
 Ravinder Nellutla, Vishnu Prasad Goranthala, Fasi Ahmed Parvez / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.803-812

803 | P a g e

Classification of Different Computer Worms with Dynamic Detection

Using Victim Number Based Algorithm

Ravinder Nellutla Asst. Prof.
1
, Vishnu Prasad Goranthala Assoc. Prof.

2

 Fasi Ahmed Parvez Assoc.Prof.

3

1
(Department of Information Technology, Kamala Institute of Technology and Science, Singapur, Huzurabad,

Karimnagar.
2
(Department of Computer Science and Engineering / Information Technology, Balaji Institute of Engineering

Sciences, Laknepally, Narsampet, Warangal.
3
(Department of Computer Science and Engineering / Information Technology, Balaji Institute of Engineering

Sciences, Laknepally, Narsampet, Warangal.

ABSTRACT
The Internet has developed to give many

benefits to mankind. The access to information being

one of the most important. Worms cause major

security threats to the Internet. Worms are software

components that are capable of infecting a computer

and then using that computer to infect another

computer. The cycle is repeated, and the population

of worm-infected computers grows rapidly. Smart

worms cause most important security threats to the

Internet. The ability of smart worms spread in an

automated fashion and can flood the internet in a very

short time. In this paper, first, we present an analysis

on potential scan techniques that worms can employ

to scan vulnerable machines. In particular, we find

that worm scan choose targets more carefully than

the random scan. A worm that scans only IP

addresses announced in the global routing table can

spread faster than a worm that employs random scan.

In fact, scan methods of this type have already been

used by the Slapper worm. These methods reduce the

time wasted on unassigned IP addresses. They are

easy to implement and pose the most imminent

menace to the Internet. We analyzed different scan

methods and compared them, we find that the victim

number based algorithm can dramatically increase

the spreading of speed of worms.

Key terms: Worms, Network security, Random

Scan, Virus, Victim Number Based Algorithm,

I. Introduction
Worms are one of the most ill defined

concepts in Network Security. There is still no

universal consensus on the definition of the worm.

Usually worms and viruses display similar

characteristics and their intention is also similar. To

define worms, we will use the following points and

then define worm based on these points.

 The propagation of the worm is based on

exploiting vulnerabilities of computers on the

Internet. Many real-world worms have caused

notable damage on the Internet. These worms include

“Code-Red” worm in 2001 [1], “Slammer” worm in

2003 [2], and “Witty”/ “Sasser” worms in 2004 [3].

Many active worms are used to infect a large number

of computers and recruit them as bots or zombies,

which are networked together to form botnets [4].

Worms can start on a host (Computer) in various

fashions. It may be an attachment to a mail and when

the attachment is opened, will execute the code

written in the worm. This is called "invocation by

human intervention". It may also start without any

human intervention. For example, rebooting the

system. It affects the host. In contrast to computer

viruses, it can affect anything on the host. It may

corrupt the files on the host. It may affect

communication of the host with other systems. It may

disable the anti-virus software on the host, which will

enable it to cause more damage. Computer Viruses in

the other hand are very specific to files. Worms have

a broader scope of attack than viruses. Worms are

self replicating codes. This is the most distinct feature

of a worm. Once they infect a host, they will try to

find a nearby host which they can access, and copy

themselves to that host. There it will perform the

same actions that it performed on the original host.

"A worm is a computer program, which can self-

replicate and propagate over the network, with or

without human intervention, and has malicious

intent."

1.1. Differences between virus and worms:

VIRUS WORM

A Virus is a program

that is designed to

spread from file to file

on a single Pc.

A worm is designed to

copy itself (intentionally

move) from PC to PC, via

networks, internet etc.

It does not

intentionally try to

move to another PC.

A worm does not need a

host file to move from

system to system, where as

a virus does.

It must replicate and

execute itself to be

defined as a virus

Worms spread more

rapidly than viruses.

 Ravinder Nellutla, Vishnu Prasad Goranthala, Fasi Ahmed Parvez / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.803-812

804 | P a g e

II. RELATED WORK
1.1. Active worms:

Active worms are similar to biological

viruses in terms of their infectous and self-

propagating nature. They identify vulnerable

computers, infect them and the worm-infected

computers propagate the infection further to other

vulnerable computers. In order to understand worm

behavior, we first need to model it. With this

understanding, effective detection and defense

schemes could be developed to mitigate the impact of

the worms. For this reason, tremendous research

effort has focused on this area.

Active worms use various scan mechanisms

to propagate themselves efficiently. The basic form

of active worms can be categorized as having the

Pure Random Scan (PRS) nature. In the PRS form, a

worm-infected computer continuously scans a set of

random Internet IP addresses to find new vulnerable

computers. Other worms propagate themselves more

effectively than PRS worms using various methods,

e.g., network port scanning, email, file sharing, Peer-

to-Peer (P2P) networks, and Instant Messaging (IM)

[7], [8]. In addition, worms use different scan

strategies during different stages of propagation. In

order to increase propagation efficiency, they use a

local network or hitlist to infect previously identified

vulnerable computers at the initial stage of

propagation [13], [14]. They may also use DNS,

network topology, and routing information to identify

active computers instead of randomly scanning IP

addresses [10], [11]. They split the target IP address

space during propagation in order to avoid duplicate

scans [10]. Li et al. [12] studied a divide-conquer

scanning technique that could potentially spread

faster and stealthier than a traditional random-

scanning worm. Ha and Ngo [5] formulated the

problem of finding a fast and resilient propagation

topology and propagation schedule for Flash worms.

Yang et al. [6] studied the worm propagation over the

sensor networks.

III. Worm Detection
The main focus of this section is to detect

worms using various scan techniques. Worm scan

detection is raising an alarm upon sensing anomalies

that are most likely caused by large scale worm

spreads. Our goal is to quickly detect unknown

worms on large enterprise networks or the Internet

while making the false alarm probability as low as

possible. In the following sections, we first present

our generic worm detection architecture. We then

present the design and analysis of a simple detection

algorithm, called, victim number based algorithm.

I. Popular Worms
3.1. Creeper Worm

Released in early 1970's and written by Bob

Thomas, it was an experimental program to

demonstrate the power of programming. Most of the

worms written at the time were a result of fascination

for self replicating programs by the programmers.

There was not malicious intent and the worms did not

hide. They were sent in clear. The Creeper worm was

written to infect DEC PDP-10 computers running the

TENEX operating system. The program used the

ARPANET to propagate from node to node and

display a message "I'm the creeper, catch me if you

can!" A program, Reaper, was written to counter

Creeper.

3.2. Morris Worm

Released in 1988 and authored by Robert

Tappen Morris, was the first known worm that had

malicious intent. According to the author, the worm

was not suppose to cause any damage and was

intended to gauge the size of the internet. It however,

did cause DoS attacks. The worm exploited the

vulnerabilities of Unix sendmail, rsh/rexec and weak

passwords. The worm initiated a process on the host

and found new hosts to propagate the code. Once it

found a new host it would copy itself to the new host

and start an additional process there. The worm has a

condition to check if the worm is already running on

the host. But Morris has programmed in such a way

that the worm propagated to the new host even if the

answer was "Yes". Every new instance of the worm

on the host caused an additional process to be

launched. And each new process slowed the system

down until the system was unusable. The Morris

worm is also considered as the Great Worm as it was

first of its kind and it demonstrated the amount of

impact such programs can have if they are not

secured. It also changed the perception of system

Downtime and Internet Security forever.

3.3. Melissa Worm
This was a worm that caused wide spread

damage to the internet and for the first time huge

losses to everyone around the planet. It caused over

400 million USD in damages across the globe and

shutdown many organizations. It was written as a

MACRO on Microsoft Word Document and this

helped its widespread propagation. It was released in

Mid March 1999 and was authored by David L.

Smith. The worm was very simple in its concept, but

demonstrated a new technique to propagate. Many of

the worms that were written in the years to come,

were derived from this concept in one way or

another. The worm was present in the MACRO of a

MS-WORD document and propagated as a document

that supposedly contained passwords for 80

pornographic sites. If the user opened this document,

and many of them did, it would execute the MACRO.

Once the MACRO was executed, it would pick up

the first 50 contacts from the users address book and

mail a copy of itself to all the addresses. Since the

worm was essentially an email worm and it mailed 50

 Ravinder Nellutla, Vishnu Prasad Goranthala, Fasi Ahmed Parvez / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.803-812

805 | P a g e

address every time it infected a new host, many mail

servers were clogged with the mails. This caused a

wide spread DoS attack. Most of the techniques used

by this worm laid the foundation or methodology for

many variants and newer worms. Papa and Syndicate

are two such variants.

3.4. Explore Zip

This worm took the concept of Melissa

worm one step further. Melissa worm was not

designed to reside on the system. ExploreZip was.

The worm propagated via email, just like Melissa,

and was present in an attachment called

ZIPPED_FILES.exe. Once the user opened the

attachment, the worm would seem like a self

extracting zip archive and then error out. Behind the

scenes it would install itself on to the system and

register itself in the Windows Registry. The worm

would then stay dormant and do nothing. When the

user reboots the system, the worm would get

activated and mail a copy of itself to all the people in

the address book of the user on the host. It would also

delete all the C and C++ source files from the hard

drive. There is no record of the amount of damage

done by this worm. Since all the computers are not

started at the same time, it is unlikely that this worm

could have caused any DoS attack. It was not

instantaneous like Melissa.

3.5. I Love You

This was the first worm to take the cost of

damage to billions of USD. An estimated damage

caused by this worm was between 5 and 10 billion

USD. The worm was written in VB Script and

propagated as an attachment in the email with a

message "ILOVEYOU". When users opened this

attachment, it would register itself onto the Windows

Registry. This would activate the worm after every

restart of the system. It would then, search all the

drives connected to the host for all files with

extensions *.JPG, *.JPEG, *.VBS, *.VBE, *.JS,

*.JSE, *.CSS, *.WSH, *.SCT, *.DOC *.HTA,

*.MP3, *.MP2 and rename them to .VBS. It also had

a component called WIN- BUGSFIX.EXE" or

"Microsoftv25.exe". This was a password stealing

program. The worm propagated across the network

by using the addresses present in the address book of

the user. Since the worm activated immediately and

also on restart of the PC, the amount of email it

generated crippled many mail servers and also

individual PCs. The worm was allegedly authored by

Irene, Onel de Guzman and Reomel Lamores from

Philipines.

3.6. Code Red

This worm took the approach to attacking in

a completely different direction. Instead of relying on

mails address in the user's contact list, it performed

network scanning and used the IP addresses

connected to the host as a vector for propagation. It

attacked the IIS servers and defaced many websites.

It used the vulnerability of buffer overflows on IIS

servers to execute binary code on the hosts. The

initial worm did not check if the new host has

windows or was running IIS. It also did not check if

the IP address it was trying to access exists. The later

versions of this worm were more inclined towards the

local subnet rather than accessing some random IP.

The total cost of damage was about 1.2 billion USD.

It demonstrated a new technique or worm

propagation.

3.7. Nimda

This was the next generation worm in its

own league. It had 4 different propagation vectors. It

could propagate via Websites, LAN, Emails and as

executables. In emails it was disguised as a BASE-

64(Binary) file readme.exe in the MIME Section. It

would pick up the address retrieved from the user's

MAPI Service. In the browser mode of propagation,

the worm would rename many of the system files to

.html and .asp. These pages would get executed and

download the worm onto the machine, thus infecting

the host. In the LAN Mode, it would copy itself on to

all the writable shared directories that it could find. If

the remote user opened these shared drives and if the

"auto preview" option was enabled, the worm would

infect the remote computer. It would them repeat the

same process on the remote PC. The estimated cost

of damage of this worm was about 8.75 billion USD.

3.8. Mydoom

This was the most notorious worms of all

times with the highest damage of 22 billion USD. It

propagated as a "Sending Failed" mail from the mail

server and asked the user to click on the attachment

to resent the mail. If the user opened the attachment,

it would show that it's resending the mail and in

parallel, installed the Understanding Worms. The

worm would then send a copy of itself to all the

address in the address book and also copy itself to

Peer-to-Peer shared drives. The worm also opened a

back door for the hacker to get back anytime .

3.9. Sasser

This worm was unique in the manner in

which it was developed. The worm was reverse

engineered from one of the patches provided for

Microsoft Windows. The worm would exploit the

vulnerability the patch was suppose to address and

was targeted at systems that had not installed the

update yet. It did not portray any new technological

advance from the way the worm behaved. But the

design of the worm was a step further in worm

innovation. It targeted the LSASS component that

represents Buffer Overflow and executed binary code

on the hosts. Since buffer overflow causes erratic

 Ravinder Nellutla, Vishnu Prasad Goranthala, Fasi Ahmed Parvez / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.803-812

806 | P a g e

behavior or shutdown of the system, many

organizations across the globe went down almost

instantaneously. It caused a damage of over 14 billion

USD and was authored by Sven Jaschan.

I. Worm Characteristics
Worms can be categorized by their target discovery

technique, propagation carrier and distribution

mechanism, activation and payload [8].

4.1 Target Discovery

Target discovery is the first step of the worm

propagation, the purpose being to detect new hosts to

infect. There are several possible techniques by

which a vulnerable target can be discovered: by

scanning, by use of various target lists and by passive

monitoring [15]. Many of the most effective worms

combine several of these techniques in order to use

the best from

each technique.

4.1.1.Scanning

The scanning technique involves probing a

set of addresses in order to detect vulnerable hosts.

The simplest forms of scanning are sequential and

random scanning. The former implies probing

addresses sequentially from an address block, while

the latter implies trying addresses from an address

block in a pseudo-random fashion. Their simplicity

makes them frequently used. To increase the

efficiency of the target discovery mechanism, worm

authors have suggested several optimizations for

scanning worms. One optimization is the preference

for local addresses in order to reduce latency. This is

commonly referred to as island hopping because the

worm’s spreading pattern tends to resemble islands.

In addition to reducing latency, island hopping will

also reduce the number of encounters, and thereby

possible detections and failed infection attempts,

with firewalls and NATs. At the same time, it makes

the worm more vulnerable in its initial stage, as total

containment is possible if the worm is detected and

isolated while still infecting hosts in the initial local

network [15]. Another optimization is a bandwidth-

limited scanner which implies that the scanning

process is limited by the bandwidth of the

compromised host, not by the latency of connection

requests, as is often the case [17]. The use of

scanning causes highly anomalous behavior as it

generates a lot of traffic that differs from normal

traffic. This makes the worms easier to detect.

4.1.2.Target Lists

Target discovery can also be carried out

through the use of target lists. Worms utilizing such

lists are often referred to as hit list worms and are

characterized by their extremely rapid spreading

speed. One example is the use of pre-generated target

lists where a set of hosts known or suspected to be

vulnerable to attack is gathered in advance and is

included in the actual worm payload. A small target

list of this kind could be used to accelerate the

spreading of a scanning worm, while a complete list

could create a flash worm which is further elaborated

in section 3.4.3. An externally generated target list is

a target list not included in the worm’s payload, but

maintained by a separate server. The list can be

downloaded to infected machines in order to select

new victims. An externally generated target list

located at a central server makes it easy to issue

updated target lists, but at the same time, if the

central server is compromised the worm may be

prevented from further propagation [15]. Yet another

example of a target list is the host-based lists in

which the worm utilizes information stored on the

infected host to decide which hosts to attack next.

Worms utilizing host-based lists for target discovery

are called topological worms.

4.1.3.Passive Monitoring

Worms using a passive monitoring

technique are not actively searching for new victims.

Instead, they are waiting for new targets to contact

them or rely on the user to discover new targets.

Although passive worms tend to have a slow

propagation rate, they are often difficult to detect

because they generate modest anomalous

reconnaissance traffic.

4.2. Propagation Carrier and Distribution

Mechanism

There are three possible methods by which a

worm can propagate from an infected host to an

uninfected one [15].

4.2.1. Self-Carried

A self-carried worm transmits itself as part

of the infection process. This mechanism is

commonly used when the initial attack is directly

followed by the worm payload transmission, as is the

case with self-activating and topological worms.

4.2.2. Second Channel

Some worms require a second

communication channel in order to complete the

infection process. One example is to have the victim

host request the transfer of the actual worm code to

complete the infection.

4.2.3. Embedded

An embedded worm transmits itself as part

of a normal communication channel by appending

itself to, or replacing, an existing payload. This yields

modest anomalous traffic related to propagation and

could be combined with a stealthy target discovery

 Ravinder Nellutla, Vishnu Prasad Goranthala, Fasi Ahmed Parvez / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.803-812

807 | P a g e

mechanism, like the passive monitoring mechanism

described in the previous section, in order to create a

stealthy worm.

4.3. Activation

The means by which a worm is activated on

a newly infected host drastically affects its

propagation speed.

4.3.1. Human Activity-Based Activation

Some worms are activated when the user

performs some activity, like resetting the machine,

logging onto the system and thereby running the

login scripts or executing a remotely infected file.

Evidently, such worms do not spread very rapidly.

4.3.2. Scheduled Process Activation

A faster spreading speed than the previous

activation method is achieved by worms that rely on

some scheduled process for activation. An example is

automatic software updates, which can be used to

install and run malicious software (e.g., a worm).

Earlier versions of automatic update services were

more susceptible to this kind of attack as they rarely

employed any authentication.

4.3.3. Self Activation

The fastest spreading worms are the ones

that are able to activate themselves by initiating their

own execution as soon as the infection process is

completed. This is done by exploiting vulnerabilities

in a service that is always running and available, or in

the libraries that these services use. The worms

activate themselves by attaching themselves to the

running service or by executing commands using the

permissions associated with those services.

4.4. Payload

The worm code not related to propagation is

called the worm payload. It can vary significantly

depending on the goals of the worm’s author. Some

examples are presented in this section.

4.4.1. None/Nonfunctional

The most common payload is actually no or

a nonfunctional payload. Even with no payload, the

worm can still consume considerable network and

computer resources, as well as advertising vulnerable

hosts.

4.4.2.Remote Control

Some payloads can open backdoors on

victim machines in order to make remote control of

the captured machines possible by bypassing the

usual security access procedures. By introducing a

trojan horse to the infected machine, it is possible to

gain access to files that normally require certain user

privileges [17].

4.4.3. Denial of Service (DoS)

A commonly used payload is to issue a

Denial of Service attack against one or several web

sites. The effect of a DoS attack increases with the

number of nodes participating in the attack. A large

worm network can cause large damage by issuing a

Distributed DoS (DDoS) attack, where all the worm

nodes simultaneously launch attacks against the same

web site.

4.4.4. Data Collection

An increasing amount of sensitive

information is stored electronically these days. Worm

payload can search for this type of information (e.g.,

credit card numbers). Findings could be encrypted

and transmitted through various channels.

4.4.5. Data Damage

Data damage is likely to become a popular

worm payload, like it has been for some time for

computer viruses. It can be used to erase or

manipulate data on the infected host, or even to

encrypt data in order to extort the owner of the

information.

II. ARCHITECTURE FOR WORM

DETECTION
In order to detect scanning worms, we need to

observe various anomalies that are most likely caused

by worms. These anomalies can be observed either at

end hosts, on local networks, or in the global Internet.

The advantage of observing anomalies from the

global Internet is that we can detect worm faster and

differentiate the worm scans from local events. In this

section, we present a generic architecture for worm

detection in the global Internet.

5.1.A Generic Worm Detection Architecture

Monitoring traffic towards a single network

is often not enough to detect a worm attack. This is

because worms may have already spread widely in

the Internet but have not infected the monitored

network yet, or worms may never infect the

monitored network at all. Therefore, we need to

deploy multiple monitoring points on various

networks and aggregate the information thus

obtained. To achieve this, we propose a distributed

worm detection architecture. The architecture

monitors the network behavior at different places. By

gathering information from different networks, a

detection control center can determine the presence

of a large scale worm attack. Problems such as where

the monitors should be deployed, what needs to be

monitored in the network and how the information

obtained by monitoring should be aggregated, have to

be considered in designing the detection architecture.

We propose a generic traffic monitoring and worm

detection architecture as shown in Fig. 5. The

architecture is composed of a detection control center

 Ravinder Nellutla, Vishnu Prasad Goranthala, Fasi Ahmed Parvez / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.803-812

808 | P a g e

and a number of monitoring components. The

monitoring components pre-analyze the traffic and

send preliminary results or alarms to the detection

control center. The detection control center collects

these reports from the monitoring components and

makes the final decision on whether there is anything

serious happening. To avoid single point of failure

and to reduce the overload of control center, we may

have multiple detection control centers to share the

load of computation and communication. In this

paper, we focus on evaluating the performance of our

system for worm detection, and will not discuss about

the detailed design and implementation of the

detection control center and monitoring components.

 Fig.1.

5.2. Victim Number Based Algorithm

Using the detection architecture, we need to

design algorithms to detect anomalies caused by

worms. Since a new worm's signature is not known

beforehand, a small number of packets is not enough

to detect the worm. It is abnormal to find a large

amount of scan traffic sent towards inactive

addresses. This is, how-ever, prone to false alarms

because the scan traffic can be caused by other

reasons (such as DDOS and soft-ware errors).

Therefore, it is necessary to find some unique and

common characteristics of worms. Serious worm

incidents usually involve a large number of hosts that

scan specific ports on a set of addresses. Many of

these addresses are inactive. If we detect a large

number of distinct addresses scanning the inactive

ports, within a short period of time, then it is highly

possible that a worm attack is going on. We define

the addresses from which a packet is sent to an

inactive address as victims. If the detection system

can track the number of victims, then the detection

system has a better performance. Hence, a good

decision rule to determine if a host is a victim is

necessary.

Since worm signature is not known

beforehand, we need to detect anomalies that are

most likely caused by worms. Using our detection

architecture, we need to design algorithms to detect

such anomalies. Serious worm incidents usually

involve a large number of hosts scanning specific

ports on a set of addresses. Because it is hard for

worms to obtain the list of all vulnerable machines in

the Internet beforehand, worms normally need to

randomly search for targets to infect. Such random

scanning techniques will induce a large number of

packets to inactive addresses or inactive services. If

we detect a large number of distinct addresses

sending scan packets to inactive addresses or inactive

services within a short period of time, then it is

highly possible that there is a worm attack. We define

the source addresses that attempt to connect to

inactive address as victims. Our detection system will

track the victims observed from all monitoring

components. The control center will determine

whether there is a worm attack based on the change

of victim number. Worm detection based on the

change of victim number can be considered as a

change-point detection problem. Similar to the

typical sequential change-point detection algorithms

such as parametric or nonparametric Cumulative Sum

(CUSUM), our Victim Number Based Algorithm

calculates the change on the number of victims and

compares it with an adaptive threshold to detect

worm events.

5.2.1.Victim Decision Rules

To detect the change on the number of

victims, we need to identify which source addresses

are victims. One of the simplest rules is that, if a

source address sends at least one scan packet to an

inactive address, we consider this source address a

victim. We call this rule One Scan Decision Rule

(OSDR). Though very simple, OSDR is susceptible

to daily scan noises. For example, when a legitimate

user mistypes a destination address, the source

address might be marked as a victim if the mistyped

destination address is inactive. To avoid such scan

noises, we adopt Two Scan Decision Rule (TSDR),

that is, if a source address sends at least two scan

packets to inactive addresses, we will consider this

source address a victim. TSDR works well with noise

and reflects the incessant feature of worm scans, but

it needs to keep track of the number of scans to

inactive addresses for each source address, which

leads to a more complicated and expensive

implementation than OSDR. However, other

techniques such as Bloom Filter can be used to

alleviate the complexity on the implementation of

TSDR.

Adaptive Threshold:

In our Victim Number Based Algorithm, we

use an adaptive threshold to detect anomaly. When

the number of new victims is greater than the

adaptive threshold Ti in Equation , we consider there

is an anomaly.

 Ravinder Nellutla, Vishnu Prasad Goranthala, Fasi Ahmed Parvez / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.803-812

809 | P a g e

]> ---------------------1)

]= ---------------------2)

=]---------3)

where Vi is the number of victims detected by the

system up to time tick i. ¢Vi+1 = Vi+1¡Vi, which

denotes the number of new victims detected from

time tick i to time tick i+1. E[¢Vi] is the average

number of new victims over last k time ticks at time

tick i, and k is the learning time of the system. ° is a

constant value called threshold ratio. Ti is the

adaptive threshold at time tick i. To reduce the false

positive rate, in practice, we also need to observe a

number of such anomalies to determine worm

activity. The number of consecutive times of

anomaly needed to detect worm activity is denoted as

r. A tradeoff exists in the selection of the value of r.

A larger value of r gives a lower false positive rate

but takes longer time to detect worms whereas a

smaller value of r may result in a larger false positive

rate but takes less time to detect worms.

In order to smooth the initial learning process, we

need to deploy some schemes to expire the entries in

the database. A simple method is to use new database

everyday. For example, the learning process will start

from what the database learned from the previous

day. Another method is to assign a decreasing life

time L to each new victim detected. If L decreases to

zero then the victim is considered as expired and

removed from the victim list. If a scan packet is

received from the victim before L expires, its lifetime

is then reset to L. Using this method, the size of the

database can be kept stable. However, keeping track

of the timers for each address is expensive. We use

the method with daily reset for our solution.

The Victim Number Based Algorithm is as

shown in Figure. The monitoring components gather

scan packets to the detection networks, and use SDR

to identify the victims. The detection control center

collects the victims from all monitoring components

and performs Victim Number Based Algorithm to

detect whether or not there is a worm.

5.2.2.Victim Number Based Algorithm:

1. Gather Scan packets using detection

architecture

2. Identify victims using TSDR

3. Set number of consecutive times that

anomalies are observed , learning time K and

threshold ratio .

4. set adaptive threshold for the current time

tick i.

5. do

if]> then

 count=count-1;

else

count=r;

end if

Update threshold for the current time tick i.

6. while(count>0)

7. alter a worm attack.

5.2.3.Performance of victim Number Based

Algorithm:

Before we evaluate our detection algorithm,

first we need to understand how the number of

victims increases during worm events given a

detection network size, which will guide us to choose

the desired size of detection network. Then we need

to set the parameters including the learning time, the

threshold ratio constant and the number of

consecutive times that anomalies are observed. We

choose these parameters based on the properties of

the background traffic. In this section, we use traffic

traces to decide the parameters and evaluate our

detection algorithm.

The performance can be estimated by the

following criteria.

1) Modeling the Number of victim

2) Requirements for Detection Network size

3) Traffic collection

4) Parameter selection

The following figures shows that detection time of

different scan techniques using detection network.

Fig. 2a) Detection of a Random scan

 Ravinder Nellutla, Vishnu Prasad Goranthala, Fasi Ahmed Parvez / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.803-812

810 | P a g e

Fig. 2b) Detection of a Routable scan

Fig. 2c) Detection of a Divide-Conquer scan

5.2.4.Evaluation of Victim Number Based

Algorithm:

To evaluate our algorithm on real traces, we

combine the real trace traffic with simulated worm

traffic based on various random scan methods. Fig.

2(a) shows the detection time for random scan worm.

The worm startsat 3:00am in the morning with scan

rate of 2 per second and is detected at 13:27pm when

less than 1.25% of vulnerable machines are infected.

It shows that with the /14 network, there is a rapid

increase in the number of victims during random scan

worm attacks. Fig. 2(b) shows the case when worms

perform routable scan. We can see that when worms

perform routable scan, we detect worm events at

5:43am. At this time, less than 0.83% of vulnerable

machines are infected. For divide conquer scan, as

shown in Fig.2(c), we have similar results as routable

scan because the changes on the number of victims

for both scan methods are similar during the early

stage of worm spreading. However, the spreading

speed of divide-conquer scan is faster than routable

scan. When we detect divide-conquer scan worm at

5:43am, less than 0.84% of vulnerable machines are

infected. Besides the various types of scan methods,

we want to know to what extent the victim number

based detection algorithm works for worms with

different scan rates.

Fig. 3(a) gives the results on the fraction of

vulnerable machines that have been infected when

our algorithm detects worm events by varying scan

rates using a /14 detection network. he Y-axis shows

the number of new victims detected in each time

interval. We can see that our algorithm can detect

worms with higher scan rates earlier than worms with

lower scan rates. Fig. 2(b) and Fig. 2(c) show similar

plots for routable scan and divide conquer scan

worms respectively. To understand how ­ (the

number of addresses that a worm performs random

scan) and N (the number of vulnerable machines in

the Internet) affect the performance of our algorithm,

we look at various cases varying these numbers and

check the fraction of vulnerable machines that have

been infected when we detect worm events. In Fig.

3(a), we vary ­ from 1:3 £ 109 to 232 when N = 500;

000. The worm can be detected before 1.4% of

vulnerable machines are infected in most cases. we

vary N from 0:1£106 to 2:0£106 when ­ = 232. It

shows that worms can be detected before 2% of

vulnerable machines are infected.

Fig. 3a) Fraction of Vulnerable machines being

infected vs Ω

Fig. 3b) Fraction of Vulnerable machines being

infected Vs N

 Ravinder Nellutla, Vishnu Prasad Goranthala, Fasi Ahmed Parvez / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.803-812

811 | P a g e

III. CONCLUSION

When the attackers are more sophisticated,

probing is fundamentally not a costly process. From

the discussions above, it seems that the game would

favor the attackers when the Internet links are fast

enough and the size of the code is not critical to the

propagation speed.

This does not imply that monitoring is of no

use. In future, an efficient traffic monitoring

infrastructure will be an important part of the global

intrusion detection systems. A consequence of the

worm detection method is that the attackers will have

to use a limited number of IP addresses to scan the

Internet. Therefore, the impact of worm scanning on

the Internet traffic will be reduced.

In this paper , we clearly mentioned how the

worms will be effected and the characteristics of

different types of worms along with the architecture

and along with the algorithm to identify the effected

worms in the network dynamically by using different

scan techniques like random scan, routable scan,

divide-conquer scan. Further this paper, can be

extend to detecting the worms in world wide web.

References
[1] D. Moore, C. Shannon, and J. Brown,

“Code-Red: A Case Study on the Spread and

Victims of an Internet Worm,” Proc. Second

Internet Measurement Workshop (IMW),

Nov. 2002.

[2] D. Moore, V. Paxson, and S. Savage,

“Inside the Slammer Worm,” Proc. IEEE

Magazine of Security and Privacy, July

2003.

[3] CERT, CERT/CC Advisories,

http://www.cert.org/advisories/, 2010.

[4] P.R. Roberts, Zotob Arrest Breaks Credit

Card Fraud Ring, http://

www.eweek.com/article2/0,1895,1854162,0

0.asp, 2010.

[5] D.Haand H.Ngo, “OntheTrade-Offbetween

Speedand Resiliency of Flash Worms and

Similar Malcodes,”Proc.Fifth ACM

Workshop Recurring Malcode

(WORM),Oct.2007.

[6] 6)Yang,S.Zhu, andG.Cao, “Improving

Sensor Network Immunity under

WormAttacks: A Software diversity

Approach Proc.ACMMobiHoc,May2008.

[7] C. Zou, D.Towsley, and W.Gong ,“Email

Worm Modeling and Defense ,”Proc.13
th

Int’l Conf. Computer Comm.and Networks

(ICCCN),Oct.2004.

[8] W.Yu,S.Chellappan,C.Boyer,andD.Xuan,“P

eer-to-Peer System-Based Active Worm

Attacks: Modeling and Analysis,” Proc.

IEEEInt’l Conf. Comm.(ICC),May2005.

[9] Z.S.Chen,L.X.Gao,andK. Kwiat,“Modeling

the spread of Active Worms, ”Proc. IEEE

INFOCOM ,Mar.2003.

[10] J.Wu,S.Vangala, and L.X.Gao, “An

Effective Architecture and Algorithm for

Detecting Worms with Various Scan

Techniques,”

Proc.11thIEEENetworkandDistributedSyste

mSecuritySymp. (NDSS),Feb.2004.

[11] S.Staniford, D.Moore, V.Paxson, and

N.Weaver, “The Top Speed of Flash

Worms,” Proc.Second ACMConf .Computer

and Comm. Security(CCS) Workshop Rapid

Malcode(WORM),Oct.2004.

[12] Y.Li,Z. Chen ,and C.Chen, “Understanding

Divide-Conquer-Scanning Worms,”

Proc.Int’ lPerformance Computing and

Comm. Conf.(IPCCC), Dec.2008.

[13] Z.S.Chen, L.X.Gao, and K.Kwiat,

“Modeling the Spread of Active Worms,

”Proc. IEEE INFOCOM,Mar.2003.

[14] Dynamic Graphs of the Nimda Worm,

http://www.caida.org/dynamic/analysis/secu

rity/nimda, 2010.

[15] Warhol Worms: The potential For Very Fast

Internet Plagues,

http://www.cs.berkeley.edu/nweaver/warhol.

html

[16] Nicholas Weaver, Vern Paxson, Stuart

Staniford, and Robert Cunningham. A

Taxonomy of Computer Worms. 2003.

http://www.cs.unc.edu/~jeffay/courses/nidsS

05/attacks/ paxson-worm-taxonomy03.pdf.

[17] N. Weaver, Potential Strategies for High

Speed Active Worms: A Worst Case

Analysis,

http://www.cs.berkeley.edu/nweaver/worms.

pdf

 Ravinder Nellutla B.Sc

from KaKatiya University

Warangal, Master of

Computer Applications from

KaKatiya University

Warangal, M.Tech Computer

Science Engineering from

Balaji institute of Engineering and Sciences,

Narsampet, Warangal, Currently working as

Asst.Prof. at Kamala institute of technology and

science, Singapur, Huzurabad, Karimnagar. His

interested subjects include Programming

languages, network security and Data base

Concepts.

http://www.cert.org/advisories/
http://www.caida.org/
http://www.cs.unc.edu/~jeffay/courses/nidsS05/attacks/
http://www.cs.unc.edu/~jeffay/courses/nidsS05/attacks/
http://www.cs.berkeley.edu/nweaver/worms.pdf
http://www.cs.berkeley.edu/nweaver/worms.pdf

 Ravinder Nellutla, Vishnu Prasad Goranthala, Fasi Ahmed Parvez / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.803-812

812 | P a g e

 .
 Vishnu Prasad Goranthala

M.Tech Computer
Science and
Engineering from

JNTU,Hyderabad,
Master of Computer
Applications from

Osmania University ,BSc from KaKathiya
University Warangal, Currently he is
working as an Associate Prof, at Balaji
Institute of Engineering & Sciences,
Narsampet, Warangal., and has 9+
years of experience in Academic. His
research areas include Databases,
Programming Languages and Mobile
computing, Information Security,
Cryptography, and Network Security.

Fasi Ahmed Parvez

currently he is the head
of Department of CSE &
IT in Balaji Institute of
Engineering & Sciences,
Narsampet, Warangal.,
Parvez had several

years of Experience in Academic. His
research areas of interest include Data
mining, Databases, Information
security.

