
Surabhi Jain, Deepak Sharma / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1605-1610

 1605 | P a g e

Elastic Load Balancing in Cloud Storage

Surabhi Jain, Deepak Sharma
 (Lecturer, Department of Computer Science, Lovely Professional University, Phagwara-144402)

 (Assistant Professor, Department of Computer Science, Adesh Institute of Engineering and

Technology,Faridkot-151203)

ABSTRACT :-Cloud Computing is a term,

which involves virtualization, distributed

computing, networking, software and web

services. A cloud consists of several elements

such as clients, datacenter and distributed

servers. Central to these issues lies the

establishment of an effective load balancing

algorithm. The load can be CPU load, memory

capacity, delay or network load. Load balancing

is the process of distributing the load among

various nodes of a distributed system to

improve both resource utilization and job

response time while also avoiding a situation

where some of the nodes are heavily loaded

while other nodes are idle or doing very little

work. Load balancing ensures that all the

processor in the system or every node in the

network does approximately the equal amount

of work at any instant of time.

Keywords – Cloud Computing, Distributed

Systems, Elastic Compute Cloud, Load Balancing,

Virtualization.

I. INTRODUCTION
 Today, computing becomes steadily more

important and more used. The amount of data

exchanged over the network or stored on a

computer is in constant increasing. Thus, the

processing of this increasing mass of data requires

more computer equipment to meet the different

needs of organizations. To better capitalize their

investment, the over equipped organizations open

their infrastructure to others by exploiting the
Internet and related technologies and other

emerging technologies such as virtualization by

creating a new computing model: the Cloud

Computing. In [1] Cloud computing is defined as a

model for delivering dynamically to IT end users,

computing services (computing power,

Data, storage, software packages, programming

environments ...) by a third party provider through

a private or public network, using various advanced

technologies and virtualization. Load balancing is
also required to minimize the cost of machine and

maximize the profit for the service being offered.

The example of the MIT class in biological

computing is given to explain the scenario. The

professor of the course created a 10-node cluster to

which students could submit work at any time, day
or night. As students are known for procrastination,

for the vast majority of the semester, the cluster sat

idle with 10 EC2 nodes wasting money

continuously for weeks. Only as the project’s due

date approached all 10 nodes were put to full use.

These idle nodes should have been shut down, with

only the master waiting for tasks. Thus, this proves

that some of the nodes were heavily loaded while

some others were just idle and wastage of all the

resources used in here. To solve this problem, we

use load balancing algorithms for distributed

systems, but they are not fully adapted to the
system of cloud computing which requires

development of new algorithms or adaptation of

those already existing for distributed systems.

 Load balancing in [2] is the mechanism

that decides which requesting nodes/client will use

the virtual machine and which requesting machines

will be put on hold. Load balancing can be done

individually as well as on grouped basis. Load

balancing is also required to minimize the cost of

machine and maximize the profit for the service

being offered.
Section II gives an overview about Previous work

and other prerequisites for the setup. Section III

explains load balancing concept and phases

involved in it. Section IV proposes the algorithm

for dynamic load balancing based upon the

framework given in Section III. Results are shown

in Section V. Finally, some conclusions are drawn

in Section VI.

II. PREVIOUS WORK
 A number of load balancing algorithms

have been developed since the inception of this

concept. A number of algorithms have been studied

in order to implement this technique of load

balancing. Some of the types of load balancer

algorithms are as follows:

 Sender Initiated: If the load balancing

algorithm is initialized by the sender.

 Receiver Initiated: If the load balancing

algorithm is initiated by the receiver.

 Symmetric: It is the combination of both

sender initiated and receiver initiated.

Depending on the current state of the system, load

balancing algorithms can be divided into 2

categories as given in [4]:

Surabhi Jain, Deepak Sharma / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1605-1610

 1606 | P a g e

Static: It does not depend on the current state of the

system. Prior knowledge of the system is needed.

Dynamic: Decisions on load balancing are based

on current state of the system. No prior knowledge
is needed. So it is better than static approach. Here

we will discuss on various

dynamic load balancing algorithms for the clouds

of different sizes.

Each one of them has their own advantages and

some disadvantages but none of them would be

complete without the discussion of the concept of

Virtualization and virtual machines and categories

of virtualization.

2.1 Previous Algorithm
 The five phases of load balancing as

described in [5] are:

 Load Evaluation

 Profitability Determination

 Work Transfer Vector Calculation

 Task Selection

 Task Migration

This Central Scheduler Load Balancing (CSLB) [6]

uses a central node that makes all load balancing

decisions. It decides when to migrate virtual

machines between hosts and runs as a normal
virtual machine. The aim behind this is, it can move

itself to a different host like any other virtual

machine, depending on the load.

2.2 VIRTUALIZATION AND LIVE

MIGRATION

 Virtualization [3] is commonly defined as

a technology that introduces a software abstraction

layer between the hardware and the operating

system and applications running on top of it. Core

of any virtualization technology is Hypervisor or
Virtual Machine Manager (VMM) [8]. Hypervisor

is a piece of software which allows each virtual

machine to access and schedule the task on

resources like CPU, disk, memory, network, etc. At

the same time hypervisor maintains the isolation

between different virtual machines. A computer on

which a hypervisor is running one or more virtual

machines is defined as a host machine. Each virtual

machine is called a guest machine. The hypervisor

presents the guest operating systems with a virtual

operating platform and manages the execution of

the guest operating systems. Multiple instances of a
variety of operating systems may share the

virtualized hardware resources. Virtualization can

be classified by the method in which hardware

resources are emulated to the guest operating

system. Types are as follows:

2.2.1 Full Virtualization

Hypervisor controls the hardware resources and

emulates it to guest operating system. In full

virtualization, guest does not require any

modification. KVM is an example of full

virtualization technology.

2.2.2 Para Virtualization

In paravirtualization, hypervisor controls the
hardware resources and provides API to guest

operating system to access the hardware. In para

virtualization, guest OS requires modification to

access the hardware resources. Xen is an example

of Para virtualization technology.

III. LOAD BALANCING
 Load balancing is the process of

reallocating VMs on another host in the network in
order to improve resource and network utilization.

Common goals of load balancing include

maximizing throughput, minimizing response time,

and/or minimizing communication time and

avoiding the scenario in network that, some hosts

are under-utilized and some over-utilized. The

important factors to consider while developing such

algorithm are estimation of load, comparison of

load, performance of systems, nature of work to be

transferred and selection of hosts [4].

Static load balancing is VM placement problem.
Here, the host on which VM will be placed is

decided before it starts running depending upon the

load on the network i.e. host with least system

usage runs the VM [9]. Dynamic load balancing

reassigns VMs based on system performance at run

time using the feature of live migration.

IV. PROPOSED ALGORITHM

(ELASTIC LOAD BALANCER)
 The Elastic Load Balancer algorithm is

modified version of Central Scheduler Load

Balancing (CSLB) algorithm [4]. The algorithm

uses the six phases for load balancing as under:

1) Get Load Status of All the Nodes: In this paper,

we set a scheduler which contains a Monitor to gain

and read load status, and also a Database to store

the load status and work request historical data of

user access to the server (PM). Most of the current
methods of nodes load status collection divided the

system resource into several types: CPU utilization,

Memory, Disk I/O and network bandwidth Etc. But

with different size of servers or provide different

services we cannot propose a unified set of those

parameters.

2) Evaluate the Status Of nodes: We set a

threshold that when the resource utilization beyond

the threshold, we can considered compute as a

over-load node, also if the resource utilization is

under the threshold we know that the node is in a

light-load status use and to represent those two
statuses.

3) Predict The Future Load Flow: Based on the

statistics, system’s load status could show seasonal

changes, which help to predict future load of nodes.

Surabhi Jain, Deepak Sharma / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1605-1610

 1607 | P a g e

4) Benefit Estimates: When a load status of N is

signed as which caused by transient spike, in this

condition we cannot make the decision that whether

we should perform migration.
5) Choose Receiver Nodes: We use the forward

probability method to help us to choose a receiver

host, every candidate nodes’ probability to receive

a job or VM is mainly depends on the result of load

status evaluation.

6) Migration: Helps migration of the heavily

loaded nodes to the lighter ones.

4.1 Overview of Load Balancing Algorithm

 Once per polling interval, the load

balancer will make a decision whether to add

nodes, remove nodes, or do nothing. the balancer
gets an accurate sense of what the clusters’ load

looks like.

 These are the important questions to be answered:

1. Are there jobs queued and waiting? If so,

 a. How long have those jobs been waiting?

 b. Does past job history suggest that the queued

waiting jobs will be finished quickly?

 c. Is the slave count already at the maximum

count allowed?

2. If there are no jobs waiting,

 a. Are any slaves completely idle?

 b. Have those slaves been up for longer than 45
minutes past the hour?

Fig 1: Flowchart showing six phases of

algorithm

The relation between all the phases of the

algorithm is explained by the flowchart (Fig 1).

V. PERFORMANCE AND RESULTS

ANALYSIS
 In order to assess the performance of the

algorithm, a prototype system of VM management

was developed. Virtual platform: KVM [7] and

storage system: NFS was used. A physical machine

was chosen as the host machine. VMM was

installed to manage and schedule VM; and its

operating system is UBUNTU. The MINIMUM
characteristics of the host system are as follows:

Intel Core i3 - 3110M CPU @ 2.40 GHz , 6 GB

DDR3 RAM, 500 GB hard disk (3 spindles in

RAID 0 configuration on Intel ICH8R SATA

RAID controller), Windows 7 OS x64 (64-bit),

VMware on Workstation 8.

Here, this section will compare two common

operating scenarios for Star Cluster. In the first

scenario, It will start a cluster and queue a series of

jobs as if it were a scientist, and then leave the

cluster to complete the jobs. This will run with no

Elastic Load Balancing, and again with Elastic
Load Balancing turned on. ELB will identify and

terminate idle nodes, saving money for the

scientist. In the second scenario, It will enqueue

large sets of tasks in a seemingly random pattern.

The pattern will be the same for the control case

and for the ELB-enabled case. It will show how

ELB launches new hosts to increase job throughput

and terminates idle hosts to save money. Here, two

test scenarios have been chosen because they are

two commonly used cases for scientists that

additionally demonstrate the true value of the
Elastic Load Balancer.

5.1 Test Scenario 1

 This scenario can be nicknamed “set it and

forget it”. The scientist queues up a large number of

jobs, which the cluster immediately starts to

execute. The jobs are executed serially by each of

the nodes in the cluster. When one job completes,

the node informs the master and requests another

job. If a job or a node fails, the master re-queues

that job so that the job will still be executed. The

job count will be monotonically decreasing from

the peak job count, when the scientist has just
finished queuing jobs, to the low point, 0, when all

jobs are complete. This is a common scenario

because it allows the scientist maximum freedom. It

is unlikely that a Star Cluster operator would be

able to sit beside the computer and wait for all of

his or her jobs to complete. If the nodes in the

cluster are left running after the jobs are completed,

their idle time is wasting money and unnecessarily

tying up EC2 resources. As stated earlier, a 20-node

High Performance Computing cluster will accrue a

charge of $45.60 per hour. If the cluster were idle
and all of the idle nodes were to be terminated, the

cluster would only accrue a charge of $2.28 per

hour for the master, until the scientist logged in to

Surabhi Jain, Deepak Sharma / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1605-1610

 1608 | P a g e

terminate the cluster. This is desirable, and the

$2.28 hourly charge is a negligible cost for keeping

the master running.

In this scenario, the scientist would queue up a
large number of jobs and leave the cluster

unattended. He could come back at a later date to

see that the jobs completed, and only the master

would be running and can provide the results. The

idle slaves have been terminated. The unattended

job execution period could be as short as a few

hours or as long as a few weeks. There are no

limits.

5.2 Test Scenario 2

 Test Scenario 2 models an unpredictable

workload. This scenario would occur when a
scientist creates a cluster to aid others, or enqueue a

large number of tasks without knowing their

durations.

5.3 RESULTS

5.3.1 Test Scenario 1: Case 1: Elastic Load

Balancer Disabled

Fig 2:Test Scenario 1 showing idle nodes

Fig 3: Test Scenario 1 showing idle running nodes

In the above graphs, the scientist has queued a large

number of jobs and left the cluster unattended. The

cluster of 5 nodes executes the jobs steadily,

driving the number queued from 280 to 0. When
the number of jobs queued reaches 0, the idle nodes

are left running.

 The above graphs describe the control

case. At the beginning of the test, the tester queued

180 jobs. The cluster consists of 5 nodes, including

the master. Each node in the cluster executes jobs at

full speed, completing one job and requesting

another job immediately. Since Elastic Load

Balancing is not enabled, the nodes continue to sit

idly until the tester comes back and shuts down the

cluster when the test concludes at 17:00.
Case 2: Elastic Load Balancer Enabled

Fig 4: Test Scenario 2 showing large jobs

enqueued again

Fig 5: Test Scenario 2 shows nodes shut down acc

to rule.

According to this 45-minute rule:

 Load balancer grows and shrinks the

cluster according to the length of the cluster’s job

queue. When the cluster is heavily loaded and

Surabhi Jain, Deepak Sharma / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1605-1610

 1609 | P a g e

processing a long job queue, the load balancer can

gradually add more nodes, up to the specified

max_nodes, to distribute the work and improve

throughput.. It helps in achieving the following
goals:

1. To increase the size of the cluster to some user-

defined maximum number of nodes when there is a

large queue of waiting jobs

2. To decrease the size of the cluster to a single

node or some minimum number of nodes when

there are no jobs waiting to optimize for cost

5.3.2 Test Scenario 2 Results: Case 1: Elastic

Load Balancer Disabled

Fig.6: Case Scenario 2 showing cluster enqueued
with larger number of nodes sitting idle

Fig. 7: Case Scenario 2 showing cluster

enqueued with larger number of jobs (180+180

jobs).

 In this case, over 2 hours, the number of

hosts was constant. At approximately 18:05, 180

jobs were added to the queue. At approximately

19:05, 180 more jobs were added to the queue. The

cluster was idle for approximately 25 minutes and

no hosts were removed. Test Scenario 2 Control

Case shows jobs queued at two distinct times:
approximately 20:42 and 21:12. During the idle

period between 18:45 and 19:10, the cluster sits

idly. It is important to note that at 18:45, neither

SGE nor ELB know that more work will be

enqueued soon. There is no reason to keep slave

nodes running in anticipation of future work.
Case 2: Elastic Load Balancer Enabled

Fig. 8: Jobs enqueued at two different times

Fig. 9: Case Scenario 2 showing cluster enqueued

with larger number of jobs (180+180 jobs) and

ELB successfully shuts down the slave nodes.

VI. CONCLUSIONS
 As we can see from the test results, ELB

operates according to design. ELB can maintain a

cluster to execute jobs with maximum possible

throughput while the cluster is heavily loaded, and

it removes nodes when the cluster is idle. The

parameters to the load-balancing algorithm such as

job wait threshold and stabilization time have been
extensively tested in the laboratory and provide the

ideal performance.

Table 1: Table Showing Pay Per Use Charges using

Test Case Scenario 1

Surabhi Jain, Deepak Sharma / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1605-1610

 1610 | P a g e

Table 2: Table Showing Pay Per Use Charges using Test Case

Scenario 2

ELB has the capability to save scientists’ money

and allow EC2 to optimally allocate resources by

terminating idle nodes and freeing them for use by

other customers. ELB will add new nodes and scale

up the throughput of the cluster in response to

heavy demand. Through the testing, even for tests

of short duration, a noticeable cost savings is
measured as it is clear from (Table 1 and 2).

Table 1: It shows pay per use charges for Case 1 in

which the scenario is ''set it and forget it''. Here,

number of jobs are (180) and compute time used

was 9 hrs and 6 hrs for different cases. Cost of

usage was depending upon its use. However,

Table 2: It shows pay per use charges for Case2 in

which the scenario is ''unpredictable workload''.

Here, number of jobs are (180+180) , double than

previous scenario but compute time used was 12

hrs and 8 hrs for different cases.

Which would have been double otherwise.
Thus, this technique saved enormous amount of

time and money making complete usage of Utility

Computing.

Further dynamic load balancing can be improved

and the Live Migration algorithm implemented in

QEMU-KVM can be optimized, so that migration

time will be reduced and performance will also be

improved.

Journal Papers

[1] A. Khiyaita, M. Zbakkh, H. El Bakkali,

and Dafir El Kettani. Load Balancing

cloud Computing: State of Art. IEEE

computer society, May 2012, 106-109.

[2] A Survey on Open-source Cloud

Computing Solutions Patrícia Takako

Endo, Glauco Estácio Gonçalves, Judith

Kelner.

[3] Jyotiprakash Sahoo, Subasish Mohapatra,

Radha Lath, Virtualization: A Survey On

Concepts, Taxonomy And Associated

Security Issues, Second International
Conference on Computer and Network

Technology, 2010.

[4] Ali M. Alakeel, A Guide to Dynamic Load

Balancing in Distributed Computer

Systems, IJCSNS International Journal of

Computer Science and Network

Security,VOL.10 No.6, June 2010.

[5] Jerrell Watts, Stephen Taylor, A Practical

Approach to Dynamic Load Balancing,

IEEE Transactions on Parallel and

Distributed Systems, Feb 1998.
[6] Youran Lan, Ting Yu, A Dynamic Central

Scheduler Load Balancing Mechanism,

Computers and Communications, pp 734-

740, May 1995.

[7] KVM Kernel Based Virtual Machine Red

Hat, Inc. 2009.

[8] Geoffroy Vallee, Thomas Naughton,

Christian Engelmann, Stephen L Scott,

Hong Ong, System-level Virtualization

and Virtual Machine Manager For High

Performance Computing, 2008.

[9] Willebeek-LeMair M.H and Reeves A.P.
“Strategies for Dynamic Load Balancing

on Highly Parallel Computers,” IEEE

Transactions on Parallel and Distributed

Systems, 1993, pp979.

