Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA)

ISSN: 2248-9622

www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

FFT PROCESSOR IMPLEMENTATION & THROUGHPUT
OPTIMIZATION USING DMA & C2H COMPILER

Varsha Adhangale’, Dr.R.D.Daruwala’

1.2 (Department of Electronics Engineering, Mumbai University)

ABSTRACT

Discrete Fourier Transform (DFT) is an
important transform in signal analysis and
process, but its time complexity can’t be
accepted under many situations. How to make
DFT more fast and efficient has become an
important theory. According to the algorithm
characteristics of DFT, FFT was brought in and
decreased the time complexity to a very large
extent.

This paper presents 8-point Fast Fourier
transform (FFT) processor using Altera tool &
devices such as Nios Il Soft processor on DEO
board, C2H Compiler & DMA. The Niosl|I is soft
core processor which is implemented on FPGA
available on Altera DEO board. C2H Compiler is
a powerful tool that generates hardware
accelerators for software functions. The C2H
Compiler enhances design productivity by
allowing using a compiler to accelerate software
algorithms in hardware. It can quickly prototype
hardware functional changes in C, and explore
hardware-software design tradeoffs in an
efficient, iterative process. Performance was also
increased by allowing accelerating only part of
that software program on hardware. The C2H
Compiler is well suited for improving
computational bandwidth as well as memory
throughput. It also provides a simpler way of
computing complex multiplications, while
decreasing latency time. DMA (Direct memory
Access) is also one of the important concepts
applied to increase the efficiency of implemented
system. So in this paper performance of
implemented FFT Processor is observed by three
different approach & it shows how system will
useful in various signals processing applications.

Keywords - Butterfly, C2H Compiler, DFT, DMA,
FFT

l. INTRODUCTION
With increasing use of technology in every
field the need for digital signal processing has
increased. Nowadays, there is more demand for
reduced cost, area, power and increased speed;
which motivated the development of more
sophisticated DSP algorithms to enhance the

performance. Discrete Fourier Transform (DFT) is
power tool for performing DSP Functions.

The DFT takes an N-point vector of
complex data sampled in time and transforms it to
an N-point vector of complex data that represents
the input signal in the frequency domain. The DFT
X (k), k=0,...., N-1 of a sequence x (n),n=0, 1, ...,

N-1 is defined as in equation (1),
N -1
X(k) =2y x(mw™, k-0toN -1
Np-o N
)

Where Wy, the twiddle factor, is defined as

W e d2mIN
N

k=0t N-1

The DFTs are almost never computed
directly, but instead are calculated using the Fast
Fourier Transform (FFT), which comprises a
collection of algorithms that efficiently calculate the
DFT of a sequence. FFT produce results identical to
the DFT in far fewer cycles. The Cooley-Turkey
algorithm [1] is a widely used FFT algorithm that
exploits a divide-and-conquer approach to
recursively decomposes the DFT computation into
smaller and smaller DFT computations until the
simplest computation remains. One subset of this
algorithm called Radix-2 Decimation-in-Time (DIT)
breaks each DFT computation into the combination
of two DFTs, one for even-indexed inputs and
another for odd-indexed inputs. The decomposition
continues until a DFT of just two inputs remains.
The 2-point DFT is called a butterfly, and it is the
simplest computational kernel of Radix-2 FFT
algorithms. So In this paper FFT algorithm is
implemented on Soft Core Processor which is Altera
Implemented processor Nios Il Soft processor on
Cyclon Il FPGA which is available on DEO board.
This Implemented FFT algorithm on C is hardware
accelerated by using C2H compiler & DMA. By
using this it will increase throughput of system in
terms of no. of clock cycles.

The rest of this paper is organized as
follows: Section 2, presents basics of Processor
architecture .Section 3, Design of FFT Processor.
Result & Comparison of Proposed method with
Existing Technique in section 4. Finally, the section
5 gives conclusion of this work.

1. PROCESSOR ARCHITECTURE
FFT Processor Block diagram is as shown
in Fig-1. The Nios Il processor is the heart of
implemented system which is Altera Implemented

42|Page

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA)

ISSN: 2248-9622

www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

Soft-Core Processor. Altera’s Nios II is a soft
processor, defined in a hardware description
language, which can be implemented in Altera’s
FPGA devices by using the Quartus 11 CAD system.
To implement a useful system it is necessary to add
other functional units such as memories,
input/output interfaces, timers, and communications
interfaces. To facilitate the implementation of such
systems, it is useful to have computer-aided-design
(CAD) software for implementing a system-on-a-
programmable-chip (SOPC). Altera’s SOPC Builder
is the software needed for this task

| sDrRAM Performance [
. 5 !
Controller Counter !
Address (32) 1 |
YT e 1o G2
Nios Il Data Out (3‘, | Internal - ITAG
Processor i rAM-ROM M Module

3lgled 393UU0IIRI| WYSAS

N (D _PIO

Figure-1 Processor architecture

2.1 Nios-11 Soft core processor

The Nios Il soft- processor [2] is a general-purpose
RISC processor core. Soft means the processor core
is not fixed in silicon and can be targeted to any
Altera FPGA family. It provides the following
features:

o Full 32-bit instruction set, data path, and
address space

e 32 general-purpose registers

e 32 interrupt sources

e Access to a variety of on-chip peripherals,
and interfaces to off-chip memories and
peripherals.

e Hardware-assisted debug module enabling
processor start, stop, step, and trace under
control of the Nios Il software development
tools.

Nios Il processor is very flexible and has
some configurations that can be implemented at the
design Stage. These configurations allow the user to
optimize the processor for various applications. The
most relevant are the clock frequency, the debug
level, the performance level and the user defined
instructions. The performance level configuration
enables the user to choose one of the three
performances available: The NIOSII/f (fast), which
results in a larger processor that uses more logic
elements, but is faster and has more features, such as
multiplication and others; The NIOSII/s (standard),
which creates a processor with balanced relationship
between speed and area, and some special features;

The NIOSII/e (economic), which generates
a very economic processor in terms of area, but very
simple in terms of data processing capability. The
user-defined instructions allow the user to import
hardware designs and attach them to the processor
hardware, making them accessible by means of
customizable instructions. The NIOS Il Processor
arithmetic and logic operations are performed on
operands in the general purpose registers. The
operands are moved from memory to these registers
by means of Load and Store instructions.

2.2 system Interconnect fabric-Avalon Bus

Nios Il processor system consists of a Nios
Il processor core, a set of on-chip peripherals, on-
chip memory, and interfaces to off-chip memory, all
implemented on a single Altera device. These
components are interconnected by means of the
interconnection network called the Avalon Switch
Fabric .The Avalon bus is used to connect
processors and peripherals in a system. It is
asynchronous bus interface that specifies the
interface and protocol used between master and
slave components. A master component (e.g. a
processor) can initiate bus transfers, while a slave
component (e.g. memory) only accepts transfers
initiated by the master. Multiple masters and slaves
are allowed on the bus. In case two masters try to
access the same slave at the same time, the bus
arbitration logic determines which master gets
access to the slave based on fixed priorities. The bus
arbitration logic is generated automatically based on
the user defined master-slave connections and
arbitration priorities. The Avalon bus contains
decoding logic that generates a chip-select signal for
each peripheral. The Avalon bus supports dynamic
bus sizing, so the peripherals with different data
widths can be used on a single bus. If a master
attempts to read a slave that is narrower than the
master, the bus logic automatically issues multiple
read transfers to get the requested data.

2.3 SDRAM Controller

The SDRAM controller core with Avalon
interface provides an Avalon Memory-Mapped
(Avalon-MM) interface to off-chip SDRAM. The
SDRAM controller [3] allows designers to create
custom systems in an Altera device that connect
easily to SDRAM chips. The SDRAM s relatively
inexpensive, control logic is required to perform
refresh operations, open-row management, and other
delays and command sequences. The SDRAM
controller connects to one or more SDRAM chips,
and handles all SDRAM protocol requirements.
Internal SDRAM Core shown in Fig-2.

43|Page

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA)

ISSN: 2248-9622

www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

SDRAM Controller

Multi-Port Front End Single-Port Controller

Fead Data
6
Data Reorder
FIFO Buffer
Buffers
ECC ft—|
Generation
Virte Data [
Checking
6
FIFO Wrie Data
> E;'é e ™ utler >
FPGA Buffers Logie Ahera
Fabric PHY [t
Interface
Command
6 Write
Acknowledge Queues
10
Command Command
Sehaduler »
FIFO Generalor
Buflers

‘ Centrol & Status Regster Interface |

)

v
Figure-2 SDRAM Controller Core

It is divided into two parts Multi-port front end
(MPFE) & Single-port controller (SPC)

2.3.1 MPEF (Multi-Port front end)
The MPFE [4] consists of the following
three primary sub-blocks.

e The Command Block accepts read and
write transactions from the FPGA fabric.
For each pending transaction, the command
block calculates the next SDRAM burst
needed to progress on that transaction.

e The write data block transmits data to the
single-port controller. The write data block
informs the command block of the amount
of pending write data for each transaction.

e The read data block receives data from the
single-port controller. In order to prevent
the read FIFO buffer from overflowing, the
read data block informs the command
block of the available buffer area so the
command block can pace read transaction
dispatch.

2.3.2 SPC (Single Port Controller)

The single-port logic is responsible for
following actions: Queuing the pending SDRAM
bursts, choosing the most efficient burst to send
next, Keeping the SDRAM pipeline full, and
ensuring all SDRAM timing parameters are met It
consist of following block & their function:

e The command generator accepts commands
from the MPFE and from the internal ECC
logic, and provides those commands to the
timer bank pool.

e The timer bank pool is a parallel queue that
operates with the arbiter to enable data
reordering.

e The arbiter determines the order in which
requests are passed to the memory device.

e The rank timer performs the following
functions: Maintains rank-specific timing

information, Ensures that only four
activates occur within a specified timing
window

e The write data buffer receives write data
from the MPFE and passes the data to the
PHY, on approval of the write request.

e The ECC block consists of an encoder and
a decoder-corrector, which can detect and
correct single-bit errors, and detect double-
bit errors.

2.4 PLL (Phase Lock Loop)

In synchronous transaction revelent signal
may be valid for small window of time. However
accessing SDRAM involves additional issues. First
since SDRAM controller & SDRAM [3] reside on
two separate devices, timing parameter, such as
clock to g delay, set up time ,hold up time are not
identical. Off chip access introduces additional
delay and has significant impact on controller clock
to output time. Finally clock skew also exist because
rising edge may not be able to arrive at SDRAM
controller & SDRAM devices at the same time. One
way to overcome this problem is to adjust phase
between controller clock and SDRAM devices. The
required clock adjustment is done by FPGA internal
PLL circuit as show on following Fig-3.

FPGA device SDRAM device

ok

50 MHz
oscilator

Figure-3 PLL Circuit
In above method external 50MHz of clock is fed to
PLL which generates clk_sysclk to drive SDRAM
controller and clk_sdram clk which leds by 3ns to
drive external SDRAM devices.

2.5JTAG UART

The JTAG universal asynchronous
receiver/transmitter (UART) core with Avalon
interface implements a method to communicate
serial character streams between a host PC and an
SOPC Builder system on an Altera FPGA. Fig-4
Shows JTAG UART Core.

JTAG Connection to Host PC

Altera FPGA

JTAG UART Core

Registers

Wiite FIFO JTAG
Hub
Avalon-MM slave Interface
interface ‘ Gontrol 4—‘ Read FIFO
toon-chip
log ¢ RO

Other Nodes Using JTAG
Interface (e.g. Another JTAG UART)

44|Page

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

Figure-4 JTAG UART Core

The JTAG UART core consists of two 32-
bit registers, data and control that are accessed
through an Avalon slave port. An Avalon master,
such as a Nios Il processor, accesses the registers to
control the core and transfer data over the JTAG
connection. The core operates on 8-bit units of data
at a time; The JTAG UART core provides
bidirectional FIFOs to improve bandwidth over the
JTAG connection. The JTAG controller can connect
to user-defined circuits called “nodes” implemented
in the FPGA. Because there may be several nodes
that need to communicate via the JTAG interface, a
JTAG hub (i.e., a multiplexer) becomes necessary.

2.6 JTAG Module

The Nios Il architecture supports a JTAG
debug module that provides on-chip emulation
features to control the processor remotely from a
host PC. PC-based software debugging tools
communicate with the JTAG debug module and
provide facilities, such as the following features:

¢ Downloading programs to memory

Starting and stopping execution
Setting breakpoints and watch points
Analyzing registers and memory
Collecting real-time execution trace data

2.7 Performance Counter

A performance counter is a block of
counters in the hardware that measures the
execution time of the code sections that user choose.
A performance counter component can track up to
seven code sections. By default, the component
tracks three code sections. A pair of counters tracks
each code section:

e Time—A 64-bit time (clock tick) counter
that counts the number of clock ticks
during code section runs.

e Occurrences—A 32-bit event counter that
counts the number of times the code section
runs.

The performance counter component occupies a
substantial number of logic elements (LEs) on
device, and requires software implementation to
obtain performance measurements. These counters
enable to measure the execution time of the
designated sections of C/C++ code. Macros enable
us to mark the start and the end of the code sections
in program.

2.8 System ID (SYSID)

The system ID peripheral safeguards
against accidentally downloading software compiled
for a different Nios 11 system. If the system includes
the system ID peripheral, can prevent us from
downloading programs compiled for a different
system.

1. IMPLEMENTATION METHODOLOGY
The proposed method in this paper
implements FFT processor on FPGA using
ALTERA tool & DEO Development board. With the
help of such tool & SOPC Technology makes it
easier for design the system as per the requirement
with less complexity. ALTERA provides various
range of Development board with different feature
such as Cyclone, Stratix edition, designer can
choose according to the application requirements. In
this performance of implemented system is compare
by three different approaches:
e Software only approach
o Hardware Accelerator approach- Using
C2H compiler
e DMA Approach
Performance comparison in each approach is done
by no. of clock cycles required to get final output.

3.1 Requirement of tool for complete System
Development

Software:
e Altera Quartus Il software version 7.1 or
later.
e Nios Il Embedded Design Suite version 7.1
or later
Hardware

e Altera DEO Development board

S
—3

The Complete Design Flow is as shown in Fig-5.

Analyze system
requirements
Nios II ‘HS(Q"‘%D“
cores Define and generate custom
and system in Qsys peripheral
standard logic

i
peripherals o, Lt
Y
f—
Altera
hardware
r abstraction

-
e Er Mo]
rr‘r?(’;?!ﬁlae’s into Quartus Il project Build Tools for Eclipse e p%','ﬁ:??‘
i e
\J —
e — | -
Asgign phn lccations, Download software executable User C/C4+
g fag to Nios Il system on target board application
and other design constraints ipplcatior
custom
libraries
L)

oz || | mngisge
I :
opengee || [ppe
Figure-5 Design Flow of System
After the initial system specification, the
design flow is divided into a hardware and software
development. Processor, memory and peripheral
properties are defined during the hardware
development process. User programs and other
system software are developed and built during the
software development process. The software
development is dependent on the hardware
development results. After the system hardware and
software have been built, the system prototype is
tested on a development board featuring an FPGA

45|Page

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA)

ISSN: 2248-9622

www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

device and other components useful for prototyping.
If the system meets the specification, the system
design is complete. Otherwise, either hardware or
software needs to be redesigned.

3.2 Hardware Development

The Development flow is depend on the
application requirement such as, Computational
performance, bandwidth, throughput, types of
interface & software which is implemented on such
system, Based on this requirement user can
determine the system at design stage. Hardware
Development is as shown in following Fig-6

[Gircuit Description

v

Synthasis

Y

Placement

Y

Routing

Y

y ™
l\ FPGA Programming file /]

e /

Figure-6 Hardware Development Flow

Input to a system is a high-level circuit
description, which is typically provided using a
hardware description language (HDL). An HDL
circuit description is converted into a netlist of basic
gates in the synthesis step of the design flow. The
placement algorithm maps logic blocks from the
netlist to physical locations on an FPGA. Once the
placement has been done, the routing algorithm
determines how to interconnect the logic blocks
using the available routing. The routing algorithm
produces a set of programming bits determining the
state of all the interconnection switches inside an
FPGA. The final output produce is the FPGA
programming file, which is a bit stream determining
the state of every programmable element inside an
FPGA. Design flow, including synthesis, placement
and routing is referred to as the design compilation.

This FPGA Programming is done by using
Quartus-11 Tool. Quartus Il provides a set of tools
for circuit designs targeting Altera programmable
devices. These tools include design editors,
compilation and simulation tools, and device
programming software. After analysing the system
requirement use SOPC builder tool which is
included in Altera Quartus Il software.

3.2.1SOPC Builder

SOPC Builder is a tool for the integration and
configuration of a bus-based system consisting of
library and user components. Library components
include processors, memories, bus arbiters and
bridges, standard peripherals, and other IP cores.

The SOPC Builder consists of two parts:
graphical user interface (GUI), and a system
generator program. The GUI is used to select system
components, and to set various component and
system parameters. Depending on the peripheral
type, memory mapping and the interrupt priority
may be defined. System components are
automatically interconnected using one of the
available buses. The SOPC Builder supports two
bus types: AMBA-AHB and Avalon, in this we use
Avalon interconnects Bus. The system configuration
defined in the SOPC Builder GUI is stored in a
system PTF file, which is a plain text file that
completely describes the system. The system
generator program uses the information in the
system PTF file to generate HDL code and software
for the system. By using SOPC builder components
are added which are require to implement system.
SOPC builder automatically generates interconnect
logic to integrate component into hardware system.
User can also add custom instruction logic to
system. Final implemented system overview in
SOPC Builder is as shown in Fig-7.

Uz Comn... Moz bame Descipiion Clok Base End Tax
M 3o bios I Prcessor
Tstrucsion mester Avvakn emary Magpad Masier altpll) e)

| dala master Avvakn emary Magpad Masier mo Ing 31

T a0 debug_modie: Arvabn Memary Megpad Sk IxB2000800 Dx02000£5E
v B sdram_conroller SORAM Coniroler

e | A Wemary Mo Se atph D el | eLONOND QeDlffEEEE

H g sysid Sysem D Pegheel

[condrol_sieve Arvabn Memary Megpad Sk altpl Db | be200A0E0 0x1Z001057
z B performance _counter 1 Periomence Courler Liif

[ookl save Avakn Memary Megped Sk altpll) ¢ xB2000000 0x0200107F
M LS PO Pl

Mg A Wemary Mo Sve atph D e | B20NI0ED 01200103
M B SAITCHES O Pl

= o Avakn Memary Megped Sk altpll) ¢ xb20010c0 0x020010cE
M B ked) Crrcter LD

[condrol_sieve Arvabn Memary Megpad Sk altpl Db |- beb20010ed 0x1Z0D10=E
M g apll Ayn ALTHL :

[~ ol Hraknenied gontrol dave
M [jtag_uart THGUART .ﬂ‘;—awmr;l-lwdiava[afdm_sae 104]

[valon g she Avbon Memory agpe Save altpl el | b20000E8 Dx0200L0£E
M 5 led ight PO ek 0]

= A Memory Magpd Save altpl Db |0 beb20020a0 0x1Z0010E

Figure-7 SOPC System Overview

3.2.2 Schematic Design

The Quartus Il Graphic Editor can be used
to specify a circuit in the form of a block diagram or
schematic. In this connection of Nios Il processor
pin according to their function has been done like
Input, Output & Bidirectional as shown in Fig-8.
Once system is compile successfully by using SOPC
Builder Nios Il soft Processor is ready with pin &
their functionality.

46|Page

i

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA)

ISSN: 2248-9622

www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

Figure-8 Schmetic of System

3.2.3 Pin Planner

Pin assignments are made by using the
Assignment Editor. The DEO board has fixed pin
assignments. Recompile the circuit, so that it will be
compiled with the correct pin assignments. A simple
file format that can be used for this purpose is the
comma separated value (CSV) format, which is a
common text file format that contains comma-
delimited values. According to pin assignment
changes has been done as shown in Fig-9.

mose_cih

¢2_fom e seran il
1o e _sibam oo AT
the st cortroal15.00

Figure-9 Pin Planner

3.2.4 JTAG Programming

The FPGA device must be programmed
and configured to implement the designed circuit.
The required configuration file is generated by the
Quartus II Compiler’s. Altera’s DEO board allows
the configuration to be done by JTAG as shown in
Fig-10. The configuration data is transferred from
the host computer (which runs the Quartus 11
software) to the board by means of a cable that
connects a USB port on the host computer. Quartus
Il software places the configuration data into the
configuration device on the DEO board. Then, this
data is loaded into the FPGA upon power-up or
reconfiguration.

O Quartus Il Programmer - [Chain1.cdf]*
File Edit ‘iew Processing Options Help

;?_-, Hardware Setup... | Hardware

[] Enable real-time 15P ko allow background programming (For MAX 11 devices)

Mode: |ITAG M

File Device Checksum Usercode
W st

C:fezh_10_0_stagel[fft_. EP3C16F464 00467046 FFFFFFFF
mils Stop
“}“ Auta Detect
* Delete
‘

=5 Change File...

H
& save il oI EY

; :

4o up EP3C16F4G4
D0

w‘ Down ¢

Figure-10 Programming Window
To complete the hardware design, perform the
following:
» Instantiate the module generated by the
SOPC Builder into the Quartus Il project.
* Assign the FPGA pins.
* Compile the designed circuit.
» Program and configure the Cyclone Il
device.

3.3 Software Development

The Nios 1l EDS provides software
development environment that works for all Nios 1l
processor system. With Nios Il running on a host
computer, an Altera FPGA & JTAG download cable
we can write a program for & communicate with
any Nios Il processor system The Nios Il EDS
provides the following development flows for
creating Nios Il programs:

e Nios Il Software Build Tools(SBT)
e Nios Il integrated development
environment(IDE)

These flows differ in how they create
makefile. These file in two flows are different and
are not compatible. In this project we use Nios Il
IDE development flow, which provides integrated
environment in which we can create, modify, build,
run and debug Nios Il programs with the Nios Il
IDE GUI. The makefile it creates cannot be user
managed. This flow provides limited control over
build process & project setting, with no support for
customized scripting. The Nios Il EDS perform very
useful task to run the software program on hardware
DEOQ Board.

3.4 Different Implementation Approach
3.4.1Software only

With the help of Nios Il IDE we had
Implemented FFT Algorithm & that will run on
DEO board cyclone 1l FPGA. Initialization of
performance counter is done in this algorithm which
we had already specified in hardware development

47|Page

Progress: S

Progr]
Confis

¥

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

- R (T) 10 o AR 3L | Section | % | Time (sec)| Time (clocks)|Occurrences|
B debuy modde L& vaion Wemary Mapped Slave 02000800 0202000£5€
] B sdram_controller ISDRAM Corlroler + + + + t +
— el IAveion Memary Mepped Slave altpl_0_c 100000 Ox0LEFE1EE | Software Only | 99.6] o.00011] 5625] 1]
) g sysid (System D Perresdl .
| conbrol skwe {Avedon Wemary Wapped Slave altpll_0_cd Ax020010£0 020200107 T T T T T
1] B performance_tounter 0 Performance Counéer Lt Real data index 0 = 255, Imaginary Data index 0 = 0
g} ELS:d_sm :;;l:;wrjmwgm Rend s e fReal data index 1 = 480, Imaginary Data index 1 = 1650
— lavaian Wemory Wepped Slave ‘altpll_0_cd 202001080 0z0200103¢ Real data index 2 = -510, Imaginary Data index 2 = 1020
) o SWITCHES PI0 (Paralld 1) i = _ i i =
3 W L& vaion Wemary Mapped Slave ‘atpil_y_c0 20200100 0z020010cE Real data index 3 780, Imaginary Data index 3 450
M B ki Chamia LD Real data index 4 = -850, Imaginary Data index 4 = 0O
NUB SR ; . _ . . _
control_skve 4veion Memory Mapped Slave Aaltpll_§_cd 20010l 020700102 £ Real data index 5 = —-780, Imaginary Data index 5 = -450
| o altpl b {ivion ALTPLL | | .
ol skvz Jawekan Memery Mepped Slave ek 0 WxI2001040 0z020010d¢ Real data index 6 = -510, Imaginary Data index 6 = -1020
ol B fag_uart el Real data index 7 = 480, Imaginary Data index 7 = -1650
———————————— svalon_jag skave &vaion Memory Mapped Slave Aaltpl_y_cd Sx020010£8 0z0Z00102E
) B led_bilight PIO (Paralld 1] H
s ol veion Memory Mapped Slave Altpll_b_cd 02001020 030200108 € FIgUYE‘-l SOﬂware Only AppfO&Ch RESUIt
) B accelerator it stage2 FFT_manage.. sccekeat fft staged FFT
sceserator_ff_stage2 77T temp str.. [vebon Wemary Magged Save 1060 ecI0000N08 0:0000000¢
sccseraior_if_stage2 FFT_femp?_sir.. [vsbon Wemory Mapped Save. allph _c) - #xB009DOON 0200000007

Conrectons:

so they can run in synchronism to get no. of clock
cycles required for final output.

3.4.2Hardware Accelerator Approach using C2H
compiler
A hardware accelerator is a block of logic
that implements a C function in hardware. Hardware
accelerator implemented in a field programmable
gate array (FPGA), Based on SOPC Builder and
Avalon system interconnect fabric. The C2H
Compiler uses SOPC Builder as the infrastructure to
connect hardware accelerators into Nios Il systems.
A C2H accelerator becomes a component within an
existing Nios Il system. SOPC Builder
automatically generates system interconnect fabric
to connect the accelerator to the system.
The Nios Il IDE allows carrying out the
following important tasks:
e Debug function prior to accelerating
e Generate the accelerator and incorporate it
into hardware
e Test and profile software and hardware
with the C2H accelerator
The C2H Compiler converts only sections
of code that user specify. A typical program
contains a mix of performance-critical code and
other code. Performance-critical sections are often
iterative and simple, but consume the majority of a
program's execution time on a processor. The best
use of hardware resources is to accelerate only the
performance-critical functions of a program, rather
than converting an entire program to hardware.
After using C2H compiler FFT accelerator
component is get added in system as hardware unit
and its connection with other component is done
automatically by SOPC builder by using Avalon
switch fabric. Final system overview in SOPC
builder after adding Hardware Accelerator is as
shown in Fig-11.

Hodhie ame Descigiin Cock Base End Togs

cpu
nsiuctin pester

\avon Memery Meppe Wester

Figure-11 Hardware Accelerator System overview

3.4.3 DMA Approach

Embedded systems frequently employ
DMA engines to increase data throughput and
offload memory copy operations from the processor
[9]. In many cases the memory locations being

accessed are dispersed throughout the address space.
The Butterfly operation, which requires the
processor to execute a large number of memory
accesses, is time consuming. Because the primary
bottleneck in the Butterfly computation is memory
throughput, combining the FFT algorithm and DMA
operation into a hardware accelerator maximizes
system performance. The C code to transfer the data
in each buffer is replaced by an accelerated function
that reads from the data buffers residing in main
memory (SDRAM). The DMA operation is
implemented in Software algorithm.
Final Implemented System block diagram after
applying three different approach is as shown below
Fig-12.

Host Computer

. . ‘ o

JTAG Debug Module ‘ JTAG UART ‘

Avalon switch fabric

On Chip SDRAM

Memory Contraller Parallel VO

LCD Controller

SDRAM Chip 1642 LCD Display LED, Switches, Buttons

Figure-12 Final System Block Diagram
AV RESULT
For comparing the performance in this 3
different approach we input data in power
of 2 like [1 2 4 8 16 32 64 128] & observe their
corresponding ouput & no. of clock cycles in each
approach.

I-—Performance Counter Report—-—
Total Time: 0.00011294 seconds (5647 clock-cyoles)

RS232 Interf

Serial 1O

FPGA

48|Page

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA)

ISSN: 2248-9622

www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

—-Performance Counter Report--
Total Time: 9,.706E-05 seconds (4853 clock-cycles)

| Section | % | Time (sec)| Time (clocks)|Occurrences|
|Hardware Cnly | 99.8| 0.00010] 4541 1]
Real dats index 0 = 255, Iwaginary Data index 0 =10

Real dats index 1 = 480, Iwaginary Data index 1 = 1650

Real dats index 2 = -510, Iwaginary Data index 2 = 1020

Real dats index 3 = -780, Iwaginary Data index 3 = 450

Real dats index 4 = -850, Iwaginary Data index 4 =0

Real dats index 5 = -780, Imaginary Data index 5 = -450

Real dats index 6 = -510, Imaginary Data index 6 = -1020

Real dats index 7 = 480, Imaginary Data index 7 = -1650

Figure-2 Hardware Accelerator approach

--Performance Counter Report—-

Total Time: 9.32E-05 seconds
P
| Section | £
[F—

(4660 clock-cyeles)

___________ PR

| Time (sec) | Time (clocks) |Occurrences|

——————————— e B e et

| Hardware + DMA | 99.4| 0.00009] 4630 1|
e e e e e e +
Real data index O = 255, Imaginary Data index 0 = 0

Real data index 1 = 480, Imaginary Data index 1 = 1650

Real data index 2 = -510, Imaginary Data index 2 = 1020

-780, Imaginary Data index 3 = 450
, Imaginary Data index 4 o]

= =780, Imaginary Data index 5 =450
data index 6 = -510, Imaginary Data index € -10z0
data index 7 = 480, Imaginary Data index 7 = -1650

Figure-3 DMA Approach

With different sets of data we had observed
that there is almost 900 to 1000 no. of clock cycles
reduction after applying DMA & hardware
accelerator approach for implementation of FFT
algorithm on Nios Il soft core processor.

TABLE-1 Comparison with Different sets of data

Sets of Data | Software | Hardware DMA+Hard
Only Accelerator ware
approach | Approach accelerator

approach

[L23456 | 5620 4854 4625

78]

[L23443 5608 4854 4822

21]

[1+1) 2+2j | 5617 4856 4618

3+3) 444

5+5] 6+6j

7+7j 8+8j]

4.1 Comparison with Existing Method

Various implementation techniques of FFT
Algorithem & their performance characteristics is as
follows:

e HDL (Streaming)

The Pipelined Streaming [10] 1/O solution
pipelines several Radix-2 butterfly processing
engines to offer continuous data processing. Each
processing engine has its own memory banks to
store the input and intermediate data. We can
continuously stream in data and, after the
calculation latency, can continuously unload the
results.

e HDL (Pipeline)
Pipelined FFT architecture called Radix-2? Single
Path Delay Feedback (R2> SDF) and it is
implemented on FPGAs using a high-level C-to-
hardware programming language for rapid
prototyping.

e Software
FFT Algorithm Implemented using Software
requires less silicon area. It has drawback as the no.
of input increased butterfly complexity also
increases which decrease the speed of operation
hence degrades the system performance.

e C2H Compiler

The C2H Compiler translates FFT

Algorithm implemented in C constructs to their
hardware equivalents. C2H accelerators consume
hardware resources such as LE (Logic elements),
multipliers, and on-chip memory.
Following Table gives Comparison of all above
Technique in terms of advantages & disadvantages.

Table-5 Comparison with Existing Technique

HOL Veryhigh Optimizedfor speed 1} LargeSilicon area
(Streaming) FPGA/ASIC
2) Difficufttodesign

HOL High Optimizedfor silconarea Lessspead compared to
{Pipelng) streaming mode
Software Poor 1] Verylesssilconarea Very low spead

2) VeryEasytodesgn
CH Moderate 1) Moderatesilicon area ot recommendedfor

2} Very Easytodesen very high speed) time

3] Muchbetterperformance critical application
than softwareapproach

V. CONCLUSION

The capabilities of FPGAs have increased
to the level where it is possible to implement a
complete computer system on a single FPGA chip.
The main component in such a system is a soft-core
processor. The Nios soft-core processor is intended
for implementation in Altera FPGAs.

In this project, we have design FFT
processor using ALTERA DEO board & Design
Tools. It includes FPGA which is dedicated only for
Altera family of FPGA. The main advantage offered
by this method is flexibility & parallelism.
Flexibility makes design process complex. The
SOPC builder system design tool helps to manage
with this complexity. SOPC builder can also provide
mechanism for peripheral expansion or processor
offload. Complete system can be implemented on
any FPGA according to application requirement
which make it to be used in real time environment.
Implementing Part of Software algorithm as a
Hardware unit not only increases its throughput but

49|Page

Varsha Adhangale, Dr.R.D.Daruwala / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622

www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 42-50

also increase design efficiency. With a few
straightforward code optimizations, the Nios Il C2H
Compiler can sharply improve the computational
bandwidth and memory throughput of a software
algorithm. So Part of FFT Algorithm as Hardware
Accelerator & DMA is very much useful which
provides flexibility for user to implement design as
per the requirement and gives performance in terms
of less latency period.

REFERENCES

[1] Jayasumana, G. Colorado State University,
Ft. Collins, CO Loeffler, C. ,“Searching for
the best Cooley-Tukey FFT algorithms”
Acoustics, Speech, and Signal Processing,
IEEE International Conference on ICASSP
'87 , vol.12, pp. 2408- 2411, : Apr 1987

[2] Joshi, N.N. Y.C.C.E., Nagpur, India
Dakhole, P.K. ; Zode, P.P.,” Embedded
Web Server on Nios Il Embedded FPGA
Platform”, ?” proc IEEE ICETET, vol. 55,
pp. 372-377,DEC 2009

[3] Pong P. Chu Embedded SOPC Design with
Nios Il Processor and VHDL Examples
Wiley Publisher, August 2011

[4] SDRAM Controller Subsystem
http://www.altera.com/literature/hb/cyclone
-v/cv_54008.pdf

[5] JTAG UART Core
ftp://ftp.altera.com/up/pub/Altera_Material/
11.1/Laboratory Exercises/Computer_Org
anization/DEOQ/Iab7.pdf

[6] Franjo Plavec(2004) Soft-Core Processor
Design Master Thesis, Toronto University
, Toronto

[71 Sahil Sharma(2010) Implementation of
Web-Server Using Altera DE2-70 FPGA

Development Kit Bachelor Thesis,
National Institute of Technology(NIT),
Rourkela

[8] Altera C2H Compiler
http://www.altera.com/literature/tt/tt_nios2
c2h_accelerating_tutorial.pdf?GSA_pos=
1&WT.o0ss r=1&WT.oss=fft%20c2h

[9] DMA
http://www.altera.com/literature/an/an417.
pdf?GSA pos=7&WT.oss r=1&WT.oss=

DMA
[10] Xlinx Logic-Core IP Fast Fourier
Transform

http://www.xilinx.com/support/documentat
ion/ip_documentation/ds808 xfft.pdf

50|Page

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8363
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8363
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8363
http://www.altera.com/literature/hb/cyclone-v/cv_54008.pdf
http://www.altera.com/literature/hb/cyclone-v/cv_54008.pdf
http://www.altera.com/literature/hb/cyclone-v/cv_54008.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/11.1/Laboratory_Exercises/Computer_Organization/DE0/lab7.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/11.1/Laboratory_Exercises/Computer_Organization/DE0/lab7.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/11.1/Laboratory_Exercises/Computer_Organization/DE0/lab7.pdf
http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=fft%20c2h
http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=fft%20c2h
http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=fft%20c2h
http://www.altera.com/literature/tt/tt_nios2_c2h_accelerating_tutorial.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=fft%20c2h
http://www.altera.com/literature/an/an417.pdf?GSA_pos=7&WT.oss_r=1&WT.oss=DMA
http://www.altera.com/literature/an/an417.pdf?GSA_pos=7&WT.oss_r=1&WT.oss=DMA
http://www.altera.com/literature/an/an417.pdf?GSA_pos=7&WT.oss_r=1&WT.oss=DMA
http://www.altera.com/literature/an/an417.pdf?GSA_pos=7&WT.oss_r=1&WT.oss=DMA
http://www.xilinx.com/support/documentation/ip_documentation/ds808_xfft.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds808_xfft.pdf

