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ABSTRACT 
The CORDIC algorithm provides an 

efficient method of computing trigonometric 

functions by rotating a vector through some 

angle, specified by its coordinates. This rotation is 

obtained by performing a number of micro 

rotations through elementary rotation angles, into 

which the total rotation angle has been 

decomposed. This paper presents the design and 

implementation of a runtime reconfigurable 

CORDIC processor which can be used for various 

calculations including rectangular to polar and 

polar to rectangular co-ordinate conversion. 

Efficient floor planning is done using Xilinx Plan 

Ahead 14.2 to reduce the area and device 

utilization.  

 

Keywords - CORDIC, Power saving, 
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I. INTRODUCTION 
Trigonometric function evaluations have 

been used in countless applications in the field of 

Digital Signal Processing (DSP) [1]. The 

COordinate Rotation DIgital Computer (CORDIC) 

algorithm has become very popular due to its 
simplicity and efficient evaluation of the 

trigonometric and co-ordinate calculation and can 

also be used for digital waveform synthesis. In this 

paper, we have presented the design of pipelined 

architecture for the computation of flexible and 

scalable digital Sine and Cosine values using the 

CORDIC algorithm. We have designed the 

processor in such a way that the precision of the 

calculations can be given at runtime and also we can 

select one among the two cores i.e. rectangular to 

polar or polar to rectangular conversions, thus the 
power consumption is reduced as compared to the 

previous design. Saving area on FPGA is one of the 

major challenges in the designers’ perspective. The 

design has been synthesized and implemented on a 

XilinxVirtex-5 (XUPV5LX110T) device using 14.2 

ISE design tool suite and results are shown and 

discussed. We have efficiently floor planned using 

Plan Ahead 14.2 for efficient utilization of 

resources. 

 

II. CORDIC ALGORITHM – AN 

OVERVIEW 
Jack E. Volder’s CORDIC algorithm is 

derived from general equations for vector rotation.  

 

 

The theory of CORDIC computation is to 

decompose the desired rotation angle into the 

weighted sum of a set of predefined elementary 

rotation angles, each of which can be accomplished 

with simple shift-add operation for a desired 

rotational angle θ This section describes the 

mathematics behind the CORDIC algorithm. 

Fig I.I Basic of CORDIC Rotation 

 

The   angle rotation can be executed in several 

steps, using an iterative process. Each step 

completes a small part of the rotation. Many steps 
will compose one planar rotation. A single step is 

defined by the following equation [2][9]: 
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The above can be modified by eliminating the 

ncos factor. 
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Multipliers can be eliminated by selecting the angle 

steps such that the tangent of a step is a power of 2. 

Multiplying or dividing by a power of 2 can be 
implemented using a simple shift operation. The 

angle for each step is given by [3][7] 











nn
2

1
arctan  

All iteration-angles summed must equal the rotation 

angle . 
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Where 

 1;1 nS  

This results in the following equation for ntan  

n

nn S  2tan  

Combining the above results, 
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Besides for the ncos coefficient, the algorithm has 

been reduced to a few simple shifts and additions. 

The coefficient can be eliminated by pre-computing 

the final result. The first step is to rewrite the 

coefficient. 
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The second step is to compute the constant for all 

values of ‘n’ and multiplying the results, which we 

will refer to as K. 

607253.0
2

1
arctancos

1

0

















 



n
nP

K  

K is constant for all initial vectors and for all values 

of the rotation angle; it is normally referred to as the 

congregate constant. The derivative P (approx. 

1.64676) is defined here because it is also 

commonly used. 
We can now formulate the exact calculation the 

CORDIC performs. 
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Because the coefficient K is pre-computed and taken 

into account at a later stage, we can write as, 
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Or as 
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At this point a new variable called ‘Z’ is introduced. 

Z represents the part of the angle   which has not 

been rotated yet [4]. 
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For every step of the rotation nS  is computed as a 

sign of nZ . 
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III. INDENTATIONS AND EQUATIONS 
This algorithm is commonly referred to as driving Z 

to zero. The CORDIC core computes: 
            0,sincos,sincos,, iiiiiiiijjj ZXZYPZYZXPZYX 

 

There’s a special case for driving Z to zero: 

60725.0
1

 K
P

X i
 

0iY  

iZ  

   0,sin,cos,, jjj ZYX  

 

Another scheme which is possible is driving Y to 

zero. The CORDIC core then computes: 
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For this scheme there are two special cases: 
 

a) XX i   

YYi   

0iZ  

 

            

              b)        
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IV. ARCHITECTURE 
All CORDIC Processor cores are built around three 

fundamental blocks. The pre-processor, the post-

processor and the actual CORDIC core. The 

CORDIC core is built using a  

 

Fig: IV.I Architecture of CORDIC Processor       

Pipeline of Cordic blocks [5]. Each 

pipeline block represents a single step in the 

iteration processes. 

Because of the arc tan table used in the CORDIC 
algorithm, it only converges in the range of –1(rad) 

to +1(rad). To use the CORDIC algorithm over the 

entire 2𝜋 range the inputs need to be manipulated to 

fit in the –1 to +1 rad. range. This is handled by the 
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pre-processor. The post-processor corrects this and 

places the CORDIC core’s results in the correct 

quadrant. It also contains logic to correct the P-

factor. The CORDIC core is the heart of the 

CORDIC Processor Core. It performs the actual 

CORDIC algorithm. All iterations are performed in 

parallel, using a pipelined structure. Because of the 
pipelined structure the core can perform a CORDIC 

transformation each clock cycle. Each pipe or 

iteration step is performed by the Cordic core. It 

contains the tan table for each iteration and the logic 

needed to manipulate the X, Y and Z values[6][8]. 

 

V. IMPLEMENTATION AND RESULTS 
The CORDIC[10] core has been coded in 

VHDL using Xilinx 14.2 ISE. Efficiently resource 

utilization is achieved by using Plan Ahead 14.2 and 
analyzed the results with the original un optimized 

one. The designed is successfully simulated and 

verified the output using Isim Simulator and 

Synthesized using XST too and implemented in 

Xilinx Virtex-5 board (XUPV5LX110T). The 

simulation result and other results are shown 

 
Fig: V.I RTL Schematic of the reconfigurable 

CORDIC Processor 

 
Simulation results of Sine and Cosine of 30 

 0 deg 30 deg 45 

deg 

60 deg 90 deg 

Sin  0x01C

C 

0x3FFC 0x5

A82 

0x6ED

C 

0x8000 

Cos 0x8000 0x6ED

D 

0x5

A83 

0x4000 0x01CC 

Sin 0.0140

3 

0.49998 0.70

709 

0.86609 1.00000 

Cos 1.0000
0 

0.86612 0.70
712 

0.50000 0.01403 

Table V.I: Sin/Cos outputs for some common 

angles 

 
Fig: V.III Simulation results of rectangular to polar 

conversion 

 

For efficient area optimization we used Plan Ahead 

14.2 for better utilization of resources. Without 

optimization both cores are scattered in the FPGA 

thus device utilization is not that optimum. Thus by 

using floor planning techniques it is possible to get 

better utilization of the resources[11]. The snap 

shots are shown below. 

 
Fig: V.IV Snapshot from Plan Ahead showing the 

slice utilization. 

 
Fig: V.V Optimized floor plan 

The device utilization of the optimized and the non 

optimized can be summarized as, 

 

 

 
 

 

 

 

Fig: V.VI Device utilization of non optimized 

architecture 

 
Fig: V.VII Device utilization of optimized 

architecture 
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Fig: V.VIII Power consumption of non optimized 

architecture 

 
Fig: V.IX Power consumption of non optimized 

architecture 

From the above results it is evident that by 

properly optimizing the floor plan the device 

utilization is improved and the power consumption 

is reduced. 
Now using the select logic only one of the 

cores needs to be active at a particular time keeping 

the other one idle. Hence it is possible to further 

reduce the power consumption i.e.: runtime power 

saving architecture. 

 

VI. CONCLUSION 
A runtime reconfigurable power saving 

CORDIC Processor is designed and successfully 
implemented and the result is verified. Using 

efficient way of floor planning we are able to utilize 

the resources properly and reduce the power 

consumption. A select logic is utilized for selecting 

the particular core for the intended application thus 

by keeping the other one idle. Thus the power 

consumption is minimized. The number of iterations 

of the CORDIC processor is also reconfigurable, 

which yields a more reliable convergence of the 

result. This can be well adapted to the 

implementation of FFT, DCT and other DSP 

applications where multiplications are needed. This 
flexible core can be well utilized for the generation 

of digital signal waveforms.  
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