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Abstract 
Temperature and doping dependencies of 

electron mobility in both wurtzite and zincblende 

GaN structures have been calculated using an 

iteravive technique. The following  scattering 

mechanisims, i.e, impurity, polar optical phonon, 

acoustic phonon, piezoelectric and electron 

plasmon are inculded in the calculation. Ionized 

imurity scattering has been treated beyound the 

Born approximation using the phase-shift 

analysis.  It is found that the electron mobility 

decreases monotonically as the temperature 

increases from 100K to 600K. The low 

temperature value of electron mobilty increases 

significantly with increasing doping concentration. 

The iterative results are in fair agreement with 

other recent calculations obtained using the 

relaxation-time approximation and experimental 

methods.  

 

Keywords: GaN; SiC; Wurtzite; Zincblende; 

Plasmon 

 

I. Introduction 
Wide band gap GaN and related compounds 

with aluminium and indium currently have two main 

uses in commercial devices, providing bright LEDs 

emitting at ultraviolet-blue green wavelengths for 

CD-ROM and sensor applications and heterojunction 

field effect transistors (HFETs) which can sustain 

high current densities at elevated temperatures [1-2]. 

It has been shown that GaN has large peak electron 

velocity and can be an important candidate for high 

frequency application. A wide energy band gap leads 

to a low intrinsic carrier concentraion, which enables 

a more precise control of free carrier concentration 

over a wide range of carrier concentration over a 

wide range of temperatures, and hence the devices 

made of this kind of material will be operable at high 

temperatures with large breakdown voltage. The 

development of GaN based transport devices is 

hampered by the nonavailability of detailed 

knowledge of the transport properties and transport 

parameter. Keeping    in    mind   its    huge   

technological  prospect, we need a better 

understanding of these materials. The electron drift 

mobility is the   most   popular   and   important   

transport  parameter used to characterize the 

microscopic quality of epitaxial layers. There has 

been very little work on the  calculation of low field 

electron mobility in GaN, Chin et al. [3] have used 

the variational principle to calculate low field 

electron mobilities and compared their results with 

fairly old experimental data. They have tried to fit the 

experimental data with an overestimated 

compensation ratio.  In old samples, low electron 

mobility was due to poor substrate and buffer quality 

and other growth related problems. The iterative 

technique has been used by Rode and Gaskill [4] for 

low field electron mobity in GaAs for the dependence 

of mobility on electron concentration, but not on 

temperature, and ionized impurity scattering has been 

estimated within the Born approximation, which 

might be the reason for poor fitting at high electron 

concentrations.  

This paper presents the iteative calculation 

results of electron transport in  bulk GaN for both the 

natural wurtzite and also the zincblende lattice  

phases. Most of the calculations have been carried 

out using a non-parabolic ellipsoidal valley model to 

describe transport in the conduction band. However, 

the simpler and less computationally intensive 

spherical parabolic band scheme has also been 

applied, to test the validity of this approximation. The 

iterative calculations take into account the electron-

lattice interaction through polar optical phonon 

scattering, deformation potential acoustic phonon 

scattering (treated as an elastic process), piezoelectric 

and electron plasmon scattering. Impurity scattering 

due to ionized and neutral donors is also included, 

with the latter found to be important at low 

temperature due to the relatively large donor binding 

energy which implies considerable carrier freeze-out 

already at liquid nitrogen tempearure. 

This paper is organised as follows. Details of the 

iterative model and the electron mobility calculations 

are presented in section II, the electron scattering 

mechanism which have been used are discussed in 

section III and the results of iterative calculations 

carried out on GaN structures are interpreted in 

section IV. 

 

II. Model details 
In principle the iterative technique give 

exact numerical prediction of electron mobility in 

bulk semiconductors. To calculate mobility, we have 

to solve the Boltzmann equation to get the modified 
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probability distribution function under the action of a 

steady electric field. Here, we have adopted the 

iterative technique for solving the Boltzmann 

transport equation. Under application of a uniform 

electric field the Boltzmann equation can be written 

as 

dkfsfffsfE
e

k   )]'1()1(''[.)(


                         (1) 

where )(kff    and )(kff    are the probability 

distribution functions and )',( kkss   and ),'(' kkss   

are the differential scattering rates. If the electric field 

is small, we can treat the change from the equilibrium 

distribution function as a perturbation which is first 

order in the electric field. The distribution in the 

presence of a sufficiently small field can be written 

quite generally as  

cos)()()( 0 kgkfkf                                        (2) 

where )(0 kf  is the equilibrium distribution function,  

is the angle between k and E and )(kg  is an isotropic 

function of  k, which is proportional to the  

magnitude of  the electric field. In general, 

contributions to the differential scattering rates come 

from two types of scattering processes, elastic 

scattering els , due to acoustic, impurity, plasmon and 

piezoelectric phonons, and inelastic scattering 
inels , 

due to polar optic phonons  

)',()',()',( kkskkskks inelel                                     (3) 

The polar phonon energy is quite high (~92 

mev) in case of GaN. Hence, this scattering process 

can not be treated within the framework of the 

relaxation time approximation (RTA) because of the 

possibility of the significant energy exchange 

between the electron and the polar optic modes. In 

this case, inels represents transitions from the state 

characterized by k to k' either by emission )]',([ kksem
or 

by absorption )]',([ kksab
 of a phonon. The total elastic 

scattering rate will be the sum of all the different 

scattering rates which are considered as elastic 

processes, i.e. acoustic, piezoelectric, ionized 

impurity, and electron-plasmon scattering. In the case 

of polar optic phonon scattering, we have to consider 

scattering-in rates by phonon emission and 

absorption as well as scattering-out rates by phonon 

absorption and emission. Using Boltzmann equation 

and considering all differential scattering rates, the 

factor )(kg  in the perturbed part of the distribution 

function )(kf  can be given by  
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Note, the first term in the denominator is simply the 

momentum relaxation rate for elastic scattering. It is 

interesting to note that if the initial distribution is 

chosen to be the equilibrium distribution, for which 

)(kg  is equal zero, we get the relaxation time 

approximation result after the first iteration. We have 

found that convergence can normally be achieved 

after only a few iterations for small electric fields. 

Once )(kg  has been evaluated to the required 

accuracy, it is possible to calculate quantities such as 

the drift mobility which is given by 
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Where d is defined as kEmd k

2//1  . In the 

following section electron-phonon, electron-impurity 

and electron-plasmon scattering mechanisms will be 

discussed. 

 

III. Electron scattering mechanisms 
A. Phonon scattering 

The dominant scattering mechanism of 

electrons in polar semiconductors like GaN comes 

from the electron-phonon interaction except at the 

lowest temperatures. The electron-optical phonon 

interaction contributes both in the ohmic and non-

ohmic mobility and provides the dominant energy-

loss mechanism of electrons. First order polarization 

occurs in connection with the primitive unit cell, 

characteristic of the longitudinally polarized optical 

mode. In GaN the Debye temperature is more than 

1000K [6], hence polar optical phonon scattering 

must be considered as an inelastic process. Other 

phonon scattering processes, i.e. acoustic and 

piezoelectric scattering are considered as elastic 

processes.  Like GaAs, GaN also has a single 

minimum valley at K= 0 ( valley). So internally 

phonon scattering can be neglected at low field 

conditions. In polar optic phonon scattering the 

differential scattering rates for absorption and 

emission can be written as [5]   
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where s  and  are define in table 1, Nop  is the 

phonon occupation number and the Nop and 1+Nop 

refer to absorption and emission, respectively. For 

small electric fields, the phonon population will be 

very close to equilibrium, so that the average number 

of phonons is given by the Bose-Einstein  distribution 

function. We have found that after a few iterations, 

the electron polar optical phonon scattering rate 

converges and becomes very close to the 

experimental result [6]. Also it is found that the 

electron polar optical phonon scattering rate in GaN 
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is almost one order of magnitude larger than in GaAs, 

which can be attributed to its larger ionic properties.  

The energy range involved in the case of scattering 

by acoustic phonons is from 0 to kvs2 , as the 

momentum conservation restricts the phonon wave 

vector q between 0 and 2k , where k  is the electron 

wave vector. Typically the average value of k is on 

the order of 10
7
 cm

-1
 and vs, the velocity of sound in 

the medium, is on the order of  10
5
 cm/s. Hence, 

kvs2 1 meV, which is small compared to the 

thermal energy. Hence electron-acoustic phonon 

scattering can be considered as an elastic process. 

Actually, a long wave length acoustic displacement 

can not affect the energy since neighboring unit cells 

move by almost the same amount, only the 

differential displacement (normally the strain) is of 

importance. The total differential scattering rate for 

acoustic phonons can be given by 
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where Dac is the acoustic deformation potential,  is 

the material density and  is the non-parabolicity 

coefficient.  The formula clearly shows that the 

acoustic scattering increases with temperature.  

In crystals like GaN, whose lattice lacks inversion 

symetry, such as those semiconductors with 

sphacelate or wurtzite structure, elastic strain may be 

accompanied by macroscopic electric fields. This 

piezoelectric effect provides an additional coupling 

between the electric and acoustic vibrations. The 

differential scattering rate for piezoelectric scattering 

will be 
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where Kav is the dimensionless so called average 

electromechanical coupling constant [7]. 

 

B. Impurity scattering 

The standard technique for dealing with 

ionized impurity scattering in semiconductors is the 

Brook-Herring (BH) technique [8], which is based on 

two inherent approximations. First, is the first order 

Born approximation and second is the single ion 

screening approximation. These two approximations 

essentially lead to a poor fit to the experimental 

mobility data [9,10]. Several attempts have been 

made to modify the BH technique 

phenomenologically [11]. It has been shown that 

phase-shift analysis of electron-impurity scattering is 

the best way to overcome the Born approximation. 

Departure from the BH prediction of electron 

mobility is evident at higher electron concentrations. 

Meyer and Bartoli [9] have provided an analytic 

treatment based on phase-shift analysis taking into 

account the multi-ion screening effect and finally 

been able to overcome both the approximations. All 

the previous techniques of impurity screening by free 

electrons in semiconductors were based on the 

Thomas-Fermi (TF) approximation which assures 

that a given impurity should be fully screened. The 

breakdown of the single-ion screening formalism 

becomes prominent in the strong screening regime, 

where the screening length calculated through TF 

theory becomes much shorter than the average 

distance between the impurities and hence 

neighboring potentials do not overlap significantly. 

This essentially leads to a physically unreasonable 

result. In the case of high compensation, the single-

ion screening formalism becomes less relevant, 

because in order to maintain the charge neutrality 

condition, it would be more difficult for a given 

number of electrons to screen all the ionized donors 

separately. In the case of GaN, the compensation 

ratio is usually quite large, and the ratio nN D /  is also 

temperature dependent. Hence the multi-ion 

screening correction is very essential in GaN. The 

effective potential of an ionized impurity scattering 

center is spherically symmetric in nature, so one can 

use phase-shift analysis to find the differential 

scattering rate )',( kks  more accurately. The effective 

potential )(rV due to an ionized impurity can be 

expressed as  /

00

2 )4/()()( r

l ereZrV  , where 
lZ  is the 

charge of the ionized impurity in units of e and  is 

the screening length. The standard technique to find 

out the screening length is the TF approach which is 

based on single ion screening approximation. In TF 

one can calculate the charge contribution q i to the 

screening of a single ionized donor by an electron of 

energy Ei and is given by )/2( 00

23 VEeq ii  . In the 

case of multi-ion problem, the TF approach can be 

generalized to find out the effective charge 

contribution due to an electron to screen all ionized 

donors and can be given by )/2( 00

23

iDi ENeQ  . Total 

screening charge exactly neutralizes the ionized 

donors, when Qi is summed over all electronic states 

 
i

Di

i NEf
e

Q
)(0

                                          (9) 

For the sufficiently low energy electrons, Qi can be 

greater than the electronic charge, which is physically 

unreasonable. One way to tackle [9] this problem is to 

introduce a  factor Si such that   



i
ii

E
ES )(          iE                                          (10) 

where ),/2( 00

22 kcN D    Qi  will be modified to 

iii SQQ '  in Eq. (9). For the low energy electrons the 

contribution will be –e. Since the total contribution to 

the screening by the low energy electrons has been 

effectively decreased, Eq. (9) no longer holds. 
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However, if the screening length  is more than the 

average distance between the donors, it is not 

necessary to insist that each donor be fully screened, 

only it is required that overall charge neutrality should 

be preserved. Electrons in the overlap region can pro-

vide screening to both the ionized donors. Here we can 

define a factor p, which would be the fraction of the 

total charge, which is contained within a sphere of 

radius R surrounding the donor. Hence Eq. (9) will be 

modified as                                                         

 
i

Di

i pNEf
e

Q
)(0

"

                                                 (11) 

where 
iii SpQQ " . The screening charge requirement will 

be fulfilled by adjusting the screening length untill Eq. 

(11) is satisfied and is given by   
2

0

2  m
                                                                  (12) 

  

where m is multi-ion screening length and 0 is TF 

screening length. The differential scattering rate for 

ionized impurity can be given as   

)]()'([)(
8

)',(
2

22*

33

kEkEXf
Vm

kkSii  
                          (13) 

where scattering amplitude )(Xf  depends on the 

phase shift l and Legendre polynomial Pl and is 

given by 
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It has already been mentioned that in n-type 

GaN the activation energy of the donors is quite large, 

which keeps a large number of donors neutral at low 

temperatures. Neutral impurity scattering has been 

dealt with previously using the Erginsoy [12] 

expression which is based on electron scattering by a 

hydrogen atom and a scaling of the material 

parameters. It has been shown that an error as high as 

45% results in the neutral impurity scattering cross 

section with this simple model. Meyer and Bartoli
 
[9] 

have given a phase shift analysis treatment based on 

the variational results of Schwartz
 
[13] to calculate the 

neutral impurity cross section, which is applicable for 

a larger range of electron energy.  

 

C. Plasmon scattering 

Though carrier mobility and various 

scattering phenomena in semiconductor have been 

studied extensively, there is hardly any study 

regarding the effect of electron-plasmon scattering on 

electron mobility except the excellent work by 

Fischetti in the case of  Si [14]. He has shown that the 

electron-plasmon interaction is important at doping 

densities above 10
17

 cm
-3

. Plasmons are the collective 

excitations of the free electrons against the positive 

background charges, and creat long range electric 

fields (like LO polar optic phonons) which can 

scatter the electrons. In the case of electron-plasmon 

scattering, electrons can gain momentum from 

colective excitations, but it may be returned to 

electrons if plasmons decay into single particle 

excitations, which is called Landau damping. 

Electron mobility is affected indirectly by modifying 

the distribution function if Landau damping is the 

faster decay channel. When plasmons decay through 

collisions with phonons and impurities, it can directly 

affect the electron mobility. It has been shown [14] 

that if decay due to collisional damping dominates 

over Landau damping, electron-plasmon scattering 

can reduce the electron mobility by 20% for electron 

concentrations greater than 10
17 

cm
-3

. The differential 

scattering rate for an electron of wave vector k and 

energy E to absorb or emit a plasmon of energy   is 

given by 

dX
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where upper and lower signs represent absorption and 

emision, respectively. ],2/)/(1[ 2/12  kqX cc
 qc is the 

maximum value of the plasmon wave vector, above 

which plasma oscillation can not be sustained. The 

usual approximation is 
0/1 cq . )'(E is the step 

function, where  EE' , ]1)//[exp(1)(  TkN BP    is 

the Bose occupation number of the plasmons. q is the 

plasmon wave vector given by )21( 2/122 Xkq   

and ).1/()'1)(/1()/'( 2 EEEkk     

)21/()()( EEE   , where )(E  is the total relaxation 

time. To evaluate the integral in Eq.15 requires the 

solution of the nonlinear Boltzmann equation. It has 

been shown [8]  that the energy dependence of   can 

be ignored for the entire electron concentration range 

of interest, which means that 1)(/)'( EE  . The total 

plasmon momentum relaxation rate is given by 




 
0

)(
),(

1
)( 


 


d
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where )31( 00 ppp   is the plasma frequency 

corrected for the nonparabolicity effect and 
*22

0 / mnep    is the plasma frequency. 

])[(/)( 22    ppg , where  is the half width 

of the plasmon line due to Landau damping and is 

small at large impurity concentrations because the 

decay rate is inversely proportional to the plasma 

energy. The half width due to collision damping can 

be estimated by the single particle relaxation rate. We 

do not need to determine relaxation rate exactly, 

because mobility depends very weakly on  as long 

as the damping is not too strong. 

                

IV. Results and discussion 
We have performed a series of low-field 

electron mobility calculations for both the natural 

wurtzite and the zincblende lattice phases of GaN. 

Low-field mobilities have been derived using 
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iteration methode. Important parameters used 

throughout the calculations  are listed in table 1, 

which are taken from Ref. [15]. 

Figure 1 shows reasonably good agreement 

between experimental and calculated mobility-

temperature dependencies in both structures. For 

wurtzite structure the calculations have been 

performed for an electric field applied along the -A 

(c-axis, c-GaN)  and -M (parallel to basal plane, h-

GaN) directions of the Brillouin zone. The peak 

electron drift mobility in two directions are, 

respectively, 1300 cm
2
/V-s and 1100 cm

2
/V-s at 

room temperature. The reason for this difference can 

be explained as follows. The  valley effective mass 

is greater in the  -M direction than -A, which 

implies that an electric field applied perpendicular to 

the c-axis will be less efficient in heating the electron 

ensemble. It can be seen from the figure that the 

electron drift mobilities at room temperature that we 

find are 1300 and 1800 cm
2
/V-s for wurtzite and 

zineblende structures, respectively, for an electric 

field equal to 10
4
 Vm

-1
 and with a donor 

concentration of 10
22

 cm
-3

. The results plotted in 

figure 1 indicate that the electron drift mobility of 

wurtzite GaN is lower than zincblende structure at all 

temperatures. This is largely due to the higher  

valley effective mass in the wurtzite phase.  
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Figure 2 shows the calculated variation of 

the electron mobility as a function of the donor 

concentration for both GaN crystal structures at room 

temperature. The mobility does not vary 

monotonically between donor concentrations of 10
21

 

cm
-3 

and 10
25

 cm
-3  

due to the dependence of electron 

scattering on donor concentration, but shows a 

maximum near 10
21

 cm
-3

 for zincblende and wurtzite. 
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In figure 3, the electrons as a function of 

temperature using the screened shallow donor 

binding energy results of Wang, et al. [15] for 

different background electron concentrations. The 

temperature effects on the carrier screening are taken 

into account for this calculation. The figure clearly 

shows that for uncompensated GaN at liquid nitrogen 

temperature there is a large fraction of neutral donor 

impurities present. 
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The temperature variation of the electron drift mobility in 

zinceblende and wurtzite GaN (c-GaN) for different donor 

concentrations is shown in figure 4. It is evident from this 

figure that the curves approach each other at very high 

temperatures, where the mobility is limited by longitudinal 

optical phonon scattering, whereas the mobility varies 

inversely with donor concentration at low temperature, as 

we would expect from the foregoing discussion. The 

decrease in mobility at low temperature is caused in part by 

neutral impurity scattering. For the lowest doping 

concentration considered in this calculation,  10
21

 cm
-3

, we 

find that the neutral impurity scattering plays a large role at 

low temperature because of the significant carrier freeze-out 

evident from figure 3.                   

Fig.1. Electron drift mobility of GaN in zinceblende and wurtzite 
structures (both perpendicular to c-axis and parallel to c-axis) versus 

temperature. Donor concentration is approximately 1022 cm-3. 

 

Fig.3. Electron concentration versus temperature for c-GaN with 

different donor doping densities. 

 

IEE REVIEW     (Conf. Proc., Vol. 129, I, No. 1, DECEMBER 2003) 
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V. Summary 

In conclusion, we have quantitatively 

obtained temperature-dependent and electron 

concentration-dependent electron mobility in both 

zincblende and wurtzite GaN structures using an 

iteravive technique. The theoretical values show good 

agreement with recently obtained experimental data. 

It has been found that the low-field mobility is 

significantly higher for the wurtzite structure than 

zincblende due to the higher electron effective mass 

in the wurtzite crystal structure. Several scattering 

mechanisms have been included in the calculation 

including electron-plasmon scattering. Ionized 

impurities have been treated beyond the Born 

approximation using a phase shift analysis. Screening 

of ionized impurities has been treated more 

realistically using a multi-ion screening formalism, 

which is more relevant in the case of highly 

compensated III-V semiconductors like GaN and 

SiC. 
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