
 Nisha Soni, Garima Mathur, Mahendra Kumar / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.785-790

785 | P a g e

A Matlab Based High Speed Face Recognition System Using Som

Neural Networks

Nisha Soni
1
, Garima Mathur

2
, Mahendra Kumar

3

Department of Electronics
1, 2, 3

JEC Kukas
1, 2

, Mewar University Gangrar
3

Jaipur
1, 2

, Chittorgarh
3
, India

Abstract
Face recognition (FR) is a challenging

issue due to variations in pose, illumination, and

expression. The search results for most of the

existing FR methods are satisfactory but still

included irrelevant images for the target image.

We have introduced a new technique uses an

image-based approach towards artificial presents a

new technique for human face recognition. This

intelligence by removing redundant data from face

images through image compression using Sobel

Edge Detection (SED) and comparing this with the

two-dimensional discrete cosine transform (2D-

DCT) method for the better speed and efficiency.

SED which is a popular edge detection method is

considered in this work. There exists a function,

edge.m which is in the image toolbox. In the edge

function, the Sobel method uses the derivative

approximation to find edges. Therefore, it returns

edges at those points where the gradient of the

considered image is maximum. The developed

algorithm for the face recognition system

formulates an image-based approach, using the

Two-Dimensional Discrete Cosine Transform (2D-

DCT) or SED for image compression and the Self-

Organizing Map (SOM) Neural Network for

recognition purposed, simulated in MATLAB.

Key Words-- Face recognition; discrete cosine

transform (DCT); sobel edge detection (SED); SOM

network.

I. INTRODUCTION
Using computers to do image processing

has two objectives: First, create more suitable

images for people to observe and identify. Second,

we wish that computers can automatically recognize

and understand images. The edge of an image is the

most basic features of the image. It contains a

wealth of internal information of the image. Edge

detection is the process of localizing pixel intensity

transitions. The edge detection has been used by

object recognition, target tracking, segmentation,

and etc. Therefore, the edge detection is one of the

most important parts of image processing. The

current image edge detection methods are mainly

differential operator technique and high-pass

filtration. Among these methods, the most primitive

of the differential and gradient edge detection

methods are complex and the effects are not

satisfactory. The widely used operators such as

Sobel, Prewitt, Roberts and Laplacian are sensitive

to noises and their anti-noise performances are poor.

The Log and Canny edge detection operators which

have been proposed use Gaussian function to

smooth or do convolution to the original image, but

the computations are very large. This paper mainly

used the Sobel operator method to do edge detection

processing on the images It has been proved that the

effect by using this method to do edge detection is

very good and its anti-noise performance is very

strong too accuracy. The Sobel edge detector uses

two masks, one vertical and one horizontal. These

masks are generally used 3×3 matrices. Especially,

the matrices which have 3×3 dimensions are used in

MATLAB (see, edge.m). The masks of the Sobel

edge detection are extended to 5×5 dimensions [1],

are constructed in this work. A matlab function,

called as Sobel 5×5, is developed by using these

new matrices. Matlab, which is a product of The

Mathworks Company, contains has a lot of

toolboxes. One of these toolboxes is image toolbox

which has many functions and algorithms [2]. Edge

function which contains several detection methods

(Sobel, Prewitt, Roberts, Canny, etc) is used by the

user.

The image set, which consist of 8 images

(256×256), is used to test Sobel3×3 and Sobel5×5

edge detectors in Matlab.

II. THE PRINCIPLE OF EDGE

DETECTION
In digital image, the so-called edge is a

collection of the pixels whose gray value has a step

or roof change, and it also refers to the part where

the brightness of the image local area changes

significantly. The gray profile in this region can

generally be seen as a step. That is, in a small buffer

area, a gray value rapidly changes to another whose

gray value is largely different with it. Edge widely

exists between objects and backgrounds, objects and

objects, primitives and primitives. The edge of an

object is reflected in the discontinuity of the gray.

Therefore, the general method of edge detection is

to study the changes of a single image pixel in a

gray area, use the variation of the edge neighbouring

first order or second-order to detect the edge. This

method is used to refer as local operator edge

 Nisha Soni, Garima Mathur, Mahendra Kumar / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.785-790

786 | P a g e

detection method. Edge detection is mainly the

measurement, detection and location of the changes

in image gray. Image edge is the most basic features

of the image. When we observe the objects, the

clearest part we see firstly is edge and line.

According to the composition of the edge and line,

we can know the object structure. Therefore, edge

extraction is an important technique in graphics

processing and feature extraction. The basic idea of

edge detection is as follows: First, use edge

enhancement operator to highlight the local edge of

the image. Then, define the pixel "edge strength"

and set the threshold to extract the edge point set.

However, because of the noise and the blurring

image, the edge detected may not be continuous. So,

edge detection includes two contents. First is using

edge operator to extract the edge point set. Second is

removing some of the edge points from the edge

point set, filling it with some another and linking the

obtained edge point set into lines.

III. AN EDGE DETECTION SOBEL

FILTER DESIGN
Compared to other edge operator, Sobel

has two main advantages: 1) since the introduction

of the average factor, it has some smoothing effect

to the random noise of the image. 2) Because it is

the differential of two rows or two columns, so the

element of the edge on both sides has been

enhanced, so that the edge seems thick and bright.

Most edge detection methods work on the

assumption that the edge occurs where there is a

discontinuity in the intensity function or a very steep

intensity gradient in the image. Using this

assumption, if one take the derivative of the

intensity value across the image and find points

where the derivative is maximum, then the edge

could be located. The gradient is a vector, whose

components measure how rapid pixel value are

changing with distance in the x and y direction.

Thus, the components of the gradient may be found

using the following approximation:

 (2.1)

 (2.2)

where dx and dy measure distance along the x and y

directions respectively. In discrete images, one can

consider dx and dy in terms of numbers of pixel

between two points. dx = dy = 1 (pixel spacing) is

the point at which pixel coordinates are(i,j) thus,

 (2.3)

 (2.4)

In order to detect the presence of a gradient

discontinuity, one could calculate the change in the

gradient at (i, j) .This can be done by finding the

following magnitude measure

 (2.5)

and the gradient direction is given by

 (2.6)

A. METHOD OF FILTER DESIGN

There are many methods of detecting edges; the

majority of different methods may be grouped into

these two categories:

i. Gradient: The gradient method detects the edges

by looking for the maximum and minimum in the

first derivative of the image. For example Roberts,

Prewitt, Sobel where detected features have very

sharp edges. (see Figure 1)

ii. Laplacian: The Laplacian method searches for

zero crossings in the second derivative of the image

to find edges e.g. Marr-Hildreth, Laplacian of

Gaussian etc. An edge has one dimensional shape of

a ramp and calculating the derivative of the image

can highlight its location (see Figure 2).

Edges may be viewpoint dependent: these

are edges that may change as the viewpoint changes

and typically reflect the geometry of the scene

which in turn reflects the properties of the viewed

objects such as surface markings and surface shape.

A typical edge might be the border between a block

of red colour and a block of yellow, in contrast.

However, what happens when one looks at the

pixels of that image is that all visible portion of one

edge are compacted.

Input Image Output Edges

Fig3.1: The Gradient Method

 Input Image Output Edges

Fig 3.2: The Laplacian Method

The Sobel operator is a discrete

differentiation operator which computes an

approximation of the gradient of the image intensity

function (Sobel, 1968). The different operators in

 Nisha Soni, Garima Mathur, Mahendra Kumar / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.785-790

787 | P a g e

eq. (2.3) and (2.4) correspond to convolving the

image with the following masks

, (3.1)

When this is done, then

i. The top left-hand corner of the appropriate

mask is super-imposed over each pixel of the

image in turn

ii. A value is calculated for x or y by using

the mask coefficients in a weighted sum of

the value of pixels i, j and its neighbours

iii. These masks are referred to as convolution

masks or sometimes convolution kernels.

Instead of finding approximate gradient

components along the x and y directions,

approximation of the gradient components

could be done along directions at 45 and

135to the axes respectively.

iv. An advantage of using a larger mask size is

that the errors due to the effects of noise are

reduced by local averaging within the

neighbourhood of the mask. An advantage of

using a mask of odd size is that the operators

are centred and can therefore provide an

estimate that is based on a centre pixel (i,j).

The Sobel edge operator masks are given as

 (3.2)

 (3.3)

The operator calculates the gradient of the

image intensity at every point, giving the direction

of the largest possible increase from light to dark

and the rate of change in that direction. Therefore

the result shows how "abruptly" or "smoothly" the

image changes at that point and therefore how likely

it is that part of the image represents an edge and

how that the edge is likely to be oriented. In

practice, the magnitude (likelihood of an edge)

calculation is more reliable and easier to interpret

than the direction calculation. The gradient of a two-

variable function (the image intensity function) at

each image point is a 2D vector with the

components given by the derivatives in the

horizontal and vertical directions. At each point of

image, the gradient vector points to the direction of

largest possible increases the intensity and the

length of the gradient vector corresponds to the rate

of change in that direction which results in Sobel

operator at any image point which is in a region of

constant image intensity is a zero vector and at a

point on an edge is a vector which points across the

edge, from darker to brighter values. The algorithm

for developing the Sobel model for edge detection is

given below.

PSEDO CODES

Input: A Sample Image

Output: Detected Edges

Step 1: Accept the input image

Step 2: Apply mask Gx, Gy to the input image

Step 3: Apply Sobel edge detection algorithm and

the gradient

Step 4: Masks manipulation of Gx, Gy separately on

the input image

Step 5: Results combined to find the absolute

magnitude of the gradient

 (3.4)

Step 6: the absolute magnitude is the output edges

Fig 3.3: Detected Image

IV. SELF-ORGANIZING MAPS
A. OVERVIEW

The self-organizing map also known as a

Kohonen Map is a well-known artificial neural

network. It is an unsupervised learning process,

which learns the distribution of a set of patterns

without any class information. It has the property of

topology preservation. There is a competition

among the neurons to be activated or fired. The

result is that only one neuron that wins the

competition is fired and is called the “winner”[5]. A

SOM network identifies a winning neuron using the

same procedure as employed by a competitive layer.

However, instead of updating only the winning

neuron, all neurons within a certain neighborhood of

the winning neuron are updated using the Kohonen

Rule. The Kohonen rule allows the weights of a

neuron to learn an input vector, and because of this

it is useful in recognition applications. Hence, in this

system, a SOM is employed to classify DCT-based

vectors into groups to identify if the subject in the

input image is “present” or “not present” in the

image database [3].

 B. NETWORK ARCHITECTURE

SOMs can be one-dimensional, two-

dimensional or multi-dimensional maps. The

number of input connections in a SOM network

depends on the number of attributes to be used in

the classification [4].

 Fig. 4 Architecture of a simple SOM

 Nisha Soni, Garima Mathur, Mahendra Kumar / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.785-790

788 | P a g e

 The input vector p shown in Fig. 4 is the row

of pixels of the input compressed image. The ||dist||

box accepts the input vector p and the input weight

matrix IW
1, 1

, which produces a vector having S
1

elements. The elements are the negative of the

distances between the input vector and vectors iIW
1,1

formed from the rows of the input weight matrix.

The ||dist|| box computes the net input n
1
 of a

competitive layer by finding the Euclidean distance

between input vector p and the weight vectors. The

competitive transfer function C accepts a net input

vector for a layer and returns neuron outputs of 0 for

all neurons except for the winner, the neuron

associated with the most positive element of net

input n
1
. The winner’s output is 1. The neuron

whose weight vector is closest to the input vector

has the least negative net input and, therefore, wins

the competition to output a 1. Thus the competitive

transfer function C produces a 1 for output element

a
1

i corresponding to i
*
, the “winner”. All other

output elements in a
1
 are 0[6].

 n
1
 = − IW11 − p (4.1)

 a
1
 = compet(n

1
) (4.2)

Thus, when a vector p is presented, the

weights of the winning neuron and its close

neighbours move toward p. Consequently, after

many presentations, neighbouring neurons learn

vectors similar to each other[6]. Hence, the SOM

network learns to categorize the input vectors it

sees.

The SOM network used here contains N

nodes ordered in a two-dimensional lattice structure.

In these cases, each node has 2 or 4 neighboring

nodes, respectively. Typically, a SOM has a life

cycle of three phases: the learning phase, the

training phase and the testing phase.

C. UNSUPERVISED LEARNING

During the learning phase, the neuron with

weights closest to the input data vector is declared

as the winner. Then weights of all of the neurons in

the neighborhood of the winning neuron are

adjusted by an amount inversely proportional to the

Euclidean distance. It clusters and classifies the data

set based on the set of attributes used. The learning

algorithm is summarized as follows [4]:

1. Initialization: Choose random values for the

initial weight vectors wj(0), the weight vectors being

different for j = 1,2,...,l where l is the total number

of neurons.

 wi = [wi1, wi2 ,..., wil]
T
 

n
 (4.3)

2. Sampling: Draw a sample x from the input space

with a certain probability.

 x[x1,x2,...,xl]
T


n
 (4.4)

3. Similarity Matching: Find the best

matching (winning) neuron i(x) at time t, 0 < t ≤ n

by using the minimum distance Euclidean criterion:

i(x)arg min x(n) – wj|

 j j=1,2...,l

 (4.5)

4. Updating: Adjust the synaptic weight vector of all

neurons by using the update formula:

wj(n+1)=wj(n)+η(n)hj,i(x)(n)(x(n)−wj (n) (4.6)

where η(n) is the learning rate parameter, and

hj,ix(n) is the neighborhood function centered around

the winning neuron i(x). Both η(n) and hj,ix(n) are

varied dynamically during learning for best results.

5. Continue with step 2 until no noticeable changes

in the feature map are observed.

Training images are mapped into a lower

dimension using the SOM network and the weight

matrix of each image stored in the training database.

During recognition trained images are reconstructed

using weight matrices and recognition is through

untrained test images using Euclidean distance as

the similarity measure. Training and testing for our

system was performed using the MATLAB Neural

Network Toolbox.

D. TRAINING

During the training phase, labeled Sobel-

vectors are presented to the SOM one at a time. For

each node, the number of “wins” is recorded along

with the label of the input sample. The weight

vectors for the nodes are updated as described in the

learning phase. By the end of this stage, each node

of the SOM has two recorded values: the total

number of winning times for subject present in

image database, and the total number of winning

times for subject not present in image database [2].

E) TESTING

During the testing phase, each input vector

is compared with all nodes of the SOM, and the best

match is found based on minimum Euclidean

distance, as given in (4.5)[4]. The final output of the

system based on its recognition, displays if the test

image is “present” or “not present” in the image

database.

V. EXPERIMENTAL RESULTS

A. IMAGE DATABASE

A face image database was created for the

purpose of benchmarking the face recognition

system. The image database is divided into two

subsets, for separate training and testing purposes.

During SOM training, 30 images were used,

containing six subjects and each subject having 5

images with different facial expressions. Fig. 5

shows the training and testing image database

constructed.

 Nisha Soni, Garima Mathur, Mahendra Kumar / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.785-790

789 | P a g e

(a)

(b)

Fig. 5.1 Image database for training: (a) Image

database for training.(b) Untrained image for testing
The face recognition system presented in this paper
was developed, trained, and tested using
MATLAB™ 7.5. The computer was a Windows 8
with a 2.40GHz Intel(R) core(TM) i3-3110M
processor and 2 GB of RAM.

B. VALIDATION of TECHNIQUE

The pre-processed grayscale images of size

8 × 8 pixels are reshaped in MATLAB to form a 64

× 1 array with 64 rows and 1 column for each

image. This technique is performed on all 5 test

images to form the input data for testing the

recognition system. Similarly, the image database

for training uses 30 images and forms a matrix of 64

× 30 with 64 rows and 30 columns. The input

vectors defined for the SOM are distributed over a

2D-input space varying over [0 255], which

represents intensity levels of the gray scale pixels.

These are used to train the SOM with dimensions

[64 2], where 64 minimum and 64 maximum values

of the pixel intensities are represented for each

image sample. The resulting SOM created with

these parameters is a single-layer feed forward SOM

map with 128 weights and a competitive transfer

function. The weight function of this network is the

negative of the Euclidean distance[3]. As many as 5

test images are used with the image database for

performing the experiments. Training and testing

sets were used without any overlapping. Fig. 5.3

shows the result of the face recognition system

simulated in MATLAB using the image database

and test input image shown in Fig. 5.1.

Fig.5.2 Training & testing image database

Fig. 5.3 Result of face recognition system. (a)

Untrained input image for testing. (b) Best match

image of subject found in training database

40
50

60
70

80

20

30

40

50

20

30

40

50

60

70

W(i,1)

Weight Vectors

W(i,2)

W
(i
,3

)

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400
SOM Layer Weights

Layer Weights

M
a
g
n
it
u
d
e

 (b)

Fig.5.4 (a) Weight vector graph (b) SOM layer

weight graph

20 40 60

10
20
30
40
50
60

20 40 60 80 100 120

20
40
60
80

100
120
140
160
180

50 100 150

50
100
150
200

20 40 60 80 100 120

50
100
150

20 40 60 80 100 120

50
100
150

20 40 60 80 100 120

50
100
150

50 100 150

50
100
150
200
250

20 40 60 80 100 120 140

50
100
150
200

20 40 60 80 100 120

50
100
150
200

20 40 60 80 100 120 140

50
100
150
200

20 40 60 80 100 120 140

50
100
150

20 40 60 80 100 120 140

50
100
150

20 40 60 80 100 120 140

50
100
150

20 40 60 80 100 120 140

50
100
150
200

20 40 60 80 100 120 140

50
100
150
200

50 100 150

50
100
150
200

50 100 150

50
100
150
200

50 100 150

50
100
150
200
250

50 100 150

50
100
150
200
250

50 100 150

50
100
150
200
250

50 100 150

50
100 150
200 250

50 100 150

50
100
150
200
250

20 40 60 80 100 120

50
100
150
200

20 40 60 80 100 120

50
100
150

20 40 60 80 100 120

50
100
150

20 40 60 80 100 120 140

50
100
150

20 40 60 80 100 120

50
100
150

20 40 60 80 100 120 140

50
100
150
200

20 40 60 80 100 120

50
100
150

20 40 60 80 100 120

50
100
150
200

20 40 60 80 100 120

50
100
150

50 100 150

50
100
150
200

 Nisha Soni, Garima Mathur, Mahendra Kumar / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.785-790

790 | P a g e

Table 5.1: Comparison for 5 images B/W DCT &

SED based face recognition system

Time NO.of

epoch

No.of

Imag

e

DCT SED

Training

time

200

1 10.2594 Unmatch

ed

Executio

n time

27.9148

Training

time

2 10.1553 10.1383

Executio

n time

36.0948 25.0202

Training

time

3 10.3623 9.9243

Executio

n time

26.3857 29.4493

Training

time

4 10.3039 10.0291

Executio

n time

36.8931 29.0859

Training

time

5 10.2635 10.0649

Executio

n time

24.2630 12.0557

Recogniti

on rate
 100% 83.33%

This table shows that training and

execution time through SED is less then DCT but

the recognition rate provided by DCT is 100%.

Table 5.2: Comparison for one image at different

epoch B/W DCT & SED based face recognition

system

I

m

ag

e

Epoch Method

Time

DCT Sobel

S0

1_

01

100 Training time 5.9940 4.6029

Execution

time

115.7445 14.0523

S0

1_

01

500 Training time 24.8952 24.4737

Execution

time
43.3684 43.3329

S0

1_

01

1000 Training time 46.2868 45.6684

Execution

time

59.6358 68.7433

 This table shows that SOBEL is faster

then DCT.

 VI . CONCLUSION
This paper met all objectives by the

successful design of an efficient high-speed face

recognition system. The SED in MATLAB was

successful and all face images were successfully

compressed to the desired size and quality and Self-

Organizing Maps (SOM’s) which proved to be

highly accurate for recognizing a variety of face

images with different facial expressions under

uniform light conditions with light backgrounds.

Hence as a conclusion, the SED and the SOM neural

network are the heart for the design and

implementation, which are the final algorithms used

for the design of an efficient high-speed face

recognition system.

References
[1] D. Kumar, C.S. Rai, and S. Kumar, “Face

Recognition using Self- Organizing Map

and Principal Component Analysis” in

Proc. on Neural Networks and Brain,

ICNNB 2005, Vol. 3, Oct 2005, pp. 1469-

1473.

 [2] Y. Zi Lu and Z. You Wei, “Facial

Expression Recognition Based on Wavelet

Transform and MLP Neural Network”, in

Proc. 7th International Conference on

Signal Processing, ICSP 2004, Vol. 2, Aug

2004, pp. 1340-1343.

[3] AYBAR, E., “Topolojik Kenar _slecleri”,

Anadolu Üniversitesi, Fen Bilimleri

Enstitüsü, Ph.D. thesis, 2003.

[4] Image Toolbox (for use with Matlab)

User’s Guide, The MathWorks Inc., 2000.

[5] J. Nagi, “Design of an Efficient High-speed

Face Recognition System”,Department of

Electrical and Electronics Engineering,

College of Engineering, Universiti Tenaga

Nasional, March 2007.

[6] A. Abdallah, M. Abou El-Nasr, and A.

Lynn Abbott, “A New Face Detection

Technique using 2D DCT and Self

Organizing Feature Map” in Proc. of World

Academy of Science, Engineering and

Technology,Vol. 21, May 2007, pp. 15-19.

 About auther

 Nisha Soni was born on 7th November

1984 at Bhanpura, madhyapradesh (India).

She has completed Bachelor Engineering

Degree in Electronics & Communication

from M.L.V. Textile & Engineering

College , Bhilwara, University of

Rajasthan, in 2007. She has registered for

M. Tech (Full Time) in Digital

Communication branch at Electronics

Engineering Department, under the

guidance of Mrs. Garima Mathur in JEC,

kukas(Jaipur) under Rajasthan Technical

University (Kota) .

.

