
Arun Babu, Monisha Manohar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.980-983

980 | P a g e

Power saving Run Time Reconfigurable Cordic Processor

Arun Babu*, Monisha Manohar**
* (Department of ECE, Amrita Vishwavidyapeetham University, Kollam)

** (Department of ECE, Amrita Vishwavidyapeetham University, Kollam)

ABSTRACT
The CORDIC algorithm provides an

efficient method of computing trigonometric

functions by rotating a vector through some

angle, specified by its coordinates. This rotation is

obtained by performing a number of micro

rotations through elementary rotation angles, into

which the total rotation angle has been

decomposed. This paper presents the design and

implementation of a runtime reconfigurable

CORDIC processor which can be used for various

calculations including rectangular to polar and

polar to rectangular co-ordinate conversion.

Efficient floor planning is done using Xilinx Plan

Ahead 14.2 to reduce the area and device

utilization.

Keywords - CORDIC, Power saving,
Reconfigurable, Floor Planning, co-ordinate

conversion.

I. INTRODUCTION
Trigonometric function evaluations have

been used in countless applications in the field of

Digital Signal Processing (DSP) [1]. The

COordinate Rotation DIgital Computer (CORDIC)

algorithm has become very popular due to its
simplicity and efficient evaluation of the

trigonometric and co-ordinate calculation and can

also be used for digital waveform synthesis. In this

paper, we have presented the design of pipelined

architecture for the computation of flexible and

scalable digital Sine and Cosine values using the

CORDIC algorithm. We have designed the

processor in such a way that the precision of the

calculations can be given at runtime and also we can

select one among the two cores i.e. rectangular to

polar or polar to rectangular conversions, thus the
power consumption is reduced as compared to the

previous design. Saving area on FPGA is one of the

major challenges in the designers’ perspective. The

design has been synthesized and implemented on a

XilinxVirtex-5 (XUPV5LX110T) device using 14.2

ISE design tool suite and results are shown and

discussed. We have efficiently floor planned using

Plan Ahead 14.2 for efficient utilization of

resources.

II. CORDIC ALGORITHM – AN

OVERVIEW
Jack E. Volder’s CORDIC algorithm is

derived from general equations for vector rotation.

The theory of CORDIC computation is to

decompose the desired rotation angle into the

weighted sum of a set of predefined elementary

rotation angles, each of which can be accomplished

with simple shift-add operation for a desired

rotational angle θ This section describes the

mathematics behind the CORDIC algorithm.

Fig I.I Basic of CORDIC Rotation

The  angle rotation can be executed in several

steps, using an iterative process. Each step

completes a small part of the rotation. Many steps
will compose one planar rotation. A single step is

defined by the following equation [2][9]:
















 














n

n

nn

nn

n

n

Y

X

Y

X





cossin

sincos

1

1

The above can be modified by eliminating the

ncos factor.
















 














n

n

n

n

n

n

n

Y

X

Y

X

1tan

tan1
cos

1

1






Multipliers can be eliminated by selecting the angle

steps such that the tangent of a step is a power of 2.

Multiplying or dividing by a power of 2 can be
implemented using a simple shift operation. The

angle for each step is given by [3][7]











nn
2

1
arctan

All iteration-angles summed must equal the rotation

angle .

Arun Babu, Monisha Manohar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.980-983

981 | P a g e

1iX

  




















i

i
iijjj

X

Y
YXPZYX arctan,0,,, 22







0n

nnS 

Where

 1;1 nS

This results in the following equation for ntan

n

nn S  2tan

Combining the above results,
















 

















n

n

n

n

n

n

n

n

n

Y

X

S

S

Y

X

12

21
cos

1

1


Besides for the ncos coefficient, the algorithm has

been reduced to a few simple shifts and additions.

The coefficient can be eliminated by pre-computing

the final result. The first step is to rewrite the

coefficient.



















nn
2

1
arctancoscos

The second step is to compute the constant for all

values of ‘n’ and multiplying the results, which we

will refer to as K.

607253.0
2

1
arctancos

1

0

















 



n
nP

K

K is constant for all initial vectors and for all values

of the rotation angle; it is normally referred to as the

congregate constant. The derivative P (approx.

1.64676) is defined here because it is also

commonly used.
We can now formulate the exact calculation the

CORDIC performs.

 

 











sincos

sincos

iij

iij

XYKY

YXKX

Because the coefficient K is pre-computed and taken

into account at a later stage, we can write as,
















 

















n

n

n

n

n

n

n

n

Y

X

S

S

Y

X

12

21

1

1

Or as
















n

n

nnn

n

n

nnn

XSYY

YSXX
2

1

2

1

2

2

At this point a new variable called ‘Z’ is introduced.

Z represents the part of the angle  which has not

been rotated yet [4].




 
n

i

inZ
0

1 

For every step of the rotation nS is computed as a

sign of nZ .










01

01

n

n

n
Zif

Zif
S

III. INDENTATIONS AND EQUATIONS
This algorithm is commonly referred to as driving Z

to zero. The CORDIC core computes:
            0,sincos,sincos,, iiiiiiiijjj ZXZYPZYZXPZYX 

There’s a special case for driving Z to zero:

60725.0
1

 K
P

X i

0iY

iZ

   0,sin,cos,, jjj ZYX

Another scheme which is possible is driving Y to

zero. The CORDIC core then computes:

  




















i

i

iiijjj
X

Y
ZYXPZYX arctan,0,,, 22

For this scheme there are two special cases:

a) XX i 

YYi 

0iZ

 b)

aYi 

0iZ

    aaPZYX jjj arctan,0,1,, 2

IV. ARCHITECTURE
All CORDIC Processor cores are built around three

fundamental blocks. The pre-processor, the post-

processor and the actual CORDIC core. The

CORDIC core is built using a

Fig: IV.I Architecture of CORDIC Processor

Pipeline of Cordic blocks [5]. Each

pipeline block represents a single step in the

iteration processes.

Because of the arc tan table used in the CORDIC
algorithm, it only converges in the range of –1(rad)

to +1(rad). To use the CORDIC algorithm over the

entire 2𝜋 range the inputs need to be manipulated to

fit in the –1 to +1 rad. range. This is handled by the

CORDIC CORE

CORDIC

Pipelin

ed

Pre-processor Post-processor

Arun Babu, Monisha Manohar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.980-983

982 | P a g e

pre-processor. The post-processor corrects this and

places the CORDIC core’s results in the correct

quadrant. It also contains logic to correct the P-

factor. The CORDIC core is the heart of the

CORDIC Processor Core. It performs the actual

CORDIC algorithm. All iterations are performed in

parallel, using a pipelined structure. Because of the
pipelined structure the core can perform a CORDIC

transformation each clock cycle. Each pipe or

iteration step is performed by the Cordic core. It

contains the tan table for each iteration and the logic

needed to manipulate the X, Y and Z values[6][8].

V. IMPLEMENTATION AND RESULTS
The CORDIC[10] core has been coded in

VHDL using Xilinx 14.2 ISE. Efficiently resource

utilization is achieved by using Plan Ahead 14.2 and
analyzed the results with the original un optimized

one. The designed is successfully simulated and

verified the output using Isim Simulator and

Synthesized using XST too and implemented in

Xilinx Virtex-5 board (XUPV5LX110T). The

simulation result and other results are shown

Fig: V.I RTL Schematic of the reconfigurable

CORDIC Processor

Simulation results of Sine and Cosine of 30

 0 deg 30 deg 45

deg

60 deg 90 deg

Sin 0x01C

C

0x3FFC 0x5

A82

0x6ED

C

0x8000

Cos 0x8000 0x6ED

D

0x5

A83

0x4000 0x01CC

Sin 0.0140

3

0.49998 0.70

709

0.86609 1.00000

Cos 1.0000
0

0.86612 0.70
712

0.50000 0.01403

Table V.I: Sin/Cos outputs for some common

angles

Fig: V.III Simulation results of rectangular to polar

conversion

For efficient area optimization we used Plan Ahead

14.2 for better utilization of resources. Without

optimization both cores are scattered in the FPGA

thus device utilization is not that optimum. Thus by

using floor planning techniques it is possible to get

better utilization of the resources[11]. The snap

shots are shown below.

Fig: V.IV Snapshot from Plan Ahead showing the

slice utilization.

Fig: V.V Optimized floor plan

The device utilization of the optimized and the non

optimized can be summarized as,

Fig: V.VI Device utilization of non optimized

architecture

Fig: V.VII Device utilization of optimized

architecture

Arun Babu, Monisha Manohar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.980-983

983 | P a g e

Fig: V.VIII Power consumption of non optimized

architecture

Fig: V.IX Power consumption of non optimized

architecture

From the above results it is evident that by

properly optimizing the floor plan the device

utilization is improved and the power consumption

is reduced.
Now using the select logic only one of the

cores needs to be active at a particular time keeping

the other one idle. Hence it is possible to further

reduce the power consumption i.e.: runtime power

saving architecture.

VI. CONCLUSION
A runtime reconfigurable power saving

CORDIC Processor is designed and successfully
implemented and the result is verified. Using

efficient way of floor planning we are able to utilize

the resources properly and reduce the power

consumption. A select logic is utilized for selecting

the particular core for the intended application thus

by keeping the other one idle. Thus the power

consumption is minimized. The number of iterations

of the CORDIC processor is also reconfigurable,

which yields a more reliable convergence of the

result. This can be well adapted to the

implementation of FFT, DCT and other DSP

applications where multiplications are needed. This
flexible core can be well utilized for the generation

of digital signal waveforms.

REFERENCES
Journal Papers:

[1] Amritakar Mandal and Rajesh Mishra

Journal of Signal Processing Theory and

Applications (2012) 1: 27-35

doi:10.7726/jspta.2012.1003

Books:

 [2] Mios D Ercegovac and Tomas Lang Digital

Arithmetic (Morgan Kaufman Publishers).

Proceedings Papers:

[3] J.E. Volder, "The CORDIC Trigonometric

Computing Technique”, IRE Trans.

Electronic Computers, vol. EC-8, pp. 330-

334, Sept. 1959.

[4] J.S. Walther, “A unified Algorithm for

elementary functions", Proc. AFIPS Spring

Joint Computing Conf., vol. 38, pp. 379-
385, 1971.

[5] R. Bakthavatchalu, M.S. Sinith, P.Nair,

K.Jismi, “A comparison of

pipelined, parallel and iterative

CORDIC design on FPGA”, Industrial and

Information Systems (ICIIS), 2010

International conference, pp 239-243,

September 2010

[6] Antelo, E., Lang, T. and Bruguera, J. D.,

2000. Very-high radix CORDIC rotation

based on selection by rounding.J. VLSI

Signal Processing, 25:2, 141–153

[7] K. Maharatna, S. Banerjee, A.Troya and E.
Grass ,”Virtually Scalingfree adaptive

CORDIC rotator”, IEEE Proc, Comput.

Digit Tech ,Volume 151, Issue 6,p 448-456,

November 2004

[8] K. Maharatna, S. Banerjee, E. Grass

,M.Krstic and A.Troya, “Modified

Virtually Scaling-free adaptive CORDIC

rotator Algorithm and architecture”, IEEE

Transactions on circuits and systems for

video technology, Vol.15, No.11, November

2005

[9] E.I.Garcia, R.Cumplido,
M.Arias,’Pipelined CORDIC design on

FPGA for digital sine and cosine waves

generator”, IEEE 2006 3rd International

conference, pp 1-4, December 2006

[10] Y.H.Hu, “The quantization effects of

cordic algorithm”, IEEE transactions on

signal processing, Vol 40, No 4, April 1992

[11] K.Kota, J.R.Cavallaro, “Numerical

accuracy and hardware tradeoffs for

cordic arithmetic for special purpose

processors”, IEEE transactions on
computers, Vol 42, No 7, July 1993.

