
M.Gurunadha Babu, M.Venugopal, M.Phaniraj Kiran / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 399-403

399 | P a g e

Implementation of H.264 Decoder On Arm11 Mpcore

M.Gurunadha Babu,M.Venugopal, M.Phaniraj Kiran

Professor & HOD,ECE dept. Chilkur Balaji Institute of Technology,Hyderabad

 Emebedded software labs,Hyderabad

Managing Director R&D, Consultant

Abstract
The power dissipation in embedded

processor core is an important parameter while

increasing the process performance. With the

advent of VLSI technology and the latest tools to

design system on chip, the complexity, design

time and verification time can be reduced. To

increase the total processor performance, both

the multiprocessor and multi threading systems

are used for any application.ARM overcomes

such design issues faced in the industry for any

application. In a Multiprocessor design, each

processor can use the uni-processor power

management techniques, such as clock gating,

keeping the processor in standby mode and

voltage and frequency scaling. But it also has the

ability to turn entire processor off to save all

their consumed power while still executing lower

demanding application workloads. One of the

applications considered in this paper is

implementation of H.264 video decoding using

ARM MP Core ARM11.In H.264 video decoding

implementation, the computational standard is

two or three times higher than that of H.263 and

MPEG-4 standard. The complex parts of the

decoder in H.264 are the operation of entropy

coding and De-blocking filters in the decoder.

The reduction in computational complexity an

algorithm is implemented for H.264 decoder. It

contains a group-based CA VLC decoding

method for H.264 entropy code tables and de-

blocking filter.

Keywords- H.264; CAVLC; De-blocking

Filter;ARM11

I. Introduction
ARM MPCore uses ARM11 micro

Architecture and it can be configured to have one to

four processors and can deliver very high

performance. The power consumed by the above

design using multiprocessing technique is the

important parameter during the application

development. In a Multiprocessing design, each

processor can use the uni-processor power

management techniques, such as clock gating,

standby mode and voltage and frequency scaling.

Also the entire processors can be off to save all their

consumed power. Multiprocessor design such as

ARM11 MPCore further reduce the cost of system

development by delivering a multiprocessor can be

considered as a single, configurable macro block.

This block supports standard operating systems that

are able to fully utilize the processor architecture

any technical / legal issues.

ARM11 MPCore can resolve a cache miss,

or access to shared data and aroung 50% faster than

a processor and could resolve data from a shared

Level 2 cache. The scalable performance is very

efficient in ARM11 MPCORE.

The ARM11 MPCore processor provides

software portability across single CPU and multi-

CPU designs. It provides an enhanced memory

throughput of 1.3Gbytes/sec from a single CPU, and

a multiprocessor solution delivers greater

performance at lower frequencies than comparable

single processor designs, offering significant cost

savings to systems designers. The ARM 11 MPCore

processor also simplifies otherwise complex

multiprocessor design, reducing time-to-market and

total design cost.

The ARM 11 MP Core processor supports

a fully coherent data cache, the designer has a

flexibility with respect to various symmetric

multiprocessing (SMP) and asymmetric

multiprocessing (AMP), or any of this combination.

The MP Core processor increases a solution's

performance via the ability to cache shared data,

increases system response and allow workloads to

be balanced between different processors with

portable multitasked applications and allow

scalability using efficient processor utilization for

multithreaded applications, for example H.264 video

coding.

The ARM 11 MP Core processor can be

configured differently for various design

requirements.

The ARM 11 MP Core processor supports

the ARMv6 architecture, with SIMD media

extensions for next-generation rich multimedia and

convergent devices. The processor supports

Adaptive Shutdown of unused processors to give

dynamic power consumption as low as 0.49

mW/MHz from a generic 130nm process excluding

cache. ARM Intelligent Energy Manager (IEM) can

further reduce consumption to as low as

0.30mW/MHz by dynamically predicting the

required performance and lowering the required

voltage and frequency.

The ARM 11 MP Core enables System on

chip (SOC) designers to view the core as a single

M.Gurunadha Babu, M.Venugopal, M.Phaniraj Kiran / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 399-403

400 | P a g e

"uni-processor", simplifying SOC development and

reducing time-to-market.

The Core area, frequency range and power

consumption are dependent on process, libraries and

optimizations.

The H.264 video coding standard provides

enhanced coding efficiency for a wide range of

applications. The computational complexity of the

H.264 is two or three times high compare to that of

H.263 and MPEG -4. This computational

complexity causes problems in developing H.264

based video solutions.

The H.264 is widely implemented standard

for video compression, A much simpler and less

efficient Baseline Profile is used for visual

communication applications today. The original

H.261 standard was replaced by H.263 and followed

by the latest H.264. All of these standards

essentially describe how to compress video, so that

it can be transmitted efficiently across real-world

networks, and how to decompress it at the receiver

side. A raw (uncompressed) HD video stream can be

around 1 gigabit per second and clearly not

appropriate for any but the few over-provisioned

research networks. By applying the H.264 Baseline

Profile, the 1 gigabit per second stream can be

compressed to about 1 megabit per second, i.e.,

1000-fold compression. However, if H.264 High

Profile is used instead, the compressed video stream

can be reduced to about 512 kilobits per second, i.e.,

2000-fold. Figure 1 is a block diagram of the H.264

standard (encoder side).

This paper is organized as follows. In

introduction part we explained the MPCore

architecture features on which the H.264 video

encoding application is implemented. In Section II,

related work by various authors is explained. In

section III, we simply review the principle of

context adaptive variable length coding (CAVLC)

decoding and a new group-based lookup table

algorithm is introduced. In Section IV, the principle

of the deblocking filter is first introduced, and

multimedia frame work is explained, and a new

optimized deblocking filter algorithm is then

proposed. AT the end results are shown at V and

conclusion will be given in Section VI.

II. RELATED WORK
Thomas Wiegand [1] proposed two entropy

coding methods applied in H.264/AVS and are

termed CAVLC and CABAC. Both use context-

based adaptivity to improve performance relative

prior standard design. Garry J.Sullivan [2] have

proposed a New High profiles defined in the

FREXT amendment. This technique is a better

decoding method. Yen-Lin Lee, Truong Q. Nguyen

[3] have proposed an analysis on efficient

architecture design for VC-1 overlap smoothing and

In-Loop De-blocking filter. In this paper the author

analyzed the behaviour of VC-1 filters and

presented several efficient methods and integrated

architecture design. This paper also proposed two

efficient methods. Multiple processing order and

modified chrominance processing order, which

greatly reduces external memory, cycles and on-chip

memory size for filtered and temporal reconstructed

pixels. Yen-Kuang Chen, Eric Q.Li [4] have

proposed implementation of H.264 encoder and

decoder on personal computers. The author

proposed analysis of softare implementation of

H.264 encoder and decoder on general purpose

processors with media instructions and

multithreading capabilities. This technique explains

how to optimize the algorithm of H.264 encoder and

decoders on Intel Pentium 4 processor. Chia-Cheng

Lo [5] have proposed a technique to combine two

entropy decoding methods defined in the H.264

standard i.e. context-based adaptive binary

arithmetic coding (CABAC) and context-based

adaptive variable length coding (CAVLC).

III. THE OPTIMIZED CA VLC

DECODING
Most visual communication systems today

use Baseline Profile. Baseline is the simplest H.264

profile and defines, for example, zigzag scanning of

the picture and using 4:2:0 (YUV video formats)

chrominance sampling. In Baseline Profile, the

picture is split in blocks consisting of 4x4 pixels,

and each block is processed separately. Another

important element of the Baseline Profile is the use

of Universal Variable Length Coding (UVLC) and

Context Adaptive Variable Length Coding

(CAVLC) entropy coding techniques.

The Extended and Main Profiles includes

the functionality of the Baseline Profile and add

improvements to the predictions algorithms. Since

transmitting every single frame (think 30 frames per

second for good quality video) is not feasible if you

are trying to reduce the bit rate 1000-2000 times,

temporal and motion prediction are heavily used in

H.264, and allow transmitting only the difference

between one frame and the previous frames. The

result is spectacular efficiency gain, especially for

scenes with little change and motion.

The High Profile is the most powerful

profile in H.264, and it allows most efficient coding

of video. For example, large coding gain achieved

through the use of Context Adaptive Binary

Arithmetic Coding (CABAC) encoding which is

more efficient than the UVLC/CAVLC used in

Baseline Profile.

The High Profile also uses adaptive

transform that decides on the fly if 4x4 or 8x8-pixel

blocks should be used. For example, 4x4 blocks are

used for the parts of the picture that are dense with

detail, while parts that have little detail are

transformed using 8x8 blocks.

M.Gurunadha Babu, M.Venugopal, M.Phaniraj Kiran / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 399-403

401 | P a g e

H.264 decoder block diagram as show in figure 1.

Figure 1: H.264 Encoder block diagram

As shown in figure 1 CA VLC is used to

code residual data, which is obtained after transform

and quantization. The residual data is usually sparse

with a large number of zeros and is run length

encoded. The coefficients obtained after run length

coding are sent using CA VLC. In CA VLC coding,

the total number of non-zero coefficients and the

number of trailing ones are coded into a single

variable length code. The H.264 uses the lookup

tables method depending on the context for coding

above mentioned elements. CA VLC decoder selects

the tables depending on the number of nonzero

coefficients in neighbouring blocks.

The different stages in H.264 which are

implemented on Hardware are as follows.

(1) coefficient token decoding process

(2) Sign of Tis decoding process

(3) level decoding process:

(4) total zeros decoding process

(5) run_before decoding process

IV. THE OPTIMIZED DEBLOCKING

FILTER METHOD
In H.264/AVC standard, the de-blocking

filter is divided into 3 parts: The boundary strength

of the filter depends on the coding modes of

neighbour blocks in the current filtering edge. The

filtering decision analyzes whether the filtering

should be switched off. And the filtering operation

applies on each 4 X 4 luminance and chrominance

block edge on a macro block basis, because the

transform coding is operated on 4 X 4 blocks.

(1). Boundary Strength (Bs) Decision: Boundary

strength decides the strength of the de blocking filter

operation, which is associated with each block.

(2). Filtering Decision: When Boundary strength

equals to zero, no filtering takes place for edges. For

non-zero Boundary strength values, a gradient like

analysis is done and decides when the filtering to be

switched off.

 (3). Filtering Operation: The edge filtering starts to

filter when the input pixels, boundary strength and

threshold variables are ready.

Software Architecture:

When multi media player uses software

decoder, performance problem is often an issue.

CMM (Codec memory management) driver helps to

improve rendering performance.

In common multimedia player, the decoded YUV

data is transferred to video memory using

memcpy(). It decreases much performance when the

resolution of the movie is large. The CMM driver

provides the interface to transfer decoded YUV data

to video memory directly. At first, it allocates

virtual addresses to the player. The virtual address is

surely cacheable area. So software decoder can

utilize cache. After decoding, the player request for

CMM to flush cached area. The player request

physical address of YUV buffer to CMM. With the

physical address, the player calls the video drive

API for rendering. YUV data is transferred to

Hardware post pre-processor by DMA.

It does not only reduce memcpy() time, but

also make player to decode and render at the same

time. As rendering is done by only Hardware,

decoding performance is not decreased. So we

should make decoding and rendering as multi-

threaded.

 There are two methods to render YUV

data. The one is using local path between Hardware

post processor and LCD. It does not posses data

BUS. But local path only support RGB888. The

other is using DMA between post processor and

LCD.

Implementation of the Multimedia

Framework on ARM11

To achieve the desirable functions (playing the

streamlined Video) , we need to the following

work.

1) Porting of linux OS on to ARM 11 architecture

and Porting some Gstreamer required open-source

libraries to Linux , such as Glib, Liboil, etc.

2) According to Gstreamer framework, write two

plug-ins. One is used to send the decoded original

video data from Gstreamer to Linux display system.

3) Based on Gstreamer, we should construct a

streaming player which can be used in Media Server

guard process to supply media player service.

4) Modify assembly codes to apply Gstreamer to

diversified CPU architectures, and apply some

commonly used optimized technologies in

embedded environment to Gstreamer.

As the porting work of Glib, Libiol and other related

libraries are easy, here we introduce the rest steps.

The Data flow of this is pictorially explained in the

figure 2.

The basic Data flow is described as CMM driver

here is codec memory management driver. YUV

Buffer is used to capture the video information from

the Media file.

Post processor is basically needed for Scaling and

CSC which basically populates on LCD.

M.Gurunadha Babu, M.Venugopal, M.Phaniraj Kiran / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 399-403

402 | P a g e

 Figure:2. Data Flow diagram

Direcory Structure:

Direcory Files Description

/CMM_APP/ *.C,*.h CMM test file

?CMM_DRV/ *.C,*.h CMM Device

driver file

/doc *.doc,*.pdf CMM

document

How to test CMM:

Kernel Build

Before kernel compilation, you must setup memory

layout as shown below in “include/ asm_arm/

arch_S3C2410/ reserved_mem.h”file

Default reserved memory size

MFC : 6MB

POST : 8MB

JPEG : 8MB

CMM : 8MB

Camera : 15MB

 The above sizes can be modified

#define CONFIG_RESERVED_MEM_JPEG

#define

CONFIG_RESERVED_MEM_JPEG_POST

#define CONFIG_RESERVED_MEM_MFC

#define CONFIG_RESERVED_MEM_MFC_POST

#define

CONFIG_RESERVED_MEM_JPEG_MFC_POST

#define

CONFIG_RESERVED_MEM_JPEG_CAMERA

#define

CONFIG_RESERVED_MEM_JPEG_POST_CAM

ERA

#define

CONFIG_RESERVED_MEM_MFC_CAMERA

#define

CONFIG_RESERVED_MEM_MFC_POST_CAM

ERA

#define

CONFIG_RESERVED_MEM_JPEG_MFC_POST_

CAMERA

#define

CONFIG_RESERVED_MEM_CMM_MFC_POST

#define

CONFIG_RESERVED_MEM_CMM_JPEG_MFC_

POST_CAMERA

The following is the CMM driver module

compilation procedure.

Node Name:/dev/misc?S3C_CMM

Major number: 10

Minor number: 250

1.The procedure to make device node

[root@local host CMM]#mknod/dev/misc/S3C-

cmm c 10 250

2. module compilation

[root@local host cmm-drv]#make

Testing application compilation

[root@local host cmm_app]make

Now insert module and execute binary on target

side.

The following commands are executed on target

side.

[root@Samsung cmm_drv]insmod S3C_cmm.ko

[root@Samsung cmm_drv]cd../cmm_app/

[root@Samsung cmm_app]./cmm_test

V. Results
In our paper we have considered basic

Display application which includes H.264 display,

MPEG4 display, H.263 display, VC-1 display and 4

windows display (H.264,MPEG,H.263,VC-1)

The output figure 3 shows H.264 file decoder test

for embedded Linux V 0.1, the decoded video

output and basic display data flow diagram.

 Figure: 3. H.264 file decoder test output

VI. Conclusion
In our paper, we consider several different

kinds of video container formats. For each video

container format, we take several different video

clips with different rates, decoding standards and

definitions. Initailly Embedded Linux OS has been

ported to ARM , in this experiment section, we take

S3C6410 ARM processor as an example. And the

specific parameters are: ARM11, Linux 2.6.24 is

ported, Enabling the Hardware decoder of ARM 11

S3C6410 architecture.

REFERENCES

[1] Thomas wiegand “Overview of the

H.264/AVC video coding standards”, IEE

Transactions on circuits and systems for

video technology vol. 13 No. 7 July 2003.

M.Gurunadha Babu, M.Venugopal, M.Phaniraj Kiran / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp. 399-403

403 | P a g e

[2] Garry J.Sullivan “New Emerging standard

H.264/AVC”, SPIE Conference on

applications of Digital image processing

XXVII special session August 2004.

[3] Yen-lin lee, Truong Q. Nguyen “Analysis

and efficient architecture design for VC-1

overlap smoothing and In-loop de-

blocking filter”, IEE transaction on circuit

& systems for video technology-TCSV,

Vol.18, No.12, PP-1786-1796.

[4] Yen-kuang chen, Eric Q.Li,

“Implementation of H.264 encoder and

decoder on personal computers”, Journal of

visual communication and Image

representation – JVCIR Vol. 17, No.2. PP-

509-532, 2006.

[5] Chia-Cheng Lo, Shang-Ta Tasai, Ming-Der

Shien “Reconfigurable architecture for

entropy decoding and inverse transform in

H.264”, IEE Transactions on consumer

Electronics – IEE TRANS CONSUM

ELETRON, Vol. 56, no. 3, PP 1670-1676,

2010.

