
 Preety, Nidhi Jindal, Vikas Tomar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.877-882

877 | P a g e

Optimizing the agents coordination in Multi-agent system

through JADE Tool

Preety*, Nidhi Jindal**, Vikas Tomar***
*(Research scholar, Dr. K.N. Modi University, Newai, Rajasthan (India)

** (Assistant Professor, Dronacharya College of Engineering, Gurgaon, Haryana (India)

*** (Assistant Professor, Terna Engineering College, Nerul, Navi Mumbai (India)

ABSTRACT
Agent-based systems technology has

generated a lot of enthusiasm in recent years

because of its guarantee as a innovative standard

for conceptualizing, designing, and implementing

software systems. Increasingly, however,

applications require multiple agents that can

work together. A multi-agent system (MAS) is a

loosely coupled network of software agents that

interact to solve problems that are beyond the

individual capacities or knowledge of each

problem solver.

JADE (Java Agent Development

Framework) is a software environment to build

agent systems for the management of networked

information resources. JADE offers an agent

middleware to implement efficient FIPA2000

compliant multi-agent systems and supports their

development through the availability of a

predefined programmable agent model, an

ontology development support, and a set of

management and testing tools. In this paper we

will use JADE tool for developing the

autonomous software agents which manage

(intermediates) the communication and

coordination between an agent and the agent

society wherein this is situated. With this aim, we

have used the Java agent development toolkit

provides agents with a highly versatile range of

programmable before and during the agent's

run-time communication and coordination

services.

Keywords– Intelligent Agent, Multi-agent

system, Reasoning, Coordination, JADE

I. INTRODUCTION
Multi-Agent systems or Agent-based

Systems: provide a way of conceptualizing

sophisticated software applications that face

problems involving multiple and (logically and

often spatially) distributed sources of knowledge.

It can be thought of as computational systems

composed of several agents that interact with one

another to solve complex tasks beyond the
capabilities of an individual agent.

From the agent perspective, completely

optimal agents are not really practicable. Agents are

faced with all sorts of limitations. Some limitations

may physically prevent certain behavior, e.g., a

soccer robot with acceleration constraints.

Other limitations are self-imposed to help guide an

agent‘s learning, e.g., using a subproblem solution

for advancing the ball down the field. In short,
limitations prevent agents from playing optimally

and possibly from following a Nash equilibrium.

This clash between the concept of equilibria and the

reality of limited agents is a topic of critical

importance. Do equilibria exist when agents have

limitations? Are there classes of domains or classes

of limitations where equilibria are guaranteed to

exist? One method for deciding what strategy to use

when negotiating with a particular agent is to use a

model based approach that tries to construct a model

of the agent and then based on this model select a
strategy. There are a number of reasons why this

approach would be difficult to use in practice.

Firstly, obtaining an accurate enough model of

another agent is a very difficult learning problem,

since the only interaction agents have is through the

exchange of times when they negotiate meetings.

From this information, it is hard to make accurate

conclusions about what times an agent prefers, how

busy the agent is, what negotiation strategy it is

employing etc. Secondly, to build a model of

another agent, many training examples are required.

It would be preferable if an agent was able to learn
to negotiate, while actually negotiating.

Figure 1: Multi-agent system

Goal, plan, and policy hierarchies have

proven to be very successful methods for

coordinating agents. In these approaches we assume

the existance of one of these hierarchies and the

 Preety, Nidhi Jindal, Vikas Tomar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.877-882

878 | P a g e

problem then becomes that of determining which

parts of the hierarchy are to be done by which

agents. In this setting we assume that the agents are

coopertive, that is, they will do exactly what we tell

them to. The problem is one of finding an good-

enough answer

II. ADVANTAGES OF MULTI-AGENT SYSTEM
An MAS has the following advantages over a single

agent or centralized approach:

 An MAS distributes computational resources

and capabilities across a network of

interconnected agents. Whereas a centralized

system may be plagued by resource

limitations, performance bottlenecks, or

critical failures, an MAS is decentralized and
thus does not suffer from the "single point of

failure" problem associated with centralized

systems.

 An MAS allows for the interconnection and

interoperation of multiple existing legacy

systems. By building an agent wrapper around

such systems, they can be inporporated into an

agent society.

 An MAS models problems in terms of

autonomous interacting component-agents,

which is proving to be a more natural way of

representing task allocation, team planning,
user preferences, open environments, and so

on.

 An MAS efficiently retrieves, filters, and

globally coordinates information from sources

that are spatially distributed.

 An MAS provides solutions in situations

where expertise is spatially and temporally

distributed.

An MAS enhances overall system

performance, specifically along the dimensions of
computational efficiency, reliability, extensibility,

robustness, maintainability, responsiveness,

flexibility, and reuse. We are currently interested in

interagent communication and coordination, and are

building reusable multi-agent applications that

facilitate interaction among different kinds of agent

systems

III. RELATED WORK
Thomas Wagner and Victor Lesser et al.

(1991) proposed MQ or motivational quantities

framework addressed the issues by evaluating

candidate tasks based on the agent‘s organizational

context and by framing control as a local agent

optimization problem that approximates the global

problem through the use of state and preference.

Jaime Simao Sichman et al. (1995) presented briefly

both our agent model and the theory of dependence

on which our social reasoning mechanism is based,

and illustrate how such an adaptation can be

achieved using a very simple example of the blocks

world.

Onn Shehory et al. (1998) demonstrated

multiagent systems developed to date have several

common architectural characteristics, even though

differences in their design and implementation result

in variations in their strengths and weaknesses. A
large portion of the research in the design and

implementation of MAS addresses questions such

as: given a computational problem—can one build a

MAS to solve it? What should be the properties of

this MAS given the problem? Having developed a

MAS, what is the class of problems that this MAS,

either as developed or with slight modifications, can

solve?

Peter Stone et al. (2000) performed the

survey of MAS is intended to serve as an

introduction to the field and as an organizational

framework. A series of general multiagent scenarios
are presented. For each scenario, the issues that arise

are described along with a sampling of the

techniques that exist to deal with them. The

presented techniques are not exhaustive, but they

highlight how multiagent systems can be and have

been used to build complex systems. When options

exist, the techniques presented are biased towards

machine learning approaches. Additional

opportunities for applying machine learning to MAS

are highlighted and robotic soccer is presented as an

appropriate test bed for MAS. This survey does not
focus exclusively on robotic systems. However, we

believe that much of the prior research in non-

robotic. MAS is relevant to robotic MAS, and we

explicitly discuss several robotic MAS, including all

of those presented in this issue. Martin L Griss,

Steven Fonseca et al. (2002) implemented

SmartAgent extends JADE behaviors with uniform

message and system events, a multi-level tree of

dispatchers that match and route events, and a

hierarchical state machine that is based on the UML

state chart model. Adherence to the UML helps

bridge the object-oriented to the agent-oriented
programming using an industry familiar modeling

language and tools. Combining events, dispatcher

tree and hierarchical state machines simplifies

programming of default and context dependent

behavior. This hypothesis was confirmed in a

meeting scheduler prototype where code previously

written using pure JADE was refactored using

SmartAgent. Rajveer Basra et al. (2005) reported on

an investigation in to how a Multi-Agent System

(MAS) may be used for resolving scheduling issues

for LU. It is a previously unexplored domain. A
prototype system MASLU is developed through the

use of Multi-agent Systems (MAS) technology, in

an innovative and unique manner, with a view to

resolving the London Undergrounds

scheduling/logistics issues in real time.

Kalliopi Kravari et al. (2010) reported on

the implementation of EMERALD, a knowledge-

 Preety, Nidhi Jindal, Vikas Tomar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.877-882

879 | P a g e

based framework for interoperating intelligent

agents in the Semantic Web. More specifically, a

multi-agent system was developed on top of JADE,

featuring trusted, third party reasoning services, a

reusable agent prototype for knowledge-

customizable agent behavior, as well as a reputation

mechanism for ensuring trust in the framework.
Finally, a use case scenario was presented that

illustrates the viability of the proposed framework.

Ghulam Mahdi et al. (2010) presented an integrated

view of coordination covering agent reasoning,

message passing, resource management and

negotiation. We argued for an integrated and

comprehensive approach of real-time coordination"

in one unified model of coordination. Our position

regarding real-time agent coordination would result

in overall better understanding of real-time

coordination and performance amelioration in

MASs. We analyze current approaches and present
an outline for integrated and comprehensive view

of\real time coordination".

IV. JADE TOOL
JADE (Java Agent Development

Framework) is a software development framework

aimed at developing multi-agent systems and

applications conforming to FIPA standards for

intelligent agents. It includes two main products: a
FIPA-compliant agent platform and a package to

develop Java agents. JADE has been fully coded in

Java. JADE is written in Java language and is made

of various Java packages, giving application

programmers both ready-made pieces of

functionality and abstract interfaces for custom,

application dependent tasks. Java is the

programming language of choice because of its

many attractive features, particularly geared towards

object-oriented programming in distributed

heterogeneous environments; some of these features
are Object Serialization, Reflection API and Remote

Method Invocation (RMI).

Figure 2: Architecture of JADE

JADE is composed of the following main packages.

 jade.core implements the kernel of the system. It

includes the Agent class that must be extended

by application programmers.

 jade.core.behaviours sub-package contains

Behaviour class hierarchy. Behaviours

implement the tasks, or intentions, of an agent.

They are logical activity units that can be

composed in various ways to achieve complex

execution patterns and that can be concurrently

executed. Application programmers define agent

operations writing behaviours and agent

execution paths interconnecting them.

 jade.lang.acl sub-package is provided to process
Agent Communication Language according to

FIPA standard specifications.

 jade.content package contains a set of classes to

support user-defined ontologies and content-

languages. A separate tutorial describes how to

use the JADE support to message content. In

particular jade.content.lang.sl contains the SL

codec, both the parser and the encoder.

 jade.domain package contains all those Java

classes that represent the Agent Management

entities defined by the FIPA standard, in

particular the AMS and DF agents, that provide
life-cycle, white and yellow page services. The

subpackage

jade.domain.FIPAAgentManagement contains

the FIPA-Agent-Management Ontology and all

the classes representing its concepts. The

subpackage

jade.domain.JADEAgentManagement contains,

instead, the JADE extensions for

AgentManagement (e.g. for sniffing messages,

controlling the life-cycle of agents), including

the Ontology and all the classes representing its
concepts. The subpackage

jade.domain.introspection contains the concepts

used for the domain of discourse between the

JADE tools (e.g. the Sniffer and the Introspector)

and the JADE kernel. The subpackage

jade.domain.mobility contains all concepts used

to communicate about mobility.

jade.gui package contains a set of generic classes

useful to create GUIs to display and edit Agent-

Identifiers, Agent Descriptions, ACLMessages.

jade.mtp package contains a Java interface that

every Message Transport Protocol should
implement in order to be readily integrated with the

JADE framework, and the implementation of a set

of these protocols. JADE can be run by ‗java

jade.Boot –gui‘.

Figure 2: JADE screen

 Preety, Nidhi Jindal, Vikas Tomar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.877-882

880 | P a g e

V. ORGANIZATIONS & ROLES IN JADE

TOOL
We introduce organizations and roles as

first class entities in JADE, with behaviours, albeit

not autonomously executed, and communication

abilities. Thus, organizations and roles can be

implemented using the same primitives of agents by

extending the JADE Agent class with the classes

Organization and Role. Analogously, to implement

autonomous agents who are able to play roles, the

Player class is defined as an extension of the Agent

class. The Role class and its extensions represent the

role types. Their instances represent the role

instances associated with an instance of the Agent.
Organizations and roles, however, differ in two

ontological aspects: first roles are associated to

players; second, roles are not independent from the

organization offering them. Thus, the Role class is

subject to an invariant, stating that it can be

instantiated only when an instance of the

organization offering the role is present. Conversely,

when an organization is destroyed all its roles must

be destroyed too.

A further difference of role classes is that

to define ―powers‖, they must access the state of the

organization they belong too. To avoid making the
state of the organization public, the standard

solution offered by Java is to use the so-called

―inner classes‖.

Inner classes are classes defined inside

other classes (―outer classes‖). An inner class shares

the namespace of the outer class and of the other

inner classes, thus being able to access private

variables and methods. The class Role is defined as

an inner class of the Organization class. Class

extending the Role class must be inner classes of the

class extending the Organization class. In this way
the role can access the private state of the

organization and of the other roles. Since roles are

implemented as inner classes, a role instance must

be on the same platform as the organization instance

it belongs to. Moreover, the role agent can be seen

as an object from the point of view of the

organization and of the other roles which can have a

reference to it, besides sending messages to it. In

contrast, outside an organization the role agent is

accessed by its player (which can be on a different

platform) only as an agent via messages, and no
reference to it is possible. So not even its public

methods can be invoked.

VI. IMPLEMENTING ORGANIZATION OF MAS

IN THROUGH JAVA INTEREGENTS
To implement an organization it‘s

necessary to extend Organization, subclass of
Agent, which offers protocols necessary to

communicate with agents who want to play a role,

and the behaviours to manage the information about

roles and their players. Moreover, the Organization

class includes the definition of the Role inner class

that can be extended to implement new role classes

in specific organizations. To support the creation

and management of roles the Organization class is

endowed with the (private) data structures and

(private) methods to create new role instances and to

keep the list of the AIDs (Agent IDs) of role

instances which have been created, associated
with the AIDs of their players. Since roles are Java

inner classes of an organization, the organization

code can be written in Java mostly is regarding what

is a JADE application.

Moreover, the inner class mechanism

allows the programmer to access the role state and

viceversa, while maintaining the modularity

character of classes. The organization listens from

messages from any agent (even if some restrictions

can be posed at the moment of accepting to create

the role), while the subsequent communication

between player and role is private. After a request
from an agent the behavior representing the protocol

forks creating another instance of itself to be ready

to receive requests of other agents in parallel.

The first message is sent by the player as

initiator and is a request to enact a role. The

organization, if it considers the agent authorized to

play the role, returns to the candidate player a list of

specifications about the powers and requirements of

the requested role which are contained in its

knowledge base, sending an inform message

containing the list; otherwise, it denies to the player
to play the role, answering with an inform message,

indicating the failure of the procedure. In case of

positive answer,

the player, invoking the method canPlay using the

information contained in the player about the

requirements, decides whether to respond to the

organization that it can play the role (agree) or not

(failure).

All Responder behaviours, instead, are

cyclic and they are rescheduled as soon as they

reach any final state of the interaction protocol.

Notice that this feature allows the programmer to
limit the maximum number of responder behaviours

that the agent should execute in parallel. For

instance, the following code ensures that a

maximum of two contract-net tasks will be executed

simultaneously.

Protected void setup() {

addBehaviour(new

FipaContractNetResponderBehaviour(<arguments

>));

addBehaviour(new

FipaContractNetResponderBehaviour(<arguments
>));

}

It is intention of the programmer to keep

only this couple of classes and soon deprecate the

other jade.proto classes. It has also

ContractNetInitiator/Responder have been

implemented that offer API and functionalities with

 Preety, Nidhi Jindal, Vikas Tomar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.877-882

881 | P a g e

the same style and that replace the deprecated old

FipaContractNetInitiator / ResponderBehaviour.

VII. CONCLUSION
In this paper we use the ontological model

of organizations proposed in organizations. We use

as agent framework JADE since it provides the

primitives to program MAS in Java. We define a set

of Java classes which extends the agent classes of

the JADE to have further primitives for building

organizations structured into roles. To define the

organizational primitives JADE offered advantages

but also posed some difficulties. First of all, being

based on Java, it allowed to reapply the

methodology used to implement roles in powerJava

to implement roles as inner classes. Moreover, it

provides a general purpose language to create new
organizations and roles. Finally, being based on

FIPA speech acts, it allows agents programmed in

other languages to play roles in organizations, and

viceversa, JADE agents to play roles in

organizations not implemented in JADE. However,

the decision of using JADE has some drawbacks.

For example, the messages used in the newly

defined protocols can be intercepted by other

behaviours of the agents. This shows that a more

careful implementation should use a more complex

communication infrastructure to avoid this problem.
Moreover, since JADE behaviours differently from

methods do not have a proper return value, they

make it difficult to define requirements and powers.

Finally, due to the possible parallelism of

behaviours inside an agent, possible synchronization

problems can occur.

REFERENCES
[1]. M. Allen-Williams. Coordination in multi-

agent systems. PhD thesis, University of

Southampton, 2006.

[2]. M. Bouroche, B. Hughes, and V. Cahill.

Real-time coordination of autonomous

vehicles. In IEEE Conference on Intelligent

Transportation Systems (ITSC 06), 2006,

1232-1239.

[3]. C. Carrascosa, J. Bajo, V. Julian, J.

Corchado, and V. Botti. Hybrid multi-agent

architecture as a real-time problem-solving

model. Expert Systems with Applications,
34(1), 2008, 2-17.

[4]. P. Ciancarini, A. Omicini, and F.

Zambonelli. Multiagent system

engineering: The coordination viewpoint.

Lecture notes in computer science, pages,

2000, 250-259.

[5]. E. Durfee. Scaling up agent coordination

strategies. Computer, 2001, 39-46.

[6]. E. Durfee. Challenges to Scaling-Up Agent

Coordination Strategies. Multiagent

Systems, Artificial societies and simulated

organizations, 10, 2004, 119-132.

[7]. D. Gelernter and N. Carriero. Coordination

languages and their significance.

Communication ACM, 35(2), 1992, 97-107.

[8]. N. Jamali and S. Ren. A layered

architecture for real-time distributed multi-

agent systems. SIGSOFT Softw. Eng.

Notes, 30(4), 2005, 1-8.
[9]. E. D. Jensen. Real-time for the real world.

http://www.real-time.org/

[10]. V. Julian and V. Botti. Developing real-

time multi-agent systems. Integrated

Computer-Aided Engineering, 11(2), 2004,

135-149.

[11]. V. Julian, J. Soler, M. Moncho, and V.

Botti .Real-Time Multi-Agent System

Development and Implementation. Recent

Advances in Artificial Intelligence

Research and Development, page 333,

2004.
[12]. J. Kim, H. Shim, H. Kim, M. Jung, I. Choi,

and J. Kim. A cooperative multi-agent

system and its real time application to robot

soccer. In IEEE International Conference

on Robotics and Automation, IEEE, 1997,

638-647.

[13]. S. Kraus, J. Wilkenfeld, and G. Zlotkin.

Multiagent negotiation under time

constraints. Artificial Intelligence, 75(2),

1995, 297-345.

[14]. X. Liu, X. Zhang, L. Soh, J. Al-Jaroodi,
and H. Jiang. A distributed, multiagent

infrastructure for real-time, virtual

classrooms. In Proceedings of the

International Conference on Computers in

Education (ICCE2003), Hong Kong, 2003,

2-5.

[15]. C. Micacchi and R. Cohen. A framework

for simulating real-time multi-agent

systems. Knowledge and Information

Systems, 17(2), 2008, 135-166.

[16]. M. Mock and E. Nett. Real-time

communication in autonomous robot
systems. In Proceedings of the The Fourth

International Symposium on Autonomous

Decentralized Systems, page 34, USA,

1999.

[17]. H. Nwana, L. Lee, and N. Jennings. Co-

ordination in multi-agent systems. Lecture

Notes in Computer Science, 1198, 1997,

42-58.

[18]. C. Sierra and L. Sonenberg. A real-time

negotiation model and a multi-agent sensor

network implementation. Autonomous
Agents and Multi-Agent Systems, 11(1),

2005, 5-6.

[19]. L. Soh and C. Tsatsoulis. A real-time

negotiation model and a multi-agent sensor

network implementation. Autonomous

Agents and Multi-Agent Systems, 11(3),

2005, 217-271.

 Preety, Nidhi Jindal, Vikas Tomar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.877-882

882 | P a g e

[20]. J. Soler, V. Julian, M. Rebollo, C.

Carrascosa, and V. Botti. Towards a real-

time multi-agent system architecture.

COAS, AAMAS, 2002.

[21]. J. Stankovic, T. Abdelzaher, C. Lu, L. Sha,

and J. Hou. Real-time communication and

coordination in embedded sensor networks.
Proceedings of the IEEE, 91(7), 2003,

1002-1022.

[22]. M. Baldoni, G. Boella, and L. van der

Torre. Modelling the interaction between

objects: Roles as affordances. In Proc. of

KSEM 2006, LNCS 4092, pp. 42–54.

Springer, 2006.

[23]. M. Baldoni, G. Boella, and L. van der

Torre. Interaction between Objects in

powerJava. Journal of Object Technology,

6(2):7–12, 2007.

[24]. F. L. Bellifemine, G. Caire, and D.

Greenwood. Developing Multi-Agent

Systems with JADE. Wiley, 2007.

[25]. G. Boella, R. Damiano, J. Hulstijn, and L.

van der Torre. ACL semantics between

social commitments and mental attitudes.

In Proc. of AC 2005 and AC 2006, LNAI
3859, pp. 30– 44. Springer, 2006.

[26]. G. Boella, V. Genovese, R. Grenna, and L.

der Torre. Roles in coordination and in

agent deliberation: A merger of concepts.

In Proc. of Multi-Agent Logics, PRIMA

2007.

[27]. G. Boella and L. van der Torre.

Organizations as socially constructed

agents in the agent oriented paradigm. In

Proc. of ESAW‘04, LNAI 3451, pp. 1–13,

2005. Springer.

