. In this connection of Nios II processor

pin according to their function has been done like

Input, Output & Bidirectional as shown in Fig-8.

Once system is compile successfully by using SOPC

Builder Nios II soft Processor is ready with pin &

their functionality.

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

47 | P a g e

Figure-8 Schmetic of System

3.2.3 Pin Planner

 Pin assignments are made by using the

Assignment Editor. The DE0 board has fixed pin

assignments. Recompile the circuit, so that it will be

compiled with the correct pin assignments. A simple

file format that can be used for this purpose is the

comma separated value (CSV) format, which is a

common text file format that contains comma-

delimited values. According to pin assignment

changes has been done as shown in Fig-9.

Figure-9 Pin Planner

3.2.4 JTAG Programming

 The FPGA device must be programmed

and configured to implement the designed circuit.

The required configuration file is generated by the

Quartus II Compiler’s. Altera’s DE0 board allows

the configuration to be done by JTAG as shown in

Fig-10. The configuration data is transferred from

the host computer (which runs the Quartus II

software) to the board by means of a cable that

connects a USB port on the host computer. Quartus

II software places the configuration data into the

configuration device on the DE0 board. Then, this

data is loaded into the FPGA upon power-up or

reconfiguration.

Figure-10 Programming Window

To complete the hardware design, perform the

following:

• Instantiate the module generated by the

SOPC Builder into the Quartus II project.

• Assign the FPGA pins.

• Compile the designed circuit.

• Program and configure the Cyclone III

device.

3.3 Software Development

 The Nios II EDS provides software

development environment that works for all Nios II

processor system. With Nios II running on a host

computer, an Altera FPGA & JTAG download cable

we can write a program for & communicate with

any Nios II processor system The Nios II EDS

provides the following development flows for

creating Nios II programs:

 Nios II Software Build Tools(SBT)

 Nios II integrated development

environment(IDE)

 These flows differ in how they create

makefile. These file in two flows are different and

are not compatible. In this project we use Nios II

IDE development flow, which provides integrated

environment in which we can create, modify, build,

run and debug Nios II programs with the Nios II

IDE GUI. The makefile it creates cannot be user

managed. This flow provides limited control over

build process & project setting, with no support for

customized scripting. The Nios II EDS perform very

useful task to run the software program on hardware

DE0 Board.

3.4 Different Implementation Approach

3.4.1Software only

 With the help of Nios II IDE we had

Implemented FFT Algorithm & that will run on

DE0 board cyclone III FPGA. Initialization of

performance counter is done in this algorithm which

we had already specified in hardware development

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

48 | P a g e

so they can run in synchronism to get no. of clock

cycles required for final output.

3.4.2Hardware Accelerator Approach using C2H

compiler

 A hardware accelerator is a block of logic

that implements a C function in hardware. Hardware

accelerator implemented in a field programmable

gate array (FPGA), Based on SOPC Builder and

Avalon system interconnect fabric. The C2H

Compiler uses SOPC Builder as the infrastructure to

connect hardware accelerators into Nios II systems.

A C2H accelerator becomes a component within an

existing Nios II system. SOPC Builder

automatically generates system interconnect fabric

to connect the accelerator to the system.

 The Nios II IDE allows carrying out the

following important tasks:

 Debug function prior to accelerating

 Generate the accelerator and incorporate it

into hardware

 Test and profile software and hardware

with the C2H accelerator

 The C2H Compiler converts only sections

of code that user specify. A typical program

contains a mix of performance-critical code and

other code. Performance-critical sections are often

iterative and simple, but consume the majority of a

program's execution time on a processor. The best

use of hardware resources is to accelerate only the

performance-critical functions of a program, rather

than converting an entire program to hardware.

After using C2H compiler FFT accelerator

component is get added in system as hardware unit

and its connection with other component is done

automatically by SOPC builder by using Avalon

switch fabric. Final system overview in SOPC

builder after adding Hardware Accelerator is as

shown in Fig-11.

Figure-11 Hardware Accelerator System overview

3.4.3 DMA Approach

 Embedded systems frequently employ

DMA engines to increase data throughput and

offload memory copy operations from the processor

[9]. In many cases the memory locations being

accessed are dispersed throughout the address space.

 The Butterfly operation, which requires the

processor to execute a large number of memory

accesses, is time consuming. Because the primary

bottleneck in the Butterfly computation is memory

throughput, combining the FFT algorithm and DMA

operation into a hardware accelerator maximizes

system performance. The C code to transfer the data

in each buffer is replaced by an accelerated function

that reads from the data buffers residing in main

memory (SDRAM). The DMA operation is

implemented in Software algorithm.

Final Implemented System block diagram after

applying three different approach is as shown below

Fig-12.

Figure-12 Final System Block Diagram

IV. RESULT
 For comparing the performance in this 3

different approach we input data in power

of 2 like [1 2 4 8 16 32 64 128] & observe their

corresponding ouput & no. of clock cycles in each

approach.

Figure-1 Software Only Approach Result

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

49 | P a g e

Figure-2 Hardware Accelerator approach

 Figure-3 DMA Approach

 With different sets of data we had observed

that there is almost 900 to 1000 no. of clock cycles

reduction after applying DMA & hardware

accelerator approach for implementation of FFT

algorithm on Nios II soft core processor.

TABLE-1 Comparison with Different sets of data

Sets of Data Software

Only

approach

Hardware

Accelerator

Approach

DMA+Hard

ware

accelerator

approach

[1 2 3 4 5 6

7 8]

5620 4854 4625

[1 2 3 4 4 3

2 1]

5608 4854 4822

[1+1j 2+2j

3+3j 4+4j

5+5j 6+6j

7+7j 8+8j]

5617 4856 4618

4.1 Comparison with Existing Method

 Various implementation techniques of FFT

Algorithem & their performance characteristics is as

follows:

 HDL (Streaming)

 The Pipelined Streaming [10] I/O solution

pipelines several Radix-2 butterfly processing

engines to offer continuous data processing. Each

processing engine has its own memory banks to

store the input and intermediate data. We can

continuously stream in data and, after the

calculation latency, can continuously unload the

results.

 HDL (Pipeline)

Pipelined FFT architecture called Radix-2
2

Single

Path Delay Feedback (R2
2
 SDF) and it is

implemented on FPGAs using a high-level C-to-

hardware programming language for rapid

prototyping.

 Software

FFT Algorithm Implemented using Software

requires less silicon area. It has drawback as the no.

of input increased butterfly complexity also

increases which decrease the speed of operation

hence degrades the system performance.

 C2H Compiler

 The C2H Compiler translates FFT

Algorithm implemented in C constructs to their

hardware equivalents. C2H accelerators consume

hardware resources such as LE (Logic elements),

multipliers, and on-chip memory.

Following Table gives Comparison of all above

Technique in terms of advantages & disadvantages.

Table-5 Comparison with Existing Technique

V. CONCLUSION
 The capabilities of FPGAs have increased

to the level where it is possible to implement a

complete computer system on a single FPGA chip.

The main component in such a system is a soft-core

processor. The Nios soft-core processor is intended

for implementation in Altera FPGAs.

 In this project, we have design FFT

processor using ALTERA DE0 board & Design

Tools. It includes FPGA which is dedicated only for

Altera family of FPGA. The main advantage offered

by this method is flexibility & parallelism.

Flexibility makes design process complex. The

SOPC builder system design tool helps to manage

with this complexity. SOPC builder can also provide

mechanism for peripheral expansion or processor

offload. Complete system can be implemented on

any FPGA according to application requirement

which make it to be used in real time environment.

Implementing Part of Software algorithm as a

Hardware unit not only increases its throughput but

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

50 | P a g e

also increase design efficiency. With a few

straightforward code optimizations, the Nios II C2H

Compiler can sharply improve the computational

bandwidth and memory throughput of a software

algorithm. So Part of FFT Algorithm as Hardware

Accelerator & DMA is very much useful which

provides flexibility for user to implement design as

per the requirement and gives performance in terms

of less latency period.

REFERENCES
[1] Jayasumana, G. Colorado State University,

Ft. Collins, CO Loeffler, C. ,―Searching for

the best Cooley-Tukey FFT algorithms‖

Acoustics, Speech, and Signal Processing,

IEEE International Conference on ICASSP

'87 , vol.12, pp. 2408- 2411, : Apr 1987

[2] Joshi, N.N. Y.C.C.E., Nagpur, India

Dakhole, P.K. ; Zode, P.P.,‖ Embedded

Web Server on Nios II Embedded FPGA

Platform‖, ?‖ proc IEEE ICETET, vol. 55,

pp. 372-377,DEC 2009

[3] Pong P. Chu Embedded SOPC Design with

Nios II Processor and VHDL Examples

Wiley Publisher, August 2011

[4] SDRAM Controller Subsystem

 http://www.altera.com/literature/hb/cyclone

-v/cv_54008.pdf

[5] JTAG UART Core

 ftp://ftp.altera.com/up/pub/Altera_Material/

11.1/Laboratory_Exercises/Computer_Org

anization/DE0/lab7.pdf

[6] Franjo Plavec(2004) Soft-Core Processor

Design Master Thesis, Toronto University

, Toronto

[7] Sahil Sharma(2010) Implementation of

Web-Server Using Altera DE2-70 FPGA

Development Kit Bachelor Thesis,

National Institute of Technology(NIT),

Rourkela

[8] Altera C2H Compiler

 http://www.altera.com/literature/tt/tt_nios2

_c2h_accelerating_tutorial.pdf?GSA_pos=

1&WT.oss_r=1&WT.oss=fft%20c2h

[9] DMA

 http://www.altera.com/literature/an/an417.

pdf?GSA_pos=7&WT.oss_r=1&WT.oss=

DMA

[10] Xlinx Logic-Core IP Fast Fourier

Transform

http://www.xilinx.com/support/documentat

ion/ip_documentation/ds808_xfft.pdf

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8363
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8363
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8363
http://www.altera.com/literature/hb/cyclone-v/cv_54008.pdf
http://www.altera.com/literature/hb/cyclone-v/cv_54008.pdf
http://www.altera.com/literature/hb/cyclone-v/cv_54008.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/11.1/Laboratory_Exercises/Computer_Organization/DE0/lab7.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/11.1/Laboratory_Exercises/Computer_Organization/DE0/lab7.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/11.1/Laboratory_Exercises/Computer_Organization/DE0/lab7.pdf
http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=fft%20c2h
http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=fft%20c2h
http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=fft%20c2h
http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=fft%20c2h
http://www.altera.com/literature/an/an417.pdf?GSA_pos=7&WT.oss_r=1&WT.oss=DMA
http://www.altera.com/literature/an/an417.pdf?GSA_pos=7&WT.oss_r=1&WT.oss=DMA
http://www.altera.com/literature/an/an417.pdf?GSA_pos=7&WT.oss_r=1&WT.oss=DMA
http://www.altera.com/literature/an/an417.pdf?GSA_pos=7&WT.oss_r=1&WT.oss=DMA
http://www.xilinx.com/support/documentation/ip_documentation/ds808_xfft.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds808_xfft.pdf

