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Abstract 
The effect of resource sharing in multi-

core processors can lead to many more effects 

most of which are undesirable. This effect of 

Cross-core interference is a major performance 

bottleneck. It is important that Chip 

multiprocessors (CMPs) incorporate methods 

that minimise this interference. To do so, some 

accurate measure of Cross Core Interference 

needs to be devised. This paper studies the 

relation between Instructions per cycle (IPC) of a 

core and the cache miss rate across various 

workloads of the SPECCPU 2006 benchmark 

suite by conducting experimentation on a Full 

System simulator and makes some important 

observations that need to be taken into account  

while allocating resources to a core in multi-core 

processors. 
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I.INTRODUCTION 
The need for better performance from 

computing systems has always been on the rise and 

is predicted to continue. This has necessitated the 

advent of  high performance microprocessors with 

sophisticated architectures. The increased hardware 

has however led to power levels above acceptable 

limits. Hence, leading microprocessor 

manufacturers like INTEL and AMD have adopted a 

shift in computing paradigm by introducing the 

concept of Multi-core processing. Multi-core 

processing can be achieved by multiple cores on a 
single processor die which run at lower clock 

frequencies than their single-core counterparts. 

Since, these cores work in parallel, the performance 

is bound to improve. Also, power consumption can 

be kept within limits.  

The cores generally share a number of 

resources to avoid hardware duplication like the 

caches, pre-fetch buffers, Front-Side Bus controllers  

to name a few. For eg. Consider the Intel Xeon 

Quad core processor where the last level cache is 

shared between a pair of cores. (Core 0 and Core 1 

share a L2 cache and Core 2 and Core 3 share 
another L2) . Resource Sharing can lead to various 

effects , some which may enhance the performance 

while others that can lead to performance 

degradation. For the rest of the paper, Shared  

 

resources will be restricted to sharing of the last 

level cache.  

The Shared cache can be beneficial for 

Inter -Core Communication . Also, if the two cores 

need the same data, sharing will improve 

performance. The bigger issues related to sharing of 

resources however are due to the slowdown of 
applications that run in parallel on neighbouring 

cores. Section  II will explain the phenomenon of 

Cross-core Interference. 

 

II. CROSS-CORE INTERFERENCE 

To bridge the speed disparity between the 

cores and main memory, all the cores are normally 

attached to two or more levels of caches. The cache 

architecture varies across processors with some 

having private caches and others having a 

combination of private and shared cache. Generally, 
most cores have private caches and share the last 

level cache ( maybe L2 or L3). Figure 1 shows one 

such dual-core dual processor system. 

 
 

Figure 1:  A Dual-core Dual processor system 

 

We shall assume that the last level is L2 

throughout the remaining part of the paper. In this 

case, Core 0 and Core 1 in a dual core processor 
have a private L1 per core and both the cores share 

an L2. In such a case, if Core 0  brought in a line of 

cache into L2 due to a cache miss, it is possible that 

Core 1 may evict that valid line to accommodate a 

line required by it. To summarise , Core 0 may 
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experience cache misses due to Core 1 and vice 

versa. This effect is called Cross-core interference 

and is highly undesirable. Due to sharing of L2 , 

performance of an application running on Core 0 

will depend on the number of additional cache 

misses that it experiences due to the application 

running on Core 1. 
 

  One of the main objectives in Multi-core 

processing is Performance isolation where-in the 

performance of all the cores must be independent of 

each other. Cross-Core Interference leads to poor 

performance isolation and may result in higher order 

system-level effects like priority inversion  and 

thread starvation as it brings in indeterminism in the 

system. The execution time of a thread can vary 

greatly depending on its co-running thread. Note 

that the performance of a core is therefore 

dependent on the nature of its co-running thread on 
the neighbouring core. This is termed as 

Performance variability and is a result of poor 

Performance Isolation between cores [1] . 

 

 Thus, Cross-Core interference can cause a 

major performance degradation in a multi-core 

system. It is interesting to note that this interference 

is workload specific . Thus, measuring the impact of 

cache interference on performance is a multi variate 

problem that is considerably challenging [2] . The 

nature of cross-core interference experienced by an 
application due to its co-running application 

depends on the nature of both the applications. 

 

A. Factors affecting Cross Core Interference 

Some application workloads are compute 

intensive and others may be memory intensive. 

Applications that contain a large number of memory 

accesses are generally prone to more cache misses 

than those which make fewer accesses. Another 

important characteristic of applications is its 

Memory Reuse or Temporal locality [5]. It has been 

observed that applications that reuse their data well ( 
have good temporal locality) may experience less 

misses despite having more accesses.  Another 

important characteristic that needs to be discussed 

here is that some applications may cause more 

contention and affect co-runners substantially while 

may itself not get affected by its co-runners. The 

converse is also noted to be true that applications 

may get affected by others but may not harm others 

performance considerably [3]. The Working set size 

of an application also determines performance of the 

application as a function of cache size.  Some 
applications show low miss rates when the amount 

of cache allotted to them increases. There are others 

who show low performance improvement to larger 

caches [4].  

 

 

 

B. Effects of Pre-fetching mechanism 

Most Multi-core processors include 

Hardware Pre-fetchers that are triggered to prefetch 

into the cache from main memory. Pre-fetching is 

one such technique that helps alleviate potential 

bottlenecks, by fetching instructions and/or data 

from memory into the cache well before the 
processor needs it, thus improving the load-to-use 

latency. For eg. Intel Pentium 4 includes Automatic 

Hardware Pre-fetch and Adjacent Cache Line Pre-

fetch. The Hardware Pre-fetcher operates 

transparently, without programmer intervention, to 

fetch streams of data and instruction from memory 

into the unified second-level cache. The Pre-fetcher 

is capable of handling multiple streams in either the 

forward or backward direction. It is triggered when 

successive cache misses occur in the last-level cache 

and a stride in the access pattern is detected. The 

Adjacent Cache-Line Pre-fetch mechanism, like 
Automatic Hardware Pre-fetch, operates without 

programmer intervention. When enabled through the 

BIOS, two 64-byte cache lines are fetched into a 

128-byte sector, regardless of whether the additional 

cache line has been requested or not [13]. 

 

To minimise cross-core interference , it is 

important to accurately measure the extent of 

interference and also the cause for it. This is done by 

performing Workload Characterisation .A 

dependable heuristic to measure the interference 
needs to be devised which can be easily obtained in 

on-line as well as off-line studies. Section III 

discusses related work in Workload Characterisation 

as well as interference measurement. 

 

III. Related Work 
Several other studies have proposed 

various methods to perform workload 

characterisation of applications which is an 
important step in measuring Cross-core interference. 

As mentioned in the earlier Section, application 

characteristics play an important role in determining 

the effect on their own as well as their co-running 

application’s performance when both applications 

are sharing resources.  

 

A. Workload Characterization 

Qureshi et al. ,in his paper has studied 

characteristics of various applications based on their 

response to size of cache [4]. The general 

observation is that some applications demonstrate 
lower miss rates as the size of cache allotted to them 

is increased . These are called high utility 

applications while those who do not show any 

substantial change in miss rate are called low-utility 

applications. Another category of applications called 

saturating utility applications show a good response 

as cache size increases to a certain point after which 

their response remains almost constant. Tang et al. 

propose two metrics namely Contentiousness and 
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Sensitivity [3]. An application’s contentiousness is 

defined as the potential performance degradation it 

can cause to co-running application(s) due to its 

heavy demand on shared resources. On the other 

hand, an application’s sensitivity to contention is 

defined by its potential to suffer performance 

degradation from the interference caused by its 
contentious co-runners. The paper concludes that 

applications’ Contentiousness and Sensitivity are 

not strongly co-related and all all applications can 

be 1) contentious and sensitive; 2) not contentious 

and insensitive; 3) contentious but not highly 

sensitive; 4) not highly contentious but sensitive. 

Xie et al. in his paper has proposed  a classification 

algorithm for determining the “personalities” of the 

programs with respect to their cache sharing 

behaviors [8]. They classify benchmarks into 

intuitive “animal” personalities based on a few 

simple heuristic metrics. Applications are classified 
into four categorized namely Turtles, Sheep, Rabbits 

and Devils. Turtles are some applications that 

simply do not make much use of the shared last-

level (L2) cache. This may be because the program 

simply has very few memory instructions to begin 

with, or it may be that the program has a very small 

working set that completely fits within the level-one 

caches and therefore rarely accesses the L2 cache. 

Sheep applications are those which are not sensitive 

to the number of ways allocated to them. These 

applications may actually exhibit a high rate of L2 
accesses, but even with an allocation of only a few 

ways, these programs can achieve a low L2 miss 

rate. Some applications are very sensitive about the 

number of ways allocated to them. Such 

applications access the L2 cache fairly frequently, 

but if provided with a sufficient number of ways, the 

overall miss rate can be kept low. These are called 

Rabbit applications. The last class of applications 

called Devils simply do not “play well with others.” 

These applications access the L2 cache very 

frequently, but still have very high miss rates. As a 

result, such applications do not derive much benefit 
from occupying the cache (in terms of hit-rate 

reduction), and furthermore they tend to negatively 

impact other applications 

 

B.LLC Miss Rate as an indicator of Cross-core 

Interference ? 

Several studies have proposed different 

heuristcs , direct and indirect , which can be used to 

measure cross-core interference. Zhuravlev et al. 

have summarised classification schemes namely 

Stack distance Competition(SDC), Animal Classes, 
Miss rate and applications based on a metric called 

Pain proposed by them. The paper indicates that a 

simple metric like the cache miss rate can be used to 

classify applications and this scheme performs 

almost if not better than the other methods [6]. Tang 

et al. have concluded that miss rate cannot be used 

to measure the contentiousness and sensitivity of all 

types of applications as low miss rate applications 

are also noted to cause contention to other co-

running applications [3].  

 The next section discusses the relation 

between IPC and LLC Miss rate when applications 

share caches with other applications. 

 

IV . EXPERIMENTAL SETUP 

For our experimentation , we use Virtutech 

SIMICS full system simulator which has been 

extended to include a cache hierarchy [10] . For the 

setup, we have used a X86-440BX target .This 

target supports various configurations namely tango, 

enterprise, cosmo or hippie.  

Tango has Fedora Core 5 installed. The 

base configuration has a single 20 MHz Pentium 4 

processor, 256 MB memory, one 19GB IDE disk 

and one IDE CD-ROM [5].  There is also an AGP 

based Voodoo3 graphics card and a PCI based 
DEC21143 network adapter. Our setup comprises of 

a dual core processor using the tango configuration 

with each core having a separate code and data 

Level 1 cache and Level 2 cache being shared 

between the two cores . Table 1 explains the setup in 

more detail . 

 

Number of 

Cores 

2   

Level 1 (L1) 

cache/Core 

32 KB Instruction cache+ 32 KB 

Data cache ,lru replacement 

policy, Read/Write penalty =3 

cycles 

Level 2 
(L2)cache 

1 MB Unified cache, lru 
replacement policy, Read/write 

penalty =10 cycles 

 

Table 1:  Baseline Configuration 

 

The experimentation has been carried out 

by running programs of the SPECCPU 2006 

Benchmark suite.  The SPEC CPU2006 benchmark 

suite consists on a set of 12 programs for integers 

(SPECCPUint2006) written in C and C++ and 17 

programs for floating point (SPEC CPUfp2006) 

written in C, C++ and FORTRAN [12]. The 

objective of these computer-intensive programs is to 
provide portable, credible and real-world 

application-based benchmarks for quantifying the 

performance of the set processor, memory and 

compiler. 

 

The experimentation has been carried out 

in two steps. First, the programs are run solo in the 

dual core processor by binding it to Core 0 and 

statistics are collected. The application is bound to 

the core using the taskset utility. Secondly, the each 

program is run with different co-runner applications, 
by binding the applications to Core 0 and Core 1 

and paired statistics are collected [11]. 
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Since the SPECCPU 2006 has a large 

instruction set as compared to its predecessor , the 

SPECCPU 2000 suite , the simulation times 

involved are huge. Hence, a representative subset 

for the same is used for the experimentation [9]. Ten 

benchmarks from the SPEC2006 benchmark suite 

have been selected to represent a wide range of 
cache access behaviours. The cache miss rates and 

access rates for every application in the SPEC2006 

benchmark suite were obtained from a third party 

characterization report [6] and a clustering 

technique was employed to select the ten 

representative applications namely mcf, lbm, milc, 

soplex, astar, sphinx3, libquantum, namd, gamess, 

povray.  

 

Also, all the programs are run using the 

runspec utility with ref inputs. As running the 

programs in a simulated setup takes several orders 
of time more than running the programs on a real 

machine, a sampled window of instructions has been 

chosen to run the experiments. All the applications 

are fast-forwarded past their initialization codes and 

then run for 1 billion instructions [7]. Then after 

caches have been attached, they are further run for 

100 million instructions to “warm” up the caches. 

After the caches have been flushed to eliminate the 

effect of of compulsory cache misses, the 

benchmarks are further run for 500 million 

instructions before collecting statistics. 
 

V. RESULTS 

The statistics were collected or solo as well 

as paired run for the benchmarks. The statistics 

collected are IPC ( Instructions per cycle ) for core 

and Level 2 cache misses ( Data read+ data write+ 

Instruction fetch). 

 

Figure 2 shows the solo characteristics of the 

benchmarks. 

          

Figure 2 Solo IPC and Miss rates of SPECCPU 2006 programs
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From the above solo characteristics, we can broadly 

classify the programs as high miss rate (milc, soplex 

,mcf, libquantum, lbm) and low miss rate 

applications  ( povray, namd, astar,gamess,sphinx3). 

Further, each application was run with 

different co-runners and statistics were collected. 

Since the number of combinations is considerable, 

some of the readings are shown in the table below 

 

  Solo soplex astar milc namd sphinx3 

mcf IPC 

MR 

0.148 

11.98% 

0.25 

13.82% 

0.106 

14.16% 

0.096 

15.75% 

0.108 

10.59% 

0.093 

13.88% 

astar IPC 

MR 

0.3472 

3.1966% 

0.285 

16.7% 

0.309 

8.87% 

0.33 

4.56% 

0.342 

3.53% 

0.346 

1.02% 

povray IPC 

MR 

0.351 

0.166% 

0.351 

3.38% 

0.351 

1.156% 

0.351 

5.96% 

0.351 

0.61% 

0.351 

0.26% 

milc IPC 

MR 

0.2 

27.47% 

0.47 

1.43% 

0.29 

7.02% 

0.319 

3.18% 

0.27 

7.52% 

0.342 

4.35% 

sphinx3 IPC 

MR 

0.366 

0.723% 

0.362 

9.13% 

0.292 

7.21% 

0.361 

5.31% 

0.364 

0.223% 

0.349 

3.55% 

 

Table 2 : IPC and miss rates of applications ( solo 

and paired) 

 

Interpretation of results: 

Applications under test are categorised as 

high miss rate and low miss rate applications. Low 

miss rate applications may have low miss rates 

either because they have less memory accesses or 

may have more accesses but show low miss rates 
due to excellent memory reuse. 

 

For eg. Low miss rate applications like 

astar show variation in miss rate almost upto 16.7% 

depending on co-runner and a proportional variation 

in IPC is also noted. However, another low miss rate 

application like povray shows lesser variation in 

miss rate and its IPC remains constant . This is 
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because povray has excellent temporal locality ( 

good memory reuse). Also . it is less sensitive as 

compared to astar to co-running applications but 

because the number of accesses is large , the small 

variation in miss rate does not change IPC. Another 

low miss rate application sphinx3 shows variation in 

miss rate upto 9.13% and a proportional change in 
IPC.  

 

However, high miss rate application like 

mcf shows a decrease in IPC with increasing miss 

rates. However the IPC gets impacted largely for 

small changes in miss rate as the number of misses 

is large. Another high miss rate application like milc 

however shows speedups rather than slowdown 

when run with other applications, This can be 

attributed to the pre-fetching mechanism in Pentium 

4 as discussed in Section II. As milc hardly reuses 

its data, prefetching benefits are more prominent as 
compared to mcf.  

 

VI. CONCLUSIONS 
From the above experiments , two 

conclusions can be made . The LLC miss rate is not 

a dependable measure of cross-core interference 

across different workloads            as it does not 

clearly quantify the extent of interference which is 

crucial in resource allocation The variation also 
depends on the number of accesses as well as misses 

experienced by the application ( solo 

characteristics). Another important conclusion is 

that by using workload characterisation to study 

effects of pre-fetching across different workloads, 

better performance benefits can be derived. For 

effective Shared resource management in Multi-core 

processors, both these conclusions are important. 

Future work may include studying the effectiveness 

of pre-fetching across application workloads . 
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